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SIEVING IN GRAPHS AND EXPLICIT BOUNDS FOR NON-TYPICAL ELEMENTS*

FLORENT JOUVE† JEAN-SÉBASTIEN SERENI‡

May 16, 2014

ABSTRACT. — We study properties of random graphs within families of graphs equipped with a group law. Using the group
structure we perform a random walk on the family of graphs. If the generating system is a big enough random subset
of graphs, a result of Alon–Roichman provides us with useful expansion properties from which we deduce quantitative
estimates for the rarefaction of non-typical elements attained by the random walk. Applying the general setting we show,
e.g., that with high probability (in a strong explicit sense) random graphs contain cycles of small length, or that a random
colouring of the edges of a graph contains a monochromatic triangle. We also explain how our method gives results towards
an effective infinite Ramsey Theorem.

INTRODUCTION

The relevance of using families of expander graphs for studying objects or solving problems coming from a broad
variety of mathematical areas has been emphasized in numerous ways in the recent years. Notably the combina-
tion of sieving arguments together with expansion properties has proved particularly efficient. Let us mention the
groundbreaking work [3] where the mix of such techniques enabled the authors to detect almost primes in a variety of
non-Abelian situations (a striking example being the study of almost prime curvatures of Apollonian circle packings).
A different kind of sieve together with the same expansion properties have also been exploited in the context of group
theory [10] and to obtain quantitative results concerning the probabilistic Galois theory of arithmetic groups [6, 11].
In the sieving processes used in the aforementioned works, one is naturally led to a crucial step where some spectral

gap property is needed. A tautological reinterpretation of expansion properties of a certain family of graphs provides
one with the needed spectral gap.

The present paper follows the same kind of strategy, the goal being this time to study properties of graphs them-
selves. The starting point is a result of Alon–Roichman [2] according to which a family of random Cayley graphs forms
a “good” family of expanders. There are several natural approaches to produce “random” elements. The one we use
consists in performing a random walk on the family of graphs studied (cf. also [6, 11]). Another approach could be
to quantify the proportion of elements satisfying an expected property among a finite subset of the family of graphs
considered. For several of the applications we have in mind this question would be much easier. As a matter of fact
we do need to quantify proportions of “good” elements as part of our sieving process. However our setting is more
general. Indeed by carefully adapting Kowalski’s random walk sieve [7, Chap. 7] our sieving procedure is capable of
handling infinite structures. In that case it is less clear how our approach could be compared to the one consisting in
the estimation of the proportion of good elements in a given structure. As such, there are settings where our approach
produces results for which there does not seem to be obvious analogues in the standard point of view.

The paper is organized in the following way: Section 1 explains the general setup and makes precise the way in
which we want to use Alon–Roichman’s result. In that section we also state and prove the main theoretical result
needed for the applications. It can be seen as a combinatorial variation on one of the key proposition in Kowalski’s
book [7]. The rest of the paper is devoted to applications of the main result of Section 1. Our first application, being
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mainly an introductory example to illustrate how to set up the random walk and ensure the required properties, pro-
vides an explicit bound on the probability that a random subgraph of the grid Z2 contains a cycle of length 4. We then
present a series of applications inspired by (finite and infinite) Ramsey theory, forming an explicit incarnation of what
can be seen as probabilistic Ramsey theory. We conclude with remarks on further questions that may be of interest
and that may be successfully investigated using our method. We notably state another Ramsey type result (together
with a sketch of proof) obtained by suitably adapting the arguments developed in Section 3.

Notation. If X is a finite set, then #X and |X | synonymously denote the cardinality of X . If X is a finite graph,
then Adj(X ) is the adjacency operator mapping a C-valued function on the vertices of X to the function (x 7→

∑

y f (y)),
where the sum is over the neighbours y of the vertex x. If X is moreover d-regular (that is, every vertex of X has degree
d), then the normalized adjacency operator is 1

d
·Adj(X ).

If G is a group and S ⊆ G, then X (G,S) is the Cayley graph on G with edge set S ∪S−1 :=
{

s ∈G : s ∈ S or s−1 ∈ S
}

. If
G is a finite Abelian group, then Ĝ is the character group of G. If x is a non-negative real number, then ⌈x⌉ and ⌊x⌋

are the least integer greater than or equal to x and the greatest integer smaller than or equal to x, respectively. If R is
a positive integer, then [R] is the set {1, . . . ,R}. Given a probability space (Ω,Σ,P) and two events A and B such that
P(B) 6= 0, we let P(A |B) be the conditional probability P(A∩B)/P(B).

1. THE GENERAL SETTING

1.1. CAYLEY GRAPHS ON QUOTIENTS

Let G be a group (in this section, the group law is noted multiplicatively) and Λ ⊂ N be a (non necessarily finite)
set of indices. We suppose we are given a family (Hℓ)ℓ∈Λ of normal subgroups of G such that for each ℓ the index
nℓ := [G : Hℓ] is finite. We set Gℓ :=G/Hℓ and we let ρℓ : G →Gℓ be the canonical projection.

We fix once and for all a probability space (Ω,Σ,P) and an arbitrarily small real number δ ∈ (0 ,1). Set

ψ(δ) := 2((2−δ) ln(2−δ)+δ lnδ)−1 . (1)

For each ℓ ∈Λ, we define the quantity

κ(bℓ,ℓ;δ) :=

⌈

ψ(δ) ·
(

ln(
∑

ρ∈Irr(G/Hℓ)
dimρ)+bℓ+ ln 2

)

⌉

,

where b := (bℓ) is a parameter (a sequence of positive real numbers) and Irr(G/Hℓ) is a set of representatives for the
isomorphism classes of irreducible representations of G/Hℓ.

Now let s(ℓ)
1 , · · · , s(ℓ)

κ(bℓ ,ℓ;δ) be independent identically distributed random variables taking values in G/Hℓ. We as-

sume that the common distribution of these random variables is the uniform distribution on G/Hℓ. We are interested
in the properties of the Cayley graphs on the groups G/Hℓ with edges corresponding to the values taken by the random
variables s(ℓ)

i
for i ∈ {1, . . . ,κ(bℓ,ℓ;δ)}. These graphs are κ(bℓ,ℓ;δ)-regular graphs and possibly have multiple edges.

Throughout the paper, if X is a k-regular graph, then the eigenvalues of X are the eigenvalues of the normal-
ized adjacency operator k−1 Adj(X ). An eigenvalue λ is trivial if |λ| = 1. The spectral gap ε(X ) of X is defined to be
min

{

1−|λ| : λ is a non-trivial eigenvalue of X
}

(recall that the eigenvalue −1 occurs if and only if X is bipartite). We
adopt the following definition for an expander graph, which slightly differs from the standard one.

Definition 1. Let γ be a real number satisfying 0 < γÉ 1/2. A k-regular graph X is a γ-expander graph if the spectral
gap of X is at least γ.

