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Abstract 
 
The present paper aims at studying the influence of burner parameters with a separated jet 

configuration, namely nozzles diameters and separation distance between the jets, on the 

flame characteristics (lift-off positions of flame and flame length). The experimental layout 

considers the use of OH-chemilumenescence to measure the flame characteristics for different 

combinations of processing conditions. The predictive analysis is based on a neural 

computation that considers the correlations between the inputs and the outputs of a 

combustion system using a configuration of separated jet. The predictive analysis show that a 

good agreement is found between numerical and experimental results in the case where the 

predictions are within the process window. The exploration of other process parameter 

combinations beyond that window gives less convincing results. This is mainly attributed to 

the fact that steady state characteristics are predicted numerically whereas it is expected 

experimentally that some of burner parameter combinations can lead to an increase of the 

parameters characterizing the flame.  

 

Keywords: Oxy-fuel combustion; Separated jet burners; lifted flame; neural computation.  
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1. Introduction 

Oxy-fuel burners are widely used in high-temperature industrial furnaces to improve 

productivity and fuel efficiency, to reduce emissions of pollutants, and to eliminate the capital 

and maintenance costs of an air preheater. Indeed, the substitute oxygen by air provides a high 

flame temperature, a less consumption of fuel and a low NOx production since we eliminate 

the nitrogen of air [1, 2]. This makes it possible to have a better thermal efficiency and a 

better stabilization of flame. Furthermore, the use of oxy-combustion in separated jet burners 

open interesting possibilities in the pollutant reduction such the NOx and the modularity of 

flame properties (stabilization, topology, flame length, etc.) [3, 4]. For separated jet burners, 

the principle is based on the geometrical separation of its nozzles. This design gives a high 

dilution of the reactants by the combustion products, a large and plate flame and a 

homogeneous temperature in all volume of flame [4,5].  

Flames from burner with multiple jets have many practical situations. Several studies have 

been published on the structure and development of non-reacting multiple jets [6-9]. 

However, the studies of multiple jet flames are mostly limited, for example, flame developing 

in still air without confinement [10] or in a wind tunnel with cross flow [11]. Recently, Lee et 

al. (2004) [12] studied the blowout limit considering the interaction of multiple nonpremixed 

jet flames and giving a number of variables such as distance between the jets, the number of 

jets and their arrangements.  

The burner configuration used in this work is composed of three round jets, one central jet of 

natural gas and two lateral jets of pure oxygen. The power of burner is 25 kW and the flames 

develop inside combustion chamber with 1-m high. The OH chemiluminescence technique 

has been used to indicate the instantaneous flame reaction zone and thereby characterize 

features of the stabilization region. The lift-off positions and the flame lengths for several 

configurations of burner are measured. 
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Various parameters govern the flow from burner with multiple jets such as the number of jets, 

the form of nozzles, the spacing between the jets, the exit velocities, etc. Consequently, these 

geometrical and dynamical parameters of burner have important effects on the behaviour of 

flame. Considering the number of parameters, many configurations of burner are possible 

however it is experimentally difficult to study all possible cases. In a previous paper [4], 

several configurations have been tested experimentally to highlight the influence of tubes 

diameters, distance between the jets and the deflection of jets on the characteristics of the 

flame. Based on these experimental results we study in the present paper the behaviour of 

stabilization point (height and radius) as well as the flame length using a numerical method 

based on the artificial neural network (ANN). The methodology is an advanced statistical of 

data analysis [13]. It is particularly used when the correlations between the inputs and outputs 

of a given problem are difficult to capture using standard fitting routines. Typical examples of 

complex correlations can be found in the case of input interdependencies, several outputs 

attached to a set of inputs, a large number of parameter combinations, among others. The 

neural computation was already applied to different situations related to engineering processes 

[14, 15]. In this paper, we are concerned by the study of the interactions between the burner 

parameters and their influence on the flame characteristics in a set-up that uses separate jets. 

