
HAL Id: hal-00691710
https://hal.science/hal-00691710

Submitted on 26 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Client-server Web applications with Ocsigen
Vincent Balat, Pierre Chambart, Grégoire Henry

To cite this version:
Vincent Balat, Pierre Chambart, Grégoire Henry. Client-server Web applications with Ocsigen.
WWW2012, Apr 2012, Lyon, France. pp.59. �hal-00691710�

https://hal.science/hal-00691710
https://hal.archives-ouvertes.fr


Client-server Web applications with Ocsigen
∗

Vincent Balat
Univ Paris Diderot

Sorbonne Paris Cité
PPS, UMR 7126 CNRS, Inria

Paris, France
vincent.balat@

univ-paris-diderot.fr

Pierre Chambart
CNRS, PPS, UMR 7126

Univ Paris Diderot
Sorbonne Paris Cité

Paris, France
pierre.chambart@

crans.org

Grégoire Henry
CNRS, PPS, UMR 7126

Univ Paris Diderot
Sorbonne Paris Cité

Paris, France
gregoire.henry@

pps.univ-paris-diderot.fr

ABSTRACT

The Ocsigen framework offers a new way to develop sophis-
ticated client-server Web applications. It makes it possible
to write as a single program both the server and client sides
of a Web application, thus simplifying a lot communications
and data transfers, and avoiding code duplications. It also
proposes a wide set of high level concepts to program tra-
ditional Web interactions in a very concise way while mix-
ing them seamlessly with client side features. The use of a
powerful type system improves a lot the reliability of pro-
grams, reducing debugging time, and making the code easier
to maintain.

Categories and Subject Descriptors

D.3.3 [Software]: Programming languages—Language Con-

structs and Features; H.5.3 [Information Systems]: In-
formation interfaces and presentation—Group and Organi-

zation Interfaces Web-based interaction

General Terms

Languages, Reliability

Keywords

Continuation-based Web programming, AJAX, Javascript

1. INTRODUCTION
Recent Web browsers have become powerful virtual ma-

chines in which more and more programs are executed. Desk-
top programs are currently being superseded very quickly by
ever more sophisticated cloud applications.

Today, most Web developers are using distinct languages
for programming traditional Web interaction (e.g. forms,

∗
Work partially supported by the French national research agency

(ANR), PWD project, grant ANR-09-EMER-009-01, and performed at
the IRILL center for Free Software Research and Innovation in Paris,
France

Copyright is held by the authors/owner(s).
WWW2012 Developer Track, April 18-20, 2012, Lyon, France.

links and bookmarks) and client side features. This creates
an impedance mismatch that often requires explicit data
conversions and code duplications, all of which being error
prone. For instance, data validation should be performed
typically both on the client for early feed-back and on the
server for safety. This approach also makes it difficult to
combine in a flexible and natural way client and server fea-
tures. As a result, client features remain often restricted to
small one page applications with no persistence when links
are followed.
Even though there are good libraries that attempt to ad-

dress these problems, we believe that rethinking program-
ming tools could speed up the rise of applications taking
full advantage of the new possibilities offered by modern
browsers.
A few programming frameworks now propose to use the

same language both client and server side [4, 7, 2]. On
the client, they must rely on what browsers provide, that
is, basically Javascript. The good news is that there now
exists good and fast Javascript engines, available on servers
as well [5].
The Ocsigen project [1] takes the alternative approach of

using Javascript as the target language of a compiler. In-
deed, we want to use advanced language features not avail-
able in Javascript. The goal is to abstract away technical
details, proposing high level technical concepts correspond-
ing closely to the very needs of Web developers. This makes
it possible to express sophisticated behaviors in very few
lines.
One of the most powerful features of Ocsigen is the way

Web interaction, such as the effect of following links, is pro-
grammed through a unique concept of “services”, and re-
mains automatically compatible with client side features:
the client side program persists while the user browses the
Web site, and traditional features like bookmarks, forms,
sessions or “back button” automatically remain available, in
a transparent way.
Finally Ocsigen is making extensive use of the powerful

type system of the underlying language, OCaml, to detect
at compile time many programming errors. For example
it makes it impossible to generate invalid HTML. All this
reduces a lot debugging and testing time!
We start in section 2 by showing an example of application

written with Ocsigen. Section 3 shows the basics for writing
a client-server application as a single program, whereas the
way to program traditional Web interaction is sketched in
section 4. Then, section 5 shows how we benefits from static
typing.