In particular, note that a k-regular graph with spectral gap greater than 1/2 is a γ-expander graph for any γ ∈ (0 ,1/2].

The reason for introducing the above setup is a theorem of Alon & Roichman [2, Th. 1], which has been subse-
quently improved by Landau & Russell [8, Th. 2] and Loh & Schulman [9, Th. 1]. The latest improvement obtained,
which is the version we state and use, is due to Christofides & Markström [4, Th. 5].

THEOREM 1.1 (Christofides–Markström). — With notation as above, fix an index ℓ in Λ. For every δ ∈ (0,1/2], the

probability that X (G/Hℓ, {s(ℓ)
1 , · · · , s(ℓ)

κ(bℓ ,ℓ;δ)}) is not a δ-expander graph is less than e−bℓ .
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Because of Theorem 1.1 and the definition of expansion we use, the symbol δ will always denote in the sequel a
fixed real number in (0 ,1/2].

Theorem 1.1 can be rephrased by saying it is highly probable that the Cayley graph X (G/Hℓ, {s(ℓ)
1 , · · · , s(ℓ)

κ(bℓ ,ℓ;δ)}) be

a δ-expander graph, the counterpart being that the edge set has very large cardinality. We pause here to note that the
definition of an expander graph we use is not completely equivalent to the usual definition. However, it is a standard
fact that the (usual) expansion property and the spectral gap property are closely related notions. Indeed, let X = (V ,E )
be an undirected finite graph. For every A ⊂V , let ∂A be the set of edges joining an element of A to an element of the
complement of A in V . The expansion ratio (or edge expansion ratio) of X is

h(X ) := min
A⊂V

1É#AÉ#V /2

#∂A

#A
.

The spectral gap and the expansion ratio h(X ) of an undirected connected k-regular graph X are related by Cheeger’s
inequalities (see, e.g., [5, Theorem 1.2.3]).

The random walks on G we want to consider are obtained by lifting the sets
{

s(ℓ)
1 , · · · , s(ℓ)

κ(bℓ ,ℓ;δ)

}

(and their “inverses”

so that all the graphs considered are then undirected) to G. To that purpose, define the random variable

Sℓ(bℓ,δ) :=
{

s(ℓ)
1 , · · · , s(ℓ)

κ(bℓ ,ℓ;δ)

}

∪

{

(s(ℓ)
1 )−1, · · · , (s(ℓ)

κ(bℓ ,ℓ;δ))−1
}

,

which takes values in the set of subsets of G/Hℓ. For each ℓ and m with 1 É m É κ(bℓ,ℓ;δ), we choose further a
representative s̃(ℓ)

m ∈G of s(ℓ)
m . We set

S̃ℓ(b,δ) :=
{

s̃(ℓ)
1 , · · · , s̃(ℓ)

κ(bℓ ,ℓ;δ)

}

∪

{

(s̃(ℓ)
1 )−1, · · · , (s̃(ℓ)

κ(bℓ ,ℓ;δ))−1
}

.

To perform a random walk on G one can choose the subset

S(b,δ) :=
⊕

ℓ∈Λ

S̃ℓ(bℓ,δ), (2)

where for two subsets A1, A2 of G we define A1 ⊕ A2 := {a1 +a2 : (a1, a2) ∈ A1 × A2}.
However it seems more natural to allow some summands S̃ℓ(bℓ,δ) not to be taken into account while randomly

choosing a particular step of the random walk. Thus the choice

S(b,δ) :=
⊕

ℓ∈Λ

(

S̃ℓ(bℓ,δ)∪ {1}
)

, (3)

seems closer to the intuitive idea of how the random walk should be defined.
As far as the expansion properties of the Cayley graphs considered are concerned, either choice works, as the

following lemma shows.

LEMMA 1.2. — Let G0 be an Abelian group and let S be a subset of G0. If X (G0,S) is a δ-expander graph, then so is

X (G0,S ∪ {1}).

Proof of Lemma 1.2. The statement is trivially true if 1 ∈ S, so we assume that 1 6∈ S. Set S∗ := S ∪S−1 and s∗ := #S∗.
Recall that Definition 1 implies that δ ∈ (0 ,1/2]. To prove the statement, it suffices to show that every non-trivial
eigenvalue λ′ of X (G0,S ∪ {1}) is such that

∣

∣λ′
∣

∣É 1/2 or
∣

∣λ′
∣

∣É |λ| for some non-trivial eigenvalue λ of X (G0,S).
Let λ′ be a non-trivial eigenvalue of X (G0,S ∪ {1}). Using the usual convention according to which a loop con-

tributes 2 to the degree of a vertex, we deduce that λ′ = (2+ s∗)−1(
∑

s∈S∗ χ(s)+χ(1)) for some non-trivial character χ of
G0. Therefore,

λ′
=

s∗

2+ s∗
λ+

1

2+ s∗
=λ+

1−2λ

2+ s∗
,

where λ := (s∗)−1 ∑

s∈S∗ χ(s) is a non-trivial eigenvalue of X (G0,S).
Consequently, it is enough to prove that if

∣

∣λ′
∣

∣ > 1/2, then
∣

∣λ′
∣

∣ É |λ|. Suppose, on the contrary, that
∣

∣λ′
∣

∣ > 1/2

and
∣

∣λ′
∣

∣ > |λ|. Then λ′ > 0. Indeed, otherwise λ É −1/s∗ < 0 and hence −λ+
2λ−1
2+s∗

> |λ| = −λ implies that λ > 1/2, a
contradiction.

Hence λ′ > 1/2 and thus λ> 1/2. However, this implies that 1−2λ
2+s∗

< 0, so that λ>λ′ =
∣

∣λ′
∣

∣, contrary to our assump-
tion. This finishes the proof of Lemma 1.2.
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Let us emphasize here that S(b,δ) is not seen as a random variable but as the union over Λ of the value taken at
some ω ∈ Ω by S̃ℓ(b,δ) (to which we may adjoin 1 if we choose S(b,δ) as in (3)). In other words we fix once and for
all an element ω of Ω; picking an element of S(b,δ) amounts to picking a sum over ℓ of elements in S̃ℓ(bℓ,δ)(ω) (or
S̃ℓ(bℓ,δ)(ω)∪ {1}). This set also satisfies the obvious property that for every ℓ ∈Λ,

ρℓ(S(b,δ)) ⊃

{

Sℓ(bℓ,δ) in case (2),

Sℓ(bℓ,δ)∪ {1} in case (3).