This work is actually an extension of a previously published experimental study [4] and it 

aims at predicting the flame behaviour within and outside the operating window. The 

operating window represents here the range of the burner parameters used in the experimental 

investigation. We have used neural computation instead of standard fitting tools because of 

the nonlinear correlation between burner characteristics and the burner parameters as pointed 

out by several authors [16-17]. In addition, simple preliminary analysis of the experimental 

data detailed hereafter have shown a significant burner parameters interdependencies [3-4].  
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2. Experimental layout  

The experimental system consisted of a burner and operating conditions, a furnace, and OH 

Chemiluminescence setup. Fig. 1 shows a schematic diagram of the separated-jet burner 

apparatus. The burner is composed of three round tubes, one central of natural gas and two 

side tubes of pure oxygen. The fuel is a mixture of natural gas (85.2% CH4, 9.1% C2H6, 

2.44% C3H8, 1.97 %N2, 0.75 %CO2, plus traces of higher hydrocarbon species) with a density 

3
ng mkg.0.83ρ

−=  and a net calorific value (NCV) is 45 MJ/kg. Fuel and oxidizer flow rates 

are constant for all experiments to ensure constant power flames of 25 kW 

( 13
ng kg.s556.10M −−=& , 13

ox kg.s10.1964M −−=& ). The internal diameters (ngd  and oxd ) range from 

4 to 10 mm, and the separation distance between the jets (S) varies from 7 to 30 mm. Table 1 

summarizes the operating conditions of burner parameters including the central and side jet 

characteristics (diameter, exit velocity and Reynolds number). The burner is located on the 

bottom wall of the furnace, which is a 1-m-high vertical tunnel with square cross section (60 × 

60 cm). The lateral walls are refractory lined on the inside and water cooled on the outside. 

Optical access is provided through quartz windows. 

 
OH* chemiluminescence technique is used (Fig. 2) to describe the flame front and therefore 

to measure liftoff positions and flame lengths. The radical OH* characterizes the reaction 

zone, and is present in sufficiently high proportion giving a good quality signal, in particular 

for the oxy-fuel combustion [4, 18]. However, the chemiluminescence of other radicals (CH* 

at 430.5 nm or C2* at 516.5 nm) representative of the reaction zone can also be considered, 

although the use of an interferential filter is necessary, inducing a signal with a very low 

intensity. Furthermore, the presence of pure oxygen as oxidizer leads to a higher rate of OH 

radical compared to other radicals such as C2 and CH. The radical OH* is located in the 

reaction zone where it has been created. OH* is not very sensitive to the turbulent convection, 
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as well as its life time in an electronic excited state is very short (~1µm), allowing an accurate 

location where the radical is created. Emission of OH* radical is located in the wavelength 

range from 280 to 310 nm. The molecule excited OH* is formed by the following reactions 

[19]: 

H + O + M        �      OH*  + M 

H + OH + OH   �      OH*  + H2O  (1) 

CH + O2            �      OH* + CO 

 
The OH* formation implies radicals as H, O and CH, witch are formed only in the reaction 

zone. 

The flame images have been acquired by collecting the instantaneous OH* of the main band 

(0,0) at 306.4 nm on a Princeton Instrument ICCD camera, with an 85-mm UV Nikkor lens 

(f/5.6). The camera is operated in a 512×512-pixel format with 16-bit dynamic range. The 

OH* emission band has been filtered with a SCHOTT UG11 band-pass filter which has a 

transmittance coefficient greater than 0.1 between 275 and 375 nm. Sets of 400 images 

(exposure time 90 µs) were accumulated for each operating condition at different heights of 

flame.  