2. EXAMPLE
Figure 2 shows the full source code of a client-server draw-

ing application (see also a screen-shot in figure1, and a work-
ing version at URL http://ocsigen.org/graffiti). This
program allows the user to draw on the screen, choose the
color of the brush, and see in real time what other users are
drawing.

We won’t go into the full details of the code, which is
basically plain OCaml. For more explanations, there is a
tutorial showing step by step how to write this program at
URL http://ocsigen.org/tutorial.

The first thing to notice is that the code is short. And this
is due not to the use of specialized libraries that would do
everything for us (we are using a library only for the color
picker) but rather to the expressiveness of concepts.

As you can see, the code is divided into several parts with
special bracket to distinguish between client code, server
code, and shared code. It mainly defines one service, corre-
sponding to a URL and returning an HTML5 page, together
with some code to be executed once the page is loaded.

Figure 1: The Graffiti program with two windows

3. CLIENT SERVER WEB APPLICATIONS

3.1 General principles
Writing client and server code together brings many ad-

vantages beside the use a single language. It allows a seam-
less communication of data between both parts of the pro-
gram. Server side variables can be used from the client (see
line 37); their values are sent along the page. This also en-
sures that client and server codes remain consistent. For
instance, in this example, if the color of the brush were re-
moved from the messages sent on the bus (on line 33), the
compiler would complain if the remaining of the code were
not updated accordingly, and it would point to the location
of the error.

Interfaces are built in the usual declarative way, and sent
together with the code corresponding to dynamic parts. Pro-
grams are written in way very similar to desktop applica-
tions. For example a very simple interface allows to use user
variables server side as if there was a single user program.

3.2 The Js_of_ocaml compiler
The client side code is translated from OCaml to Javascript

by the Js of ocaml compiler. A syntax extension makes it
possible to directly invoke Javascript methods (line 23), set
object properties (line 19) or create objects (line 22). This
makes it easy to bind Javascript libraries (like Google Clo-
sure in our example [3]). Appropriate types can be used to
ensure that objects are not misused. The compiler performs
dead code elimination. Hence, the programmer does not
have to restrict himself to minimal libraries.

3.3 Persistent client side programs
Ocsigen allows to combine the best of traditional and

persistent applications. It is possible to write persistent
applications in a classical declarative way. Only the reac-
tive parts involves using DOM interfaces. This way, users
with Javascript disabled and search engine crawlers can still
browse the site and pages have real bookmarkable URLs.
When loading a page, links and forms are modified such

that clicking links appears to work as usual, but does not in
fact interrupt the Javascript program. This feature makes it
possible to write very easily applications that need to keep
a state during the navigation, such as an audio library with
a music player, or persistent widgets (ex. a chat).
Having these features with other frameworks usually re-

quires code duplication to implement a Javascript-less ver-
sion of the site.

4. SERVICE BASED PROGRAMMING
Programming traditional Web interaction is done through

the notion of service. A service is a kind of function invoked
in reaction to an HTTP request, and that usually returns a
Web page. Main services are identified by the URL they are
attached to. Ocsigen proposes many other ways to identify a
service: based on special parameters, on the HTTP method,
on the names of parameters, on the current session, etc.
As an example, suppose you want to implement a login

box on each page of your Web site. If a user logs in from a
page, you want him to remain on this page after connection.
With Ocsigen, you just need to create an extra service, not
attached to a precise URL (that is: available from any URL),
and that will perform the action of checking the password
and registering session data. This only takes a few lines of
code.
Another very convenient feature is the ability to dynam-

ically create new services, for example services customized
to one user and that depend on previous interactions with
him. This simplifies a lot programming sequences of pages,
each depending on the previous ones (like buying a plane
ticket). This is usually known as continuation based Web

programming [6].

5. STATIC TYPING
Simply put, static typing is the principle of verifying at

compile time that values are correctly used. It can provides
some basics properties like ensuring that variables are de-
clared and initialized. But, when the type system is powerful
enough, it can also protect against more complex program-
ming errors. With a powerful type inference mechanism,
type safety can be combined with the lightweightness and
flexibility of dynamic languages.
In Ocsigen we leverage the power of OCaml type system

to enforce many properties at compile time. We can for in-
stance ensure that Javascript APIs are correctly used, that
database accesses are safe, that links go to existing services
with the right parameters. With the whole application writ-
ten as a single code base, we can moreover ensure that com-
munications between client and server can’t go wrong.
One of the most impressive use of static typing in Ocsi-

gen is for checking at compile time the validity of function
generating HTML. This makes it impossible for an Ocsigen
program to generate a page that does not respect the W3C
recommendations!