For the purpose of the present work more is required. We say that the family (ρℓ)ℓ∈Λ of surjections is S(b,δ)-linearly

disjoint if

• for every ℓ ∈Λ,

ρℓ (S(b,δ)) =

{

Sℓ(bℓ,δ) in case (2),

Sℓ(bℓ,δ)∪ {1} in case (3),

• and for any choice of two distinct indices ℓ and ℓ′ in Λ, the product map

ρℓ,ℓ′ := ρℓ×ρℓ′ : G →G/Hℓ×G/H ′
ℓ

satisfies

ρℓ,ℓ′ (S(b,δ)) =

{

Sℓ(bℓ,δ)×Sℓ′ (bℓ′ ,δ) in case (2),

(Sℓ(bℓ,δ)∪ {1})× (Sℓ′ (bℓ′ ,δ)∪ {1}) in case (3).

In the sequel we work with the set S(b,δ) defined either by (2) or (3). Accordingly the definition of Sℓ(bℓ,δ) may be
modified by adjoining 1.

1.2. THE RANDOM WALK

With notation as above, we perform the following (left-invariant) random walk on G. It is defined the same way as
in [7, Chap. 7].

{

X0 = g0

Xk+1 = Xkξk+1 for k Ê 0,

where g0 is a fixed element in G and the steps ξk are independent, identically distributed random variables with
distribution

P(ξk = s) = P(ξk = s−1) = ps = ps−1

for every k and every s ∈ S(b,δ), and where (ps )s is a finite sequence of positive real numbers indexed by S(b,δ) such
that

∑

s∈S(b,δ)
ps = 1.

We impose two extra conditions on the distribution of the steps ξk , which are rather natural. The first one we call
local uniformity with respect to (ρℓ):

∀k Ê 1, ∀ℓ ∈Λ, ∀s′ ∈ Sℓ(bℓ,δ), P(ρℓ(ξk ) = s′)= (#Sℓ(bℓ,δ))−1 .

In other words:
∑

{s∈S(b,δ) : ρℓ(s)=s ′}

ps = (#Sℓ(bℓ,δ))−1 ,

for all s′ ∈ Sℓ(bℓ,δ) and for all ℓ ∈Λ. The second condition we call local independence of the steps:

∀k Ê 1, ∀ℓ 6= ℓ′, ∀(s′, t ′) ∈Gℓ×Gℓ′ , P(ρℓ(ξk ) = s′ | ρℓ′ (ξk ) = t ′) = P(ρℓ(ξk )= s′).

Of course the random walk depends on the parameters b = (bℓ)ℓ and δ.
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By studying the properties of the random walk (Xk )k our aim is to describe the behavior of a “generic element” g ∈

G. To do so, we make use of Kowalski’s abstract large sieve procedure extensively described, together with applications,
in his book [7]. As in every sieve method, one can only handle cases where the typical properties at issue can be
detected locally. To be more precise we fix for each ℓ ∈ Λ, a subset Θℓ ⊂ G/Hℓ. In the general case Θℓ is required
to be conjugacy invariant. In the applications, the group G will be Abelian so this requirement will be satisfied. The
probability we want to upper bound is

P(∀ℓ ∈Λ∩ [L,2L], ρℓ(Xk ) 6∈Θℓ) ,

where L Ê 1 is a fixed positive integer.
In applications we will produce effective upper bounds for the probability with which Xk satisfies a fixed property

that can be detected by the condition ρℓ(Xk ) 6∈ Θℓ for some Θℓ ⊂ G/Hℓ. The abstract sieve statement we will rely on
is the following. We refer the reader to the book by Kowalski for a (self-contained) sieve statement written in greater
generality [7, Prop. 3.5], as well as for more information on the random walk sieve used here [7, Chap. 7].

PROPOSITION 1.3. — With notation as above (in particular, S(b,δ)) is defined by either (2) or (3)) let us assume G is

Abelian and:

• the family of surjections (ρℓ) is S(b,δ)-linearly disjoint;

• the distribution of the steps ξk is locally uniform and locally independent with respect to (ρℓ).

Then there exists η> 0 such that for any family (Θℓ)ℓ of subsets satisfying Θℓ ⊆Gℓ for each ℓ ∈Λ,

P(ρℓ(Xk ) 6∈Θℓ, ∀ℓ ∈ΛL) É
2L
∑

ℓ=L

e−bℓ +

(

1+L

(

max
LÉℓÉ2L

|Gℓ|

)

exp(−ηk)

)

(

2L
∑

ℓ=L

#Θℓ

nℓ

)−1

,

where L is any fixed positive integer, ΛL :=Λ∩ [L ,2L] and the constant η depends only on δ.

Before starting the proof we define one last piece of useful notation: for indices ℓ and ℓ′ inΛ, we set Gℓ,ℓ′ :=Gℓ×Gℓ′

if ℓ 6= ℓ′ and Gℓ,ℓ :=Gℓ. If ℓ= ℓ′, the map ρℓ,ℓ′ : G →Gℓ,ℓ′ is nothing but the surjection ρℓ.
The proof of the proposition follows closely that of [7, Prop. 7.2]. However, as our framework is quite different from

that of loc. cit. and for the sake of completeness, we give the full detail of the proof.

Proof of Proposition 1.3. Fix a real number δ in (0 ,1/2] and let us split the probability we are interested in:

P
(

∀ℓ ∈ΛL , ρℓ(Xk ) 6∈Θℓ

)

É P
(

∃ℓ ∈ΛL , X (G/Hℓ,ρℓ(S(b,δ))) is not a δ-expander
)

(4)

+P
(

∀ℓ ∈ΛL , X (G/Hℓ,ρℓ(S(b,δ)) is a δ-expander and ρℓ(Xk ) 6∈Θℓ

)

.

As we shall see, the second summand on the right side admits a theoretical upper bound that is amenable to sieve.
Moreover, the first summand can be efficiently bounded by invoking Theorem 1.1. Indeed, ρℓ(S(b,δ)) = Sℓ(bℓ,δ) by
the linear disjointness assumption and Theorem 1.1 yields that

P(∃ℓ ∈ΛL , X (G/Hℓ,Sℓ(bℓ,δ)) is not a δ-expander) É
∑

ℓ∈ΛL

e−bℓ .

Let us now turn to the second summand of the right side of (4). First, notice that

P
(

∀ℓ ∈ΛL , X (G/Hℓ,ρℓ(S(b,δ))) is a δ-expander and ρℓ(Xk ) 6∈Θℓ

)

ÉP(∀ℓ ∈ΛL , ρℓ(Xk ) 6∈Θℓ | ∀ℓ ∈ΛL , X (G/Hℓ,ρℓ(S(b,δ))) is a δ-expander).

This last probability is amenable to sieve. From the large sieve inequality (see [7, Prop. 3.7]) we have

P(∀ℓ ∈ΛL , ρℓ(Xk ) 6∈Θℓ) É∆(Xk ;L)

(

∑

LÉℓÉ2L

#Θℓ

nℓ

)−1

, (5)
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where one has the theoretical upper bound:

∆(Xk ;L) É max
ℓ∈ΛL

max
χ∈B

∗
ℓ

∑

ℓ′∈ΛL

∑

χ′∈B
∗

ℓ′

∣

∣W (χ,χ′)
∣

∣ ,

with
W (χ,χ′) := E([χ, χ̄′]ρℓ,ℓ′ (Xk )).