To extract the lift-off heights and the flame lengths, classical image processing (binarization, 

average, rms, thresholding) was used on all the images for each configuration. To determine 

the lift-off position of flame, it is necessary to perform a binarization then a detection of 

contour. The choice of threshold of binarization is delicate since we have to eliminate the 

noise from the images without affecting the signal. The method used here consists in locating 

the region of interest where the flame is stabilized and then to make a profile of the signal 

along the axis of object. Threshold value is taken at the inflection point of the intensity 

profile. Lift-off height is determined as the closest point to the burner where the signal 

appears. Fig. 3 shows an example of image processing for OH chemiluminescence in the 

stabilization region.  
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The flame length estimation is based on the visualization at the flame top. Fig. 4a shows an 

example of instantaneous images of the flame top. After binarization, the flame length can be 

measured for each configuration as shown in Fig. 4b. To do so, the pixel corresponding to the 

end of flame (highest position) is extracted and the average of these maximum values on all 

acquired images is calculated, following the expression: 

n

Z
ZL

ni

1i
i

0f

∑
=

=+=   (2) 

where Z0 is the exit burner – base flame distance, Zi is the height of the flame in the image i 

and n is the number of instantaneous images used for the processing (Fig. 4b). 

The experimental results related to the flame characteristics for several configurations of 

burner are summarized in Table 2. The lift-off positions (vertical position, Zlo and horizontal 

position, Xlo) and the flame lengths Lf are given as a function of nozzle diameters (ngd  and 

oxd ) and the separation distance between the jets (S). The horizontal position of flame lift-off 

(or radius) has a zero value at the centre of the central jet of the natural gas.  
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3. Modelling technique   

Neural computation requires several steps to allow the predictions of the correlations between 

the input and output of the present problem. The basic mechanism behind ANN is the neuron 

activity. The neuron is a mathematical processing unit that receives an input (a number), 

transforms it (by simple mathematical operations) and forward it to other neurons.  

Details about the methodology can be found in [13,20]. In the following, we will stick to a 

concise description of the technique.  

Step1: definition of the input/output sets 

Three burner parameters (the internal diametersngd , oxd and the separation distance between 

the jets S) are attributed each one neuron. This set of neurons represents the input pattern. The 

output pattern represents the flame characteristics (the vertical and horizontal lift-off positions 

Zlo, Xlo and the flame lengths Lf ). All variables are expressed in a dimensionless form. 

Indeed, since the parameter range can influence the quality of the predictions, all variables are 

expressed in the range 0-1, using the upper and lower limits available for each variable. Such 

pre-processing assumes the following conversion scheme, which is detailed in previous 

studies 

i min
i

max min

x x
y

x x

−=
−

  (3) 

where yi is the dimensionless form of the variable xi. xmin and xmax represent the window range 

of variable xi. These limits are summarized in Table 3 for all studied parameters. 

Each neuron is connected the other neurons following a feed-forward scheme. This writes 

i ij jI W O=  (4) 

where Ii is the input of neuron i belonging to the forward layer, Oj is the output of a given 

neuron j from the backward layer Wij is the weight parameter that relates neurons i and j.  

A typical sketch of the neuron connectivity can be found in [13]  



 

 8 

The output of a given neuron is related to its input using the expression [21] 

( )i
i

1
O

1 exp I
=

+ −
 

where the sigmoid function is used to nonlinearly transform the input of each neuron in the 

network structure. The output is thus bounded between 0 and +1.  

Step2: building the database  

As the number of experimental sets is limited (29 experiments as shown in Table 2), small 

ANN structures are used. A typical structure comprises the input and output patterns plus 

hidden units (neurons) organised in intermediate layers. The more units in the hidden layers, 

the more experimental sets needed for the optimisation of the ANN structure. Thus, it is 

decided to keep one intermediate layer for which the number of neurons is varied between 1 

and 6.  Following the correlation between weight population and database size, we are slightly 

below the lower bound when 6 neurons are used in the hidden layer (see for example [13]).  

