A. Balandin and O. Laearenko, Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices, Applied Physics Letters, vol.82, issue.3, pp.415-417, 2003.
DOI : 10.1063/1.1539905

T. Belytschko and T. Black, Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering, vol.55, issue.5, pp.601-620, 1999.
DOI : 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S

T. Belytchko, C. Parimi, N. Moës, N. Sukumar, and S. Usui, Structured extended finite element methods for solids defined by implicit surfaces, International Journal for Numerical Methods in Engineering, vol.78, issue.1-2, pp.609-635, 2003.
DOI : 10.1002/nme.686

Y. Benveniste, A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media, Journal of the Mechanics and Physics of Solids, vol.54, issue.4, pp.708-734, 2006.
DOI : 10.1016/j.jmps.2005.10.009

H. Cheng and S. Torquato, Effective conductivity of dispersions of spheres with a superconducting interface, Proc. R. Soc. London, pp.1331-1344, 1997.
DOI : 10.1098/rspa.1997.0073

H. Duan and B. Karihaloo, Effective thermal conductivities of heterogeneous media containing multiple imperfectly bonded inclusions, Physical Review B, vol.75, issue.6, p.64206, 2007.
DOI : 10.1103/PhysRevB.75.064206

K. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, International Journal of Solids and Structures, vol.40, issue.13-14, pp.3647-3679, 2003.
DOI : 10.1016/S0020-7683(03)00143-4

M. Gurtin and A. Murdoch, A continuum theory of elastic material surfaces, Archive for Rational Mechanics and Analysis, vol.57, issue.4, pp.291-323, 1975.
DOI : 10.1007/BF00261375

K. Garret and H. Rosenberg, The thermal conductivity of epoxy-resin / powder composite materials, Journal of Physics D: Applied Physics, vol.7, issue.9, pp.1247-1258, 1974.
DOI : 10.1088/0022-3727/7/9/311

Z. Hashin, Thin interphase/imperfect interface in conduction, Journal of Applied Physics, vol.89, issue.4, pp.2261-2267, 2001.
DOI : 10.1063/1.1337936

D. Hasselman and K. Donaldson, Effect of Reinforcement Particle Size on the Thermal Conductivity of a Particulate-Silicon Carbide-Reinforced Aluminum Matrix Composite, Journal of the American Ceramic Society, vol.43, issue.8, pp.3137-3140, 1992.
DOI : 10.1111/j.1151-2916.1992.tb04400.x

E. Hervé, Thermal and thermoelastic behaviour of multiply coated inclusion-reinforced composites, International Journal of Solids and Structures, vol.39, issue.4, pp.1041-1058, 2002.
DOI : 10.1016/S0020-7683(01)00257-8

G. Jing, H. Duan, X. Sun, Z. Zhang, J. Xu et al., Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy, Physical Review B, vol.73, issue.23, p.73235409, 2006.
DOI : 10.1103/PhysRevB.73.235409

A. Khitun, A. Balandin, J. Liu, and K. Wang, In-plane lattice thermal conductivity of a quantum-dot superlattice, Journal of Applied Physics, vol.88, issue.2, pp.696-699, 2000.
DOI : 10.1063/1.373723

L. Quang, H. Bonnet, G. He, and Q. , Size-dependent Eshelby's tensor fields and effective thermal behavior of nano-inhomogeneities

R. Lipton, Variational methods, bounds, and size effects for composites with highly conducting interface, Journal of the Mechanics and Physics of Solids, vol.45, issue.3, pp.361-384, 1997.
DOI : 10.1016/S0022-5096(96)00097-X

R. Lipton and D. Talbot, Bounds for the effective conductivity of a composite with an imperfect interface, Proc. R. Soc. Lond. A, pp.1501-1517, 2001.
DOI : 10.1098/rspa.2000.0775

R. Miller and V. Shenevoy, Size-dependent elastic properties of nanosized structural elements, Nanotechnology, vol.11, issue.3, pp.139-147, 2000.
DOI : 10.1088/0957-4484/11/3/301

T. Miloh and Y. Benveniste, On the effective conductivity of composites with ellipsoidal inhomogeneities and highly conducting interfaces, Proc. R. Soc. London, pp.2687-2706, 1999.
DOI : 10.1098/rspa.1999.0422

N. Moës, J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, vol.46, issue.1, pp.131-156, 1999.
DOI : 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.3.CO;2-A

P. Huy, H. Sanchez-palancia, and E. , Ph??nom??nes de transmission ?? travers des couches minces de conductivit????lev??e, Journal of Mathematical Analysis and Applications, vol.47, issue.2, pp.284-309, 1974.
DOI : 10.1016/0022-247X(74)90023-7

URL : http://doi.org/10.1016/0022-247x(74)90023-7

E. Sanchez-palancia, Comportement limite d'unprobì eme de transmissionà transmissionà travers une plaque faiblement conductice, C. R. Acad. Sci. Paris Ser. A, vol.270, pp.1026-1028, 1970.

N. Sukumar, D. Chopp, N. Moës, and T. Belytschko, Modeling holes and inclusions by level sets in the extended finite-element method, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.46-47, 2001.
DOI : 10.1016/S0045-7825(01)00215-8

URL : https://hal.archives-ouvertes.fr/hal-01007065

S. Torquato and M. Rintoul, Effect of the Interface on the Properties of Composite Media, Physical Review Letters, vol.75, issue.22, pp.4067-4070, 1995.
DOI : 10.1103/PhysRevLett.75.4067

J. Yvonnet, L. Quang, H. He, and Q. , An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites, Computational Mechanics, vol.71, issue.1, pp.119-131, 2007.
DOI : 10.1007/s00466-008-0241-y

URL : https://hal.archives-ouvertes.fr/hal-00692238