Here for any ℓ ∈Λ we let Bℓ be the group of characters of G/Hℓ. We set further B
∗
ℓ

:=Bℓ \ {1}. Finally if χ (resp. χ′) is
a representation of a group G1 (resp. G2) we let [χ,χ′] be the “external” tensor product representation χ⊗χ′ of G1 ×G2

if G1 6=G2 or the “internal” tensor product representation χ⊗χ′ of G1 otherwise.

Let us assume that for all ℓ ∈ ΛL the Cayley graph X (G/Hℓ,ρℓ(S(b,δ))) is a δ-expander. We fix (non-necessarily
distinct) indices ℓ and ℓ′ in ΛL and non-trivial characters χ,χ′ of Gℓ and Gℓ′ , respectively.

We assert that there exists a constant η> 0 depending only on δ such that

∣

∣E([χ, χ̄′]ρℓ,ℓ′ (Xk ))
∣

∣É exp(−ηk).

Let us prove this assertion.
Consider

M := E([χ, χ̄′]ρℓ,ℓ′ (ξk )) =
∑

s∈S(b,δ)
p(s)[χ, χ̄′]ρℓ,ℓ′ (s),

which is a well-defined complex number since the series defining M converges absolutely.
We also need to define

N0 := E([χ, χ̄′]ρℓ,ℓ′ (X0)) =
∑

t∈T

P(X0 = t)[χ, χ̄′]ρℓ,ℓ′ (t) ∈ C ,

where T is a fixed (finite) subset of G containing the starting point g0 of the random walk (Xk ). (For simplicity one can
assume that T = {g0}.) The random variables X0 and ξk being independent, it follows that for k Ê 1,

E([χ, χ̄′]ρℓ,ℓ′ (Xk ))= N0Mk .

First notice that |N0| É 1 and |M | É 1. Next we need to show that |M | is bounded away from 1 uniformly with respect
to ℓ,ℓ′,χ,χ′.

∑

s∈S(b,δ)
p(s)[χ, χ̄′]ρℓ,ℓ′ (s) =

∑

(s ′,t ′)∈Sℓ(bℓ ,δ)×Sℓ′ (bℓ′ ,δ)





∑

{s∈S(b,δ) : ρℓ,ℓ′ (s)=(s ′,t ′)}
ps



χ(s′)χ̄′(t ′).

The inner sum of the right side can be explicitly computed using the assumptions according to which the steps ξk are
locally uniformly distributed with respect to (ρℓ) and locally independent:

∑

{s∈S(b,δ) : ρℓ,ℓ′ (s)=(s ′,t ′)}
ps =

(

∑

{s∈S(b,δ) : ρℓ(s)=s ′}
ps

)(

∑

{s∈S(b,δ) : ρℓ′ (s)=t ′}
ps

)

= (#Sℓ(bℓ,δ))−1 (#Sℓ′ (bℓ′ ,δ))−1 .

Thus

∣

∣E([χ, χ̄′]ρℓ,ℓ′ (ξk ))
∣

∣É

∣

∣

∣

∣

∣

(#Sℓ(bℓ,δ))−1
∑

s ′∈Sℓ(bℓ ,δ)

χ(s′)

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

(#Sℓ′ (bℓ′ ,δ))−1
∑

t ′∈Sℓ′ (bℓ′ ,δ)

χ̄′(t ′)

∣

∣

∣

∣

∣

É (1−δ)2,

since we assumed that (X (Gℓ,Sℓ(bℓ,δ)) is a family of δ-expanders.

When ℓ= ℓ′ the computation follows the same pattern but is easier. One indeed obtains

∣

∣E([χ, χ̄′]ρℓ(ξk ))
∣

∣=

∣

∣

∣

∣

∣

∑

s ′∈Sℓ(bℓ ,δ)

(

∑

{s∈S(b,δ) : ρℓ(s)=s ′}
ps

)

χ⊗ χ̄′(s′)

∣

∣

∣

∣

∣

.
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As before the inner sum of the right side is (#Sℓ(bℓ,δ))−1. Two cases arise then. Either χ = χ′ and the quantity we
consider equals 1, or χ⊗ χ̄′ is not trivial and then

∣

∣E([χ, χ̄′]ρℓ(ξk ))
∣

∣É 1−δ,

by δ-expansion of the family (X (Gℓ,Sℓ(bℓ,δ)).
Let η> 0 be the real number such that exp(−η) = 1−δ. We have proved that as soon as ℓ 6= ℓ′ or χ 6= χ′,

∣

∣W (χ,χ′)
∣

∣É exp(−ηk).

Moreover if ℓ= ℓ′, we have seen that
∣

∣W (χ,χ)
∣

∣É 1. Putting everything together, (5) yields

P(∀ℓ ∈ΛL , ρℓ(Xk ) 6∈Θℓ | ∀ℓ ∈ΛL X (G/Hℓ,ρℓ(S(b,δ))) is a δ-expander)

É

(

1+L

(

max
LÉℓÉ2L

|Gℓ|

)

exp(−kη)

)

(

∑

LÉℓÉ2L

#Θℓ

nℓ

)−1

.

We now turn to applications of Proposition 1.3 to various combinatorial settings.

2. RANDOM SUBGRAPHS OF THE 2-DIMENSIONAL GRID

Our first application of Proposition 1.3 is a simple one, mainly aimed at explaining how to set up the random walk
and ensure that all properties are satisfied. We consider the presence of a fixed subgraph in a random subgraph of the
infinite grid Z2. we study generic properties of subgraphs by walking randomly on the grid’s subgraphs. The random
walk we use falls within the scope of the general method explained before.

2.1. SIEVING IN THE 2-DIMENSIONAL GRID

We let G be the infinite 2-dimensional grid, that is, the graph with vertex set Z2 in which (a,b) and (c,d) are neighbours
if and only if |a −c|+|b −d | = 1. The family G of all spanning subgraphs of the grid G may be endowed with an Abelian
group structure: indeed the symmetric difference △ is a binary associative composition law on G and the identity
element is the graph with vertex set Z2 and no edge. Note that every non-trivial element of G has order 2.

Next we define a family of subgroups (Hℓ)ℓ∈Λ of G, whereΛ := N>0. For each ℓ ∈Λ, we define Cℓ to be the collection
of all spanning subgraphs of G with edges contained in the annulus D(0,2ℓ+2) \ D(0,2ℓ). (Here D(a,r ) is the open
disc in R2 with center a and radius r and with respect to the ‖·‖1 norm—in other words, an edge {(a,b), (c,d)} of Z2

belongs to D(0,ℓ) if and only if {a,b,c,d} ⊆ {−ℓ, . . . ,ℓ}.) Then for ℓ ∈Λ we define Hℓ to be the “complement” of Cℓ in the
following sense: the elements of Hℓ are the graphs with vertex set Z2 and with no edge contained in D(0,2ℓ+2)\D(0,2ℓ).
Set Gℓ :=G/Hℓ.