We vary the neuron number between the abovementioned bounds to demonstrate where the 

robustness of neural network is applicable. We know that a unique neuron in the hidden layer 

is insufficient to give reliable prediction and we know also that 6 neurons is larger than the 

weight population.  Thus, optimal neural network have to be searched between these bounds. 

The database is organised in two main categories: training and test categories. The training set 

data are picked out randomly and varied between 0% to 100%, where the percentage is 

expressed with respect to the whole database.  

Step3: performing the analysis  

Training category is used to tune the neuron connections, i.e., weights [20]. In the test 

procedure, experimental sets are used without correcting any weight. The convergence of the 

procedure is obtained if the error evolution of the training and test steps stabilise. The 

procedure is robust if these quantities are close to each other and small enough. The error is 

obtained by comparing the experimental and numerical response for a given input condition. 
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Two main convergence criteria are studied: the average and maximum errors calculated with 

respect to the submitted cases. The average quantity is expressed as a mean square error.  

 

Step4: solving the problem of equivalent ANN structures  

The ANN structures (obtained by varying the neuron number) are classified based on the 

smallest training and testing errors and also on the basis of the lowest percentage of the data 

in the training set used for the optimisation.  
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4. Results and discussion  

Fig. 5 shows a typical optimisation procedure of the ANN structure. The convergence criteria 

are two average and two maximum errors. The evolution of training errors as function of 

iteration level up to 1000 itrs well depicts the stabilisation of the convergence criteria beyond 

300 cycles (Fig. 5a). We have selected a small iteration number compared to what is reported 

in the literature because we have used an efficient training algorithm that can lead to 

significant overtraining. The final iteration number is large enough to obtain a steady state 

asymptotic error evolution (significant changes are within the first 300 iterations). The 

maximum iteration number is lower than 10 000 to avoid overtraining. Fig. 5a well shows that 

overtraining is not attained since the maximum error is higher than the average error. When 

increasing the number of neurons from 1 to 6, the final training error decreases. Such a 

decrease is explained by the increase of the weight number (increase of connections between 

neurons). This has the consequence to give more variables to the system to find the best 

weight configuration with respect to a given set of submitted samples. However, when the 

weight number is too large, the prediction beyond the operating window becomes less evident 

to trust because a proper prediction requires more experimental sets. In our case, we do not 

need to have a large neuron number as suggested in Fig. 5a because even in the worst case 

(one unique neuron in the hidden layer), the maximum error is still less than 5%. Fig. 5b 

shows the evolution of the test criterion for a training database size of 70%. Convergence of 

the criterion is obtained irrespective of the neuron number. In particular, with two neurons in 

the hidden layer, the test errors are the smallest ones. The difference between the maximum 

and the average error seems more significant compared to the training procedure.  

 

Fig. 6 shows the training and test error maps after an optimisation procedure performed on the 

output Zlo. Note that these maps correspond to the error values at the final iteration level 



 

 11 

where convergence is assumed. Both criteria training and test errors exhibit steady state 

evolution whatever is the difference between the criteria. The error domain is two-

dimensional with the horizontal axis representing the number of neurons (NN) and the vertical 

one being the percentage of training samples (Tr). Robustness of the neural network can be 

thus determined. A robust net structure corresponds to a smallest difference between training 

and test errors combined to the smallest training set and larges test set. The average training 

error varies between 0.003 and 0.017 in the case of the training procedure (Figure 6a). The 

error domain is nearly homogeneous. It shows that the training error is significantly 

dependent on the percentage of training samples rather than on the number of neurons. This 

result can be inferred to the fact that the large number of iterations (1000 in the present case) 

is sufficient to enforce the convergence whatever is the neuron number. It seems that at 

Tr=50%, the error decreases with the decrease of neuron number. Two optimal configurations 

are found corresponding to (NN=2, Tr=70%) and (NN=6, Tr=50%).  