LEMMA 2.1. — The following holds.

1) For each ℓ ∈Λ,

(a) Cℓ is a set of representatives for the quotient Gℓ; and

(b) the index of Hℓ in G is nℓ := [G : Hℓ] = |Cℓ| = 264ℓ+40.

2) For S(b,δ) defined as in (2) or (3) with S̃ℓ(b,δ) ⊆Cℓ,

(a) the family (ρℓ)ℓ∈Λ is S(b,δ)-linearly disjoint; and

(b) the distribution of the steps (ξk ) is locally uniform and locally independent.

7
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Proof. 1)(a) No two distinct graphs in Cℓ are congruent modulo an element of Hℓ. Moreover, for any g ∈ G, let gC be
the graph with vertex set Z2 and edge set obtained by deleting all the edges of g that are not contained in the annulus
D(0,2ℓ+ 2) \ D(0,2ℓ). If follows that gC belongs to Cℓ and its complement gH in G is an element of Hℓ satisfying
g = gC△gH . In other words, g ≡ gC ( mod Hℓ).

1)(b) By the definition, the subgraph of G contained in D(0,ℓ) contains precisely 4ℓ(2ℓ+1) edges. Therefore, the
subgraph of G contained in D(0,2ℓ+2) \ D(0,2ℓ) contains precisely 64ℓ+40 edges. The conclusion follows.

2)(a) Fix two distinct integers ℓ and ℓ′ in Λ, and a couple (gℓ, gℓ′ ) ∈ Sℓ(bℓ,δ)×Sℓ′ (bℓ′ ,δ). By 1)(a) we can choose
representatives g̃ℓ and g̃ℓ′ of gℓ and gℓ′ in Cℓ and Cℓ′ , respectively. Using these representatives, we consider an ele-
ment g of G of the form

⊕

m∈Λ g̃m where g̃m ∈ S̃m(bm ,δ) for each m ∈Λ\ {ℓ,ℓ′}. Since the sets Cℓ are pairwise disjoint
as ℓ runs over Λ, we deduce that g is an element of S(b,δ) satisfying ρℓ(g )= gℓ and ρℓ′ (g ) = gℓ′ .

2)(b) These properties directly follow from the facts that the sets Cℓ of representatives are pairwise disjoint and the
distribution of the variables s(ℓ)

i
is uniform on G/Hℓ.

One has the following interpretation of Lemma 2.1: for each fixed integer ℓ ∈Λ and each element g ∈G, the unique
element in Cℓ congruent to g modulo Hℓ is g ∩Cℓ (the intersection being taken edgewise).

2.2. LOOKING FOR 4-CYCLES

For each integer ℓ ∈ Λ, let Θℓ be the set of all classes ḡ ∈ Gℓ such that the unique representative of ḡ in Cℓ (the
existence of which is asserted by Lemma 2.1) contains a 4-cycle. Observe that |Θℓ|/ |Gℓ| Ê 2−4, since every graph of Cℓ

that contains a fixed 4-cycle reduces to an element of Θℓ modulo Hℓ.
Suppose that δ is a fixed real number in (0 ,1/2]. We set bℓ := ℓ. In particular, note that

κ(bℓ,ℓ;δ) =
⌈

ψ(δ) · ((64ℓ+41) ln 2+ℓ)
⌉

.

Given s(ℓ) ∈ Sℓ(bℓ,δ), we define s̃(ℓ) to be its representative in Cℓ (see 1(b) of Lemma 2.1), that is, s̃(ℓ) has no edge
outside D(0,2ℓ+2) \ D(0,2ℓ).

THEOREM 2.2. — Let (Xk ) be a random walk on G defined as in Subsection 1.2 using S(b,δ) (as in (2) or (3)) with

S̃ℓ(b,δ) ⊆Cℓ. Let η> 0 be such that exp(−η) = 1−δ. Then,

∀k Ê 1, P(Xk does not contain a 4-cycle) É
2550

ηk
.

Proof. Fix a positive integer k. Lemma 2.1 ensures that the hypotheses of Proposition 1.3 are satisfied. We may assume
that ηk Ê 2550, since otherwise the statement of the theorem trivially holds. Set L := ⌈ηk/75⌉. Applying Proposition 1.3,
we obtain

P(ρℓ(Xk ) 6∈Θℓ, ∀ℓ ∈ΛL) É
2L
∑

ℓ=L

e−bℓ + (1+L |GL|exp(−ηk))

(

2L
∑

ℓ=L

#Θℓ

nℓ

)−1

É e1−L
−e−2L

+ (1+L ·264L+40 exp(−ηk)) ·
24

L

É
1+24

L
+264L+44 exp(−ηk)

É
2×17

L
É

2×17×75

ηk
,

where we used that e1−x − e−2x É 1/x if x > 0, the fact that x 7→ xe−κx decreases for x Ê 1/κ > 0, and the inequality
exp(64log 2−75) É 17×2−44 .

More generally, one could look for cycles of length r Ê 4 in the graph obtained after k steps of the random walk
are performed. Our setting could be easily extended. For simplicity we have chosen to give the detail of the argument
only in the case where r = 4.

8



F. JOUVE & J.-S. SERENI Sieving in Graphs and Explicit Bounds for non-typical Elements

3. ORDER & DISORDER: SIEVING FOR MONOCHROMATIC STRUCTURES

We now turn to other applications of Proposition 1.3, inspired by Ramsey Theory.
Arguably, one way of envisaging Ramsey Theory is via the study the robustness of patterns. For instance, while

a (sufficiently large) set of consecutive integers contains many arithmetic progressions of any fixed length, it might
be still possible to destroy all of them using a well-chosen partition of the sets: none of these arithmetic progressions
would be contained in only one part of our partition. Similarly, while an n-vertex complete graph contains

(n
3

)

trian-
gles, one could imagine a partition of the edges so that no part would contain a single triangle. Ramsey Theory tells us
that no such partitions exist, provided the set (or graph) we start with is sufficiently large compared to the size of the
object sought and the number of parts the partition is allowed to have.

A partition of a set S into k parts is often called a k-coloring, that is, a mapping f : S → {1, . . . ,k} where the image of
an element can be interpreted as the number of the part to which the element belongs.

3.1. LOOKING FOR MONOCHROMATIC TRIANGLES

We let G be the (countable) infinite complete graph, that is, the graph with vertex set N in which every two distinct
positive integers are neighbours. We fix an integer c Ê 3 and we define C to be the collection of all functions from the
edges of G to Z/cZ. For every function f , the support of f is the set of all elements e in the domain of f such that
f (e) 6= 0.