In the case of test procedure, the predicted map contains discriminating information (Fig. 6b) 

as we can see clearly that the decrease of training samples (i.e., the decrease of test database 

size) predicts the minimum error. The influence of the neuron number is minor. Thus, it 

makes sense to choose the configuration (NN=2, Tr=70%) as being the optimal condition. 

Our selection is based on the fact with 2 neurons the weight population is reduced so that the 

predictions are more reliable. This situation is comparable to searching optimal function with 

few parameters to fit the experimental data. Of course, selecting the optimal neural structure 

based on a smaller training set would be also reasonable.   

Fig. 7 compares the experimental and predicted responses at the final iteration level in the 

case of Zlo and for two particular ANN structures. Both responses are expressed in reduced 

units. For both cases, the slope of the curve is close to unity with a satisfying correlation 

factor (R²>0.96). Since training and test data are different, we are certain that the causal 
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correlations encoded in the ANN structure are well captured. Again, the slight deviation of the 

numerical results with regard to the experimental values attests that overtraining is not 

attained. 

The result of the optimisation procedure described above is still valid for the two other 

outputs. In the following, the exploitation of the ANN predictions is detailed. This 

exploitation considers the optimal ANN structure for which the weight parameters are fixed. 

It considers also different combinations of input parameters varied in a continuous way and 

for which the outputs are calculated for each input combination.  

Fig. 8a shows the effect of varying separation distance and the oxygen jet diameter on the 

value of lift-off height of flame for a given value of ngd . Zlo is found to be the highest one for 

a large S and a small oxd  values. The tendency seems to be polynomial rather than linear. The 

increase of S delays the mixing of reactants and consequently the combustion starts later at 

larger distances from burner. This obvious result is well reported in the literature [11-12]. The 

decrease of oxd  leads to the increase of the oxygen jet velocity because a fixed flow rate is 

used. Thus, the flame base is moved far away from the nozzles exits [11, 22-25].  Fig. 8b 

shows the same evolution map for a larger ngd  value. Despite the similar tendency obtained 

using the combination of S and oxd  (i.e., the increase of Zlo is correlated to the increase of 

S/ oxd ), a smaller domain where this effect prevails is noticed. Indeed, as illustrated in Fig. 8b, 

the region below the solid line exhibits the smallest Zlo values. In fact, a small natural gas jet 

diameter increases the jet velocity because of the constant flow rate. Thus, when increasing 

ngd , smaller Zlo values are expected for a given combination of S and oxd .  

Fig. 8c depicts the effect of S and ngd  on Zlo for a given value of oxd . It is clearly shown here 

that a polynomial evolution is predicted in this case. Zlo is found to increase with the increase 

of the ratio S/ ngd . It can be demonstrated (all results are not shown here) that any of the 
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combinations (S, oxd ), (S, ngd ) or ( oxd , ngd ) leads firmly to a polynomial correlation where 

Zlo increases with the increase of S/oxd , S/ ngd  or 1/( ngd  x oxd ).  

The effect of the burner parameters on horizontal position of flame base is shown in Fig. 9.  

When combining S and oxd  for a fixed value of ngd , it is predicted that Xlo increases non-

linearly only with the increase of S for any particular value of oxd  (Fig. 9a). In fact, the 

horizontal position of the stabilisation point is fully dependent on the spacing between the jets 

due to geometrical considerations [4]. When increasing ngd , no major change in Xlo is 

observed either in magnitude nor in trend, which means that the unique control parameter is 

the spacing between the jets.    

The combined effect of separation distance between the jets and the natural gas jet diameter 

on horizontal position of the stabilisation point is shown in Fig. 9b. The trend is different from 

the first case. Despite that S is the first control parameter (Xlo increases when S increases), 

ngd  plays a secondary role as predicted in Fig. 9b (slightly higher levels of Xlo are predicted 

when increasing ngd ). In Fig. 9c is presented the evolution of Xlo as function of ngd  and oxd . 

Again, the effect of ngd  is predominant compared to oxd . The higher is ngd  value, the larger 

is Xlo response. This last trend confirms the previous results (Figs. 9a, 9b) in the sense that a 

classification of the influential effects can be deduced based on the analysis of all maps shown 

in Fig. 9. In fact, S is the major control factor, ngd  is the intermediate one and oxd  has the 

smallest effect. The interaction effects are more subtle except when combining S and ngd . 

The analysis of the third output (the flame length) as function of studied parameters reveals 

the following ideas summarized in Fig. 10. When combining S and oxd (Fig. 10a), it is 

predicted that the evolution of Lf is positively correlated to the evolution of the product S x 

oxd . This actually represents the unique combination of burner parameters where an 
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interaction effect is highlighted. Indeed, when comparing this result to that corresponding for 

example to the combination (S, ngd ), it is found that only S has an effect on Lf (Fig. 10b). 

This is also confirmed by the last trend (Fig. 10c) where the increase of Lf is only attributed to 

the increase of oxd . The prevailing effect of S can be deduced from the mixing process of 

natural gas and oxygen for which the increase of S means a delay of the combustion start and 

an increase of the flame length [3].  

In order to quantify all the previously mentioned correlations, fitting routine is applied on the 

predicted data. Table 4 summarizes the coefficients of a simple regression applied for all 

studied outputs  

( )
3 3 3 3

2
j i i i j ij 1 2 3

i 1 i 1 i 1 j i

y a x x x x 1 x x x
= = = >

= + + + − δ +∑ ∑ ∑ ∑   (4) 

where a is a constant value, yj is one of the output responses (Lf , Xlo, Zlo) and xi is one of the 

inputs (S, oxd , ngd ), δ is the Kronecker operator.  
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5. Conclusions 

The combined effect of burner parameters (S: separation distance between the jets, oxd  and 

ngd : the jet diameters of oxygen and natural gas, respectively) on the studied flame 

characteristics suggests the following correlations: 

• Lift-off height of flame is dependent on all burner parameter interactions in the sense 

that larger heights are proportional to single terms: -8(ngd  + oxd +0.03S), quadratic 

terms 0.03( ngd ² + oxd ²+0.5S²), simple interactions 0.5(ngd x oxd +0.3S( ngd x oxd )) and 

all terms interaction –0.016(oxd S ngd ). 

• The horizontal position of the flame lift-off is dependent on a unique burner parameter 

interaction 0.01(S ngd ). If we exclude the former interaction term, a simple linear 

correlation (R²=0.92) is sufficient to represent truly the correlations. This correlation 

highlights the prevailing role of S and ngd  compared to oxd  : Xlo∝ 0.3(S+ ngd -

0.06 oxd ).  

• The flame length is predicted to depend positively on all parameters. Combining S and 

oxd  allows better results (in this case, the interaction term is 0.64). S and oxd represent 

here the most influential parameters to vary Lf. 
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Figure captions  

Fig. 1. Schematic diagram of separated-jet burner. 
 
 
Fig. 2. Schematic diagram of the Chemiluminescence setup. 
 
 
Fig. 3. Example of image processing of the lift-off zone of a flame issued from an oxy-fuel 

burner with separated jets. (a) Instantaneous image, (b) binarized image, (c) the average 

image of 400 instantaneous images, and (c) the average image of binarized images. 

 

Fig. 4. (a) Examples of OH instantaneous images at the flame top and (b) their corresponding 

binarized image. 

 
Fig. 5. Evolution of the average and maximum convergence criteria as function of iteration 

level for an increasing number of neurons in the hidden layer. Runs are performed in the case 

of Zlo output – training database 70%. 

 

Fig. 6. (a) training and (b) test error maps relative to the output Zlo as function of neuron 

number and ratio from the whole database of samples used for training. 

Fig. 7. Comparing experimental and predicted Zlo for two neural nets (optimal condition 

NN=1, TR=50% and none-optimized condition NN=6, TR=100%).  