The set C can be naturally endowed with a group structure inherited from that of Z/cZ. The addition of two
elements f and g of C is formally defined by

f + g : E (G ) −→ Z/cZ

e 7−→ f (e)+ g (e).

The neutral element is the function that is identically 0.
We are interested in monochromatic substructures of a given fixed size that may arise. Specifically, to avoid un-

necessary notation and abstraction, we shall focus on finding monochromatic triangles (though our strategy could be
adapted effortlessly to the question of detecting monochromatic r -cliques or r -cycles for r Ê 3).

We define a family of subgroups (Hℓ)ℓ∈Λ of C , whereΛ := N. Consider a partition in finite parts (Iℓ)ℓ∈Λ of Λ. We set
i (ℓ) := |Iℓ| for ℓ ∈Λ. Let Eℓ :=

{

(a,b)∈ I 2
ℓ

: a 6= b
}

, that is, Eℓ is the set of all edges of G with both endvertices contained
in Iℓ. We define Cℓ to be the collection of all functions f ∈C with support contained in Eℓ. Then Hℓ is the collection
of all functions f ∈C such that f |Eℓ ≡ 0.

The following properties of the quotients Cℓ :=C /Hℓ are immediate but crucial from our point of view.

LEMMA 3.1. — The following holds.

1) For each ℓ ∈Λ,

(a) Cℓ is a set of representatives of the quotient Cℓ; and

(b) the index of Hℓ in C is nℓ := [C : Hℓ] = |Cℓ| = ci(ℓ)(i(ℓ)−1)/2 .

2) For S(b,δ) defined as in (2) or (3) with S̃ℓ(b,δ) ⊆Cℓ,

(a) the family (ρℓ)ℓ∈Λ is S(b,δ)-linearly disjoint; and

(b) the distribution of the steps (ξk ) is locally uniform and locally independent.

Proof. 1)(a) No two distinct functions in Cℓ are congruent modulo an element of Hℓ. Moreover, for any f ∈ C , let fC

be the function equal to f on Eℓ and equal to 0 everywhere else, that is, fC |Eℓ := f |Eℓ and fC |(E (G ) \ Eℓ) := 0. It follows
that fC ∈Cℓ and f − fC ∈ Hℓ, or equivalently f ≡ fC ( mod Hℓ).

1)(b) By the definition, |Eℓ| = i (ℓ)(i (ℓ)−1)/2. The conclusion follows.
2)(a) Fix two distinct integers ℓ and ℓ′ in Λ, and any couple ( fℓ, fℓ′ ) ∈ Sℓ(bℓ,δ)×Sℓ′ (bℓ′ ,δ). By 1)(a) we can choose

representatives f̃ℓ and f̃ℓ′ of fℓ and fℓ′ in Cℓ and Cℓ′ , respectively. Let f : E (G ) → Z/cZ be a function of the form
f :=

⊕

m∈Λ gm where gm ∈ S̃m(bm ,δ) for each m with gℓ = f̃ℓ and gℓ′ = f̃ℓ′ . Since the sets Eℓ are pairwise disjoint as ℓ
runs over Λ, we deduce that f is an element of S(b,δ) satisfying ρℓ( f )= fℓ and ρℓ′ ( f ) = fℓ′ .

9
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2)(b) These properties directly follow from the facts that the sets Cℓ of representatives are pairwise disjoint and the
distribution of the variables s(ℓ)

i
is uniform on G/Hℓ.

A practical way to rephrase part of the proof of Lemma 3.1 is to say that for each fixed integer ℓ in Λ and each
element f of C , the unique element in Cℓ congruent to f modulo Hℓ is the function equal to f on Eℓ and to 0 outside
of Eℓ.

From now on, we assume that i (ℓ) Ê 3 for ℓ ∈ Λ. For each integer ℓ ∈ Λ, let Θℓ be the set of classes f̄ ∈ Cℓ such
that the unique representative f of f̄ in Cℓ (the existence of which is asserted by Lemma 3.1) contains a monochro-
matic triangle in Eℓ. In other words f ∈Θℓ if and only if Iℓ contains three integers i1, i2 and i3 such that f ((i1, i2)) =
f ((i1, i3)) = f ((i2, i3)). Observe that |Θℓ|/ |Cℓ| Ê c−2. Indeed any function that restricts to a constant map (with values
in Z/cZ) on a fixed triangle contained in Eℓ surjects to an element of Θℓ via ρℓ.

Assume that δ is a fixed real number in (0,1/2]. We set bℓ := ℓ. In particular, note that

κ(bℓ,ℓ;δ) =

⌈

ψ(δ) ·

(

i (ℓ)(i (ℓ)−1) lnc

2
+ℓ+ ln 2

)⌉

.

Given f (ℓ) ∈ Sℓ(bℓ,δ), we define f̃ (ℓ) to be its canonical representative in C , that is, f̃ (ℓ) ∈Cℓ.

THEOREM 3.2. — Let (Xk ) be a random walk on C defined as in Subsection 1.2 using S(b,δ), defined either by (2) or (3).

Let η> 0 be such that exp(−η)= 1−δ. Then, for each positive integer k and each integer L Ê 1,

P(Xk does not contain a monochromatic triangle) É
c2 +1

L
+c(1/2)·i(2L)(i(2L)−1)+2 exp(−ηk).

Proof. Fix a positive integer k. Lemma 3.1 ensures that the hypotheses of Proposition 1.3 are satisfied. We obtain,
applying Proposition 1.3,

P(ρℓ(Xk ) 6∈Θℓ, ∀ℓ ∈ΛL) É
2L
∑

ℓ=L

e−bℓ + (1+L |CL |exp(−ηk))

(

2L
∑

ℓ=L

#Θℓ

nℓ

)−1

= e1−L
−e−2L

+ (1+L ·ci(2L)(i(2L)−1)/2 exp(−ηk)) ·
c2

L

É e1−L
−e−2L

+
c2

L
+c(1/2)·i(2L)(i(2L)−1)+2 exp(−ηk)

É
1

L
+

c2

L
+c(1/2)·i(2L)(i(2L)−1)+2 exp(−ηk),

where we used that e1−x −e−2x É 1/x for x Ê 1.

Different choices of sets Iℓ may correspond to different speeds of rarefaction of non-typical structures. More
precisely, one can put additional constraints on the structure of the monochromatic triangles, e.g., the three vertices
must be consecutive integers as in Corollary 3.3.

COROLLARY 3.3. — With notation as in Theorem 3.2, for every positive integer k,

P(Xk does not contain a monochromatic triangle)

ÉP(Xk does not contain a monochromatic triangle on three consecutive vertices)

Éc5 exp(−ηk).

Proof. Set Iℓ := {3ℓ−2,3ℓ−1,3ℓ} for each ℓ ∈ Λ. In particular i (ℓ)(i (ℓ)−1) = 6. Set L := cN , for an arbitrary positive
integer N . Therefore, Theorem 3.2 implies that

P(Xk does not contain a monochromatic triangle on three consecutive vertices)É
c2 +1

L
+c5

·exp(−ηk)

=c5 exp(−ηk)+c−N (c2
+1).