Fig. 8. Predicted maps of Zlo  as function of studied parameters. (a) ngd =4, (b) ngd =11, (c) 

oxd  = 15. 

Fig. 9. Predicted maps of Xlo  as function of studied parameters (a) ngd =5.8, (b) oxd =13 (c) 

S=26. 

Fig. 10. Predicted maps of Lf  as function of studied parameters. (a) ngd =5.8,  (b) oxd =8 (c) 

S=17. 
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Table 1. Operating conditions of the burner parameters. 

 

Central natural gas jet One lateral oxygen jet 

dng (mm) 
0

ngU (m/s) Reng dox (mm) 
0

oxU (m/s) Reox 

4 53.3 16152 

6 25.4 10792 

8 14.3 8101 

10 9.1 6444 

6 23.6 10727 

6 25.4 10792 

8 14.3 8101 

10 9.1 6444 

8 13.4 8121 
6 25.4 10792 

8 14.3 8101 

 

 

 

Table(s)
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Table 2. Experimental database used to assess lift-off positions of flame (Zlo and Xlo) and 

flame length (Lf) as a function of nozzles diameters (for the natural-gas jet, ngd  and the 

oxygen jet, oxd ) and the separation distance between the jets (S). 

 

 

Exp. # 
Inputs Outputs 

ngd  (mm) oxd  (mm) S (mm) Zlo (mm) Xlo (mm) Lf (mm) 

1 4 6 7 56.14 3.31 463 

2 4 8 8 14.43 3.19 527 

3 4 8 12 44.27 4.91 568 

4 4 8 16 77.90 6.31 - 

5 4 10 9 10.54 3.26 - 

6 4 10 12 27.30 4.53 - 

7 4 10 16 39.96 5.83 - 

8 6 6 8 19.03 3.94 461 

9 6 6 12 46.08 6.55 520 

10 6 6 16 61.78 8.52 548 

11 6 6 20 74.71 10.47 593 

12 6 6 30 92.08 13.90  

13 6 8 9 11.84 4.17 564 

14 6 8 12 23.77 5.54 580 

15 6 8 16 38.39 7.36 611 

16 6 8 20 49.12 9.14 656 

17 6 8 30 75.16 12.38 - 

18 6 10 10 - - - 

19 6 10 12 18.35 5.41 - 

20 6 10 16 28.64 6.80 - 

21 6 10 20 43.34 8.53 - 

22 8 6 9 11.69 4.93 452 

23 8 6 12 16.62 6.64 517 

24 8 6 16 33.19 8.65 507 

25 8 6 20 47.48 11.19 592 

26 8 8 10 - - 568 

27 8 8 12 17.48 6.00 582 

28 8 8 16 28.82 7.95 608 

29 8 8 20 45.92 9.90 672 
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Table 3. Window range of the studied parameters. 

 

 

Limit 
Inputs Outputs 

ngd  (mm) oxd  (mm) S (mm) Zlo (mm) Xlo (mm) Lf (mm) 

xMin 4 4 7 0 0 0 

xmax 20 20 50 - - - 
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Table 4. Regression coefficients based on ANN predicted results and using different 

approximations. 

 

 a oxd  ngd  S oxd ² ngd ² S ² ngd x oxd  oxd xS ngd xS ngd x oxd xS R² 

Zlo 

109 -8.1 -8.3 -0.26 0.029 0.033 0.014 0.515 0.143 0.138 -0.016 0.92 

43 -2.6 -2.8 2.0 0.03 0.03 0.01 0.06 -0.05 -0.05  0.89 

69 -3.3 -3.6 0.82 0.03 0.03 0.01     0.86 

53 -2.6 -2.8 1.6        0.85 

Xlo 

-4.4 -0.13 0.67 0.68 0.0010 -0.0031 -0.0048 0.0040 0.0022 -0.0092 -0.0001 0.99 

-4.7 -0.11 0.69 0.69 0.0010 -0.0030 -0.0048 0.0017 0.0012 -0.0102  0.99 

-2.1 -0.04 0.44 0.59 0.0004 -0.0036 -0.0048     0.97 

1.3 -0.03 0.35 0.31        0.94 

Lf 

-76 76 0.85 18 -1.2 -0.0004 -0.0586 -0.0002 -0.6230 0.0099 -0.0016 0.99 

-82 77 1.40 18 -1.22 -0.0004 -0.059 -0.05 -0.64 -0.0094  0.99 

147 58 0.58 11 -1.22 -0.0004 -0.06     0.93 

328 29 0.58 7        0.90 
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Fig. 1. Schematic diagram of separated-jet burner. 
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Fig. 2. Schematic diagram of the Chemiluminescence setup. 
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Fig. 3. Example of image processing of the lift-off zone of a flame issued from an oxy-fuel 

burner with separated jets. (a) Instantaneous image, (b) binarized image, (c) the average 

image of 400 instantaneous images, and (c) the average image of binarized images. 
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Fig. 4. (a) Examples of OH instantaneous images at the flame top and (b) their corresponding 

binarized image. 
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Fig. 5. Evolution of the average and maximum convergence criteria as function of iteration 

level for an increasing number of neurons in the hidden layer. Runs are performed in the case 

of Zlo output – training database 70%. 
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(b) 

Fig. 6. (a) training and (b) test error maps relative to the output Zlo as function of neuron 

number and ratio from the whole database of samples used for training. 
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Fig. 7. Comparing experimental and predicted Zlo for two neural nets (optimal condition 

NN=1, TR=50% and none-optimised condition NN=6, TR=100%).  
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(a) 

 
(b) 

 
(c) 

 

Fig. 8. Predicted maps of Zlo  as function of studied parameters. (a) ngd =4, (b) ngd =11, (c) 

oxd  = 15. 
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(a) 

  
(b) 

 
(c) 

Fig. 9. Predicted maps of Xlo  as function of studied parameters (a) ngd =5.8, (b) oxd =13, (c) 

S=26. 



 

 10 

 

 
(a) 

 
(b) 
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Fig. 10. Predicted maps of Lf  as function of studied parameters. (a) ngd =5.8,  (b) oxd =8, (c) 

S=17. 
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Fig. 2. Schematic diagram of the Chemiluminescence setup. 
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Fig. 3. Example of image processing of the lift-off zone of a flame issued from an oxy-fuel 

burner with separated jets. (a) Instantaneous image, (b) binarized image, (c) the average 

image of 400 instantaneous images, and (c) the average image of binarized images. 
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Fig. 4. (a) Examples of OH instantaneous images at the flame top and (b) their corresponding 

binarized image. 
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Fig. 5. Evolution of the average and maximum convergence criteria as function of iteration 

level for an increasing number of neurons in the hidden layer. Runs are performed in the case 

of Zlo output – training database 70%. 
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(b) 
Fig. 6. (a) training and (b) test error maps relative to the output Zlo as function of neuron 

number and ratio from the whole database of samples used for training. 
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Fig. 7. Comparing experimental and predicted Zlo for two neural nets (optimal condition 

NN=1, TR=50% and none-optimised condition NN=6, TR=100%).  
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(a) 

 
(b) 

 
(c) 
 
Fig. 8. Predicted maps of Zlo  as function of studied parameters. (a) ngd =4, (b) ngd =11, (c) 

oxd  = 15. 
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(b) 

 
(c) 
Fig. 9. Predicted maps of Xlo  as function of studied parameters (a) ngd =5.8, (b) oxd =13, (c) 

S=26. 
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(b) 

 
(c) 
Fig. 10. Predicted maps of Lf  as function of studied parameters. (a) ngd =5.8,  (b) oxd =8, (c) 

S=17. 