The conclusion follows by letting N go to infinity.
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We note that the contributions from the non-standard case (that is, X (G/Hℓ,Sℓ(bℓ;δ)) is not an expander) can be
compensated by an adequate choice of L, providing i (L) does not grow too quickly with L. It is natural to compare this
last statement with what is known from Ramsey theory; this discussion is deferred to Section 4.

3.2. MONOCHROMATIC SOLUTIONS TO EQUATIONS

It also seems relevant to study solutions of an equation through the perspective of Ramsey Theory: can one destroy
the solutions of an equation by partitioning the different values the variables can take?

Let A ∈ ZN. We are interested in the following question, which turns out to be amenable to our setting.
Given a random c-colouring of A, is there a monochromatic non-empty subset summing to 0?

For illustrative purposes, we study this question in two steps. First we leave aside colourings and just bound the
probability that a random subset of Z contains no subset summing to 0. To this end, the group G considered is that of
all subsets of Z with the symmetric difference ∆ as group law. We then show how easily one can add colourings to this
setting, by just considering the product of the group G with the group of all c-colourings of Z.

So let G be the group consisting of all subsets of Z endowed with the symmetric difference. For each positive
integer ℓ, we set Iℓ := {−ℓ,ℓ} and we define Hℓ to be the subgroup of G consisting of all subsets of Z that are disjoint
from Iℓ. Thus the subsets of Iℓ form a set of representatives for Gℓ :=G/Hℓ. In particular, nℓ := [G : Hℓ] = 4.
We set

Θℓ :=

{

X ∈Gℓ : X 6=∅ and
∑

x∈X

x = 0

}

,

so Θℓ is a singleton, the unique element of which is represented by Iℓ. Now one can define a random walk (Xk ) as
in Subsection 1.2. This random walk readily satisfies the requirements of Proposition 1.3. Further, observe that if a
subset S of Z does not contain a non-empty subset summing to 0, then neither does the intersection of S with any
fixed subset. Thus the probability Pk that Xk does not contain a non-empty subset summing to 0 is at most

P(ρℓ(Xk ) ∉Θℓ, ∀ℓ).

Since |Θℓ|/nℓ =
1
4 for each positive integer ℓ, Proposition 1.3 implies that for each positive integer k and each integer

L Ê 1,

Pk É
1

L
+

(

1+L max
LÉℓÉ2L

|Gℓ|exp(−ηk)

)

·
4

L
=

5

L
+16exp(−ηk).

Consequently, letting L tend to infinity, one infers the following statement.

THEOREM 3.4. — Let (Xk ) be a random walk on G defined as in Subsection 1.2 using S(b,δ), defined either by (2) or (3)
with S̃ℓ(b,δ) ⊆ 2Iℓ . Let η> 0 be such that exp(−η) = 1−δ. Then, for each positive integer k,

P(Xk does not contain a non-empty subset summing to 0) É 16exp(−ηk).

Let us now see how to deal with the coloured version, that is, we want to upper bound the probability that our
random c-coloured subset does not contain a monochromatic non-empty subset summing to 0, where c is an integer
greater than 1. It suffices to work in the product group G := (2Z,∆)× { f : Z → Z/cZ}. For each positive integer ℓ, the
subgroup Hℓ is defined to be

2Z\Iℓ ×
{

f : Z → Z/cZ : f (−ℓ) = f (ℓ)= 0
}

,

where Iℓ := {−ℓ,ℓ} as before.
Thus nℓ := [G : Hℓ] = 4 ·2c = 2c+2, which does not depend on ℓ. A set of representatives for Gℓ :=G/Hℓ is

2Iℓ ×Fℓ,

where Fℓ :=
{

f : Z → Z/cZ : f |Z \ Iℓ = 0
}

.
Defining Θℓ to be {Iℓ}×

{

f : Z → Z/cZ : f is constant
}

, it follows that |Θℓ|/nℓ = c2−c−2. Since the hypotheses of
Proposition 1.3 are satisfied, one obtains the following statement.

THEOREM 3.5. — Let (Xk ) be a random walk on G defined as in Subsection 1.2 using S(b,δ), defined either by (2) or (3)
with S̃ℓ(b,δ) ⊆ 2Iℓ ×Fℓ. Let η> 0 be such that exp(−η) = 1−δ. Then, for each positive integer k,

P(Xk does not contain a monochromatic non-empty subset summing to 0) É
22c+4

c
exp(−ηk).
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3.3. TOWARDS A QUANTITATIVE INFINITE RAMSEY THEORY

Instead of restricting to the detection of monochromatic triangles in a random colouring of the infinite (countable)
complete graph as in Subsection 3.1, we now focus on the extent to which our method can be applied in the context
of infinite Ramsey theory. Let us first recall the result we have in mind, established by Ramsey [12]. Given a set X and
a non-negative integer r , we define X (r ) to be the collection of all subsets of X of size r .

THEOREM 3.6 (infinite Ramsey Theorem [12]). — Let X be some countably infinite set. Let c Ê 1 and r Ê 1 be integers.

Consider a given colouring f : X (r ) → Z/cZ of the elements of X (r ) in c different colours. Then there exists some infinite

subset A of X such that the function f is constant on A(r ), that is, all subsets of A of cardinality r have the same image

under f .

As in the statement of Ramsey’s Theorem, fix positive integers c and r . As our base set we choose X := N. The set
C (r ) of all possible c-colourings of subsets of size r of X may be endowed with a group structure inherited from that
of Z/cZ.

Fix also an auxiliary positive integer j and set Λ := N. Consider subsets I
(r, j )
ℓ

of N indexed by ℓ ∈Λ, that we assume

to be finite and pairwise disjoint. For given ℓ, let E r
ℓ

be the set of subsets of size r of I
(r, j )
ℓ

. Let Cℓ be the collection of

all colourings supported on E r
ℓ

and let Hℓ be the subgroup of all colourings of C (r ) supported on the complement of

E r
ℓ

in X (r ). This way Cℓ is a set of representatives for the quotient C (r )/Hℓ. Set further i (ℓ,r ) := #I
(r, j )
ℓ

and ρℓ : C (r ) →

C (r )/Hℓ, the canonical surjection. Arguments analog to those in the proofs of Lemmas 2.1 and 3.1 yield the following.

LEMMA 3.7. — One has

1) nℓ := (C (r ) : Hℓ) = #Cℓ = c
(i (ℓ,r )

r

)

; and

2) For S(b,δ) defined as in (2) or (3) with S̃ℓ(b,δ) ⊆Cℓ,

(a) the family (ρℓ)ℓ∈Λ is S(b,δ)-linearly disjoint; and

(b) the distribution of the steps (ξk ) is locally uniform and locally independent.

As in the previous sections we may define on C (r ) a random walk (Xk ) that satisfies the requirements of Proposi-
tion 1.3. We then ask the question:
at which speed do we reach a colouring Xk of the r -element subsets of X that exhibits a subset A ⊆ X of size j +r , all the

r -element subsets of which have the same colour?

The next statement answers that question.

THEOREM 3.8. — Let (Xk ) be the random walk defined on C (r ) as in Subsection 1.2 using S(b,δ), defined either by (2)
or (3) with S̃ℓ(b,δ) ⊆Cℓ. Fix positive integers j , r and c. Let η> 0 be such that exp(−η) = 1−δ. Then for every positive

integer k,

P
(

No element of N( j+r ) has all its r -element subsets of the same colour in Xk

)

Éc
(r+ j

r

)

−1 exp(−ηk).

Proof. Set I
(r, j )
ℓ

:= {(r + j )ℓ− (r + j −1),(r + j )ℓ− (r + j −2), . . . , (r + j )ℓ}. If j and r are fixed, then I
(r, j )
ℓ

is an integral

interval of size r + j and different indices ℓ and ℓ′ give rise to disjoint intervals I
(r, j )
ℓ

and I
(r, j )
ℓ′

. For such a choice of sets

I
(r, j )
ℓ

, one has nℓ = c
(r+ j

r

)

= c
(r+ j )!

r ! j ! . In particular nℓ is independent of ℓ. Let us set bℓ := ℓ and for each ℓ ∈Λ,

Θℓ :=
{

g ∈C
(r )/Hℓ : the only representative of g in Cℓ is constant on E

(r, j )
ℓ

}

.

Of course, #Θℓ/nℓ = c/nℓ = c−
(r+ j

r

)

+1. Therefore, putting things together via Proposition 1.3, a computation similar to
that of the proof of Theorem 3.2 produces the upper bound

1+c
(r+ j

r

)

−1

L0
+c

(r+ j
r

)

−1 exp(−ηk) ,

for the probability investigated. Setting as before L0 := cN and letting N →∞ we obtain the desired upper bound.
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Remark 3.9. Comparing the inequality in Theorem 3.8 with the statement of Theorem 3.6 we note an important
limitation to our approach: we cannot dispense of the use of the auxiliary parameter j . More precisely, letting j tend
to infinity in the inequality of Theorem 3.8 yields only a trivial upper bound for the probability investigated.

4. REMARKS AND FURTHER APPLICATIONS

Let us underline some peculiarities of the applications developed in Sections 2 and 3. First, concerning the subgraphs
of the infinite grid, we note that while it is elementary to estimate the expected number of 4-cycles in a subgraph
chosen uniformly at random in a given finite 2-dimensional grid, our notion of randomness relies instead on the
consideration of arbitrary words in the (possibly infinite, as our applications show) alphabet corresponding to a par-
ticular subset S(b,δ). Our point in Sections 2 and 3 is to give, for this more intricate notion of randomness, explicit
upper bounds for probabilities that we expect to be small.

Second, for monochromatic substructures, it follows from Ramsey’s theorem [12] that for every fixed positive in-
teger c, there exists an integer N such that if n Ê N , then every c-colouring of the edges of the complete graph Kn

on n vertices contains a monochromatic triangle. Alon and Rödl [1] established that the smallest such N is Θ(3c ) as
n tends to infinity (that is, there exist two constants ρ and ρ′ such that for sufficiently large n, this value belongs to
[

ρ ·3c ,ρ′ ·3c
]

). In our setting, although the infinite complete graph is involved, only finite subgraphs of it are checked
for the existence of monochromatic triangles. These subgraphs are not necessarily large enough for Ramsey’s theorem
to apply. In addition, we only consider monochromatic triangles with vertices contained in some prescribed set Iℓ.

Another feature of the application developed in Section 3 is uniformity with respect to the number c of colours
involved. No such uniformity holds in the context of Ramsey theory. Indeed, as already mentioned, Alon and Rödl’s
theorem [1] asserts that the number of required vertices for Ramsey’s theorem to hold grows exponentially fast with c.

We also note that a strategy similar to that used in Section 3 allows one to check for monochromatic arithmetic
progressions for which the length, the common difference and the “shape”, are prescribed. Fix positive integers s (the
desired length of the arithmetic progression), q (the desired common difference), and c Ê 3 (the number of colours).
Similarly as before, let C be the group of all c-colourings of N. We consider the subsets Iℓ := {ℓsq,ℓsq+q, . . . ,ℓsq+(s−

1)q} for ℓ ∈Λ := N. (It is this choice of particular subsets of N of length at least s that provides a control on the “shape”
of the arithmetic progressions to be found.) In this setting our method yields the following result.

THEOREM 4.1. — Let (Xk ) be a random walk on C defined as in Subsection 1.2 using S(b,δ) (as in (2) or (3)). Let η> 0
be such that exp(−η) = 1−δ. For all k Ê 1,

P(Xk contains no monochromatic arithmetic progression with common difference q and length s) É c2s exp(−ηk).

Let us sketch the proof. For each ℓ ∈ N, let Hℓ be the set of all functions f : N → [c] such that f |Iℓ ≡ 0. The
index in C of each of these subgroups is cs . Moreover, there is a collection of natural representatives for the classes
modulo Hℓ, namely the functions with support contained in Iℓ. Let Θℓ be the set of classes modulo Hℓ whose unique
representative — in the aforementioned system of natural representatives — contains a monochromatic arithmetic
progression of length s that is contained in Iℓ. Then one has |Θℓ|/nℓ Ê c−s .

It is straightforward to check that the hypotheses of Proposition 1.3 are satisfied. By Proposition 1.3, the probability
that in Xk no monochromatic arithmetic progression with common difference q and length s is contained in Iℓ, for
all ℓ in ΛL is at most

1

L
+

cs

L
+c2s exp(−ηk).

Since this last probability is, for every L, an upper bound on the probability that there is no monochromatic arithmetic
progression in Xk with common difference q and length s, Theorem 4.1 follows by setting L := cN and letting N tend
to infinity, as was done before.

We conclude by pointing out the following: van der Waerden’s theorem [13] ensures that, for each fixed positive
integers s and c Ê 3, there exists an integer N such that if n Ê N then any c-colouring of [n] yields a monochromatic
arithmetic progression of length s. In the above setting, we impose two additional conditions: the common difference
of the arithmetic progression and a constraint on its form (it must be contained in one of the sets Iℓ). Van der Waer-
den’s theorem does not guarantee the existence of such an arithmetic progression and the aforementioned inequality
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is essentially an explicit lower bound on the speed of rarefaction of the colourings that do not yield a monochromatic
arithmetic progression with the required properties. Furthermore, and as mentioned in the remarks about Section 3,
the uniformity of our estimate with respect to the number of colours c is a quite interesting by-product of our ap-
proach.
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