1 {shared{ (* Code shared by client and server , defining constants and the type of messages *)
2 let width , height = 700, 400
3 type messages = (string * (int * int) * (int * int)) deriving (Json)
4 }}
5

6 let b = Eliom_bus.create ~name:"graff" Json.t<messages > (* The bus used for communication *)
7

8 {client{
9 let draw ctx (color , (x1 , y1), (x2 , y2)) = (* Client side function for drawing on a canvas *)

10 ctx## strokeStyle <- (string color );
11 ctx## beginPath (); ctx## moveTo(float x1 , float y1); ctx## lineTo(float x2 , float y2); ctx## stroke ()
12 }}
13

14 let main_service = My_appl.register_service ~path:[""] ~get_params:Eliom_parameters.unit
15 (fun () () -> (* The main service , at URL "/", with no parameter *)
16 onload (* piece of code to be executed in the browser after loading the page *)
17 {{ let canvas = Dom_html.createCanvas Dom_html.document in (* the canvas *)
18 let ctx = canvas ## getContext (Dom_html._2d_) in
19 canvas ## width <- width; canvas ## height <- height;
20 Dom.appendChild Dom_html.document ##body canvas;
21

22 let pSmall = jsnew Goog.Ui.hsvPalette (null , null , some (string "goog -hsv -palette -sm")) in
23 pSmall ## render(some Dom_html.document ##body); (* the color palette *)
24

25 let x, y = ref 0, ref 0 in (* computing coordinates *)
26 let set_coord ev =
27 let x0 , y0 = Dom_html.elementClientPosition canvas in
28 x := ev## clientX - x0; y := ev## clientY - y0 in
29 let compute_line ev =
30 let oldx = !x and oldy = !y in
31 set_coord ev;
32 let color = to_string (pSmall ## getColor ()) in
33 (color , (oldx , oldy), (!x, !y))
34 in
35 let line ev =
36 let v = compute_line ev in
37 let _ = Eliom_bus.write %b v in (* writing on the bus *)
38 draw ctx v
39 in
40 Lwt_stream.iter (draw ctx) (Eliom_bus.stream %b); (* Reacting to events from bus *)
41 run (mousedowns canvas (* For each mousedown on the canvas *)
42 (arr (fun ev -> set_coord ev; line ev) (* draw a dot *)
43 >>> first [mousemoves Dom_html.document (arr line);
44 mouseup Dom_html.document >>> (arr line )])) ();
45 }}; (* Then for each mousemove draw a line , *)
46 (* and if mouseup draw a line and start again catching mousedowns *)
47

48 return << <html > <head > <title >Graffiti </title >
49 <link rel=stylesheet href="./ css/style.css"/>
50 <script src="./ oclosure.js" ></script > </head >
51 <body > <h1 >Graffiti </h1 ></body > </html > >>

Figure 2: Full source code of the Graffiti program

Typing is useful to ensure code safety, but it also helps a
lot in maintaining and refactoring code. When some parts
of the code base is modified, the compiler can show the pro-
grammer where he forgot to propagate the changes.

6. CONCLUSION
The Ocsigen software is now mature and full featured.

It has a growing community of users and is released un-
der an open source licence (LPGL). Ocsigen provides the
most advanced features of Web programming frameworks
(like dynamic services or unified client-server programming)
but also many unique features: service identification mech-
anism, static checking of HTML, persistence of the client
program, etc. These unique features come to a large extent
from the use of one of the most advanced programming lan-
guage (OCaml), known to be very fast, expressive, concise
and safe, with many robust libraries.
Many further features have not been presented in this pa-

per: an advanced session mechanism, a very concise way to
implement event handlers (see lines 41-44), or a flexible in-
terface for server push events (see lines 6, 37, 40). Ocsigen
also guarantee the absence of code injection on the client,
the server, nor in SQL queries, and provides mechanisms
to protect angaisnt XSS and data leaks. In our experience,
the safety provided by static typing helps a lot in reducing

development time.

Acknowledgements

Many acknowledgements are due to Jérôme Vouillon, Raphaël
Proust, Benjamin Canou and Emmanuel Chailloux.

7. REFERENCES
[1] V. Balat, J. Vouillon, and B. Yakobowski. Experience

report: ocsigen, a web programming framework. In
ICFP ’09: Proceedings of the 14th ACM SIGPLAN

international conference on Functional programming,
pages 311–316, Edinburgh, Scotland, 2009. ACM.

[2] Dart. http://www.dartlang.org/.

[3] Google closure library.
http://code.google.com/intl/en/closure/library/.

[4] Google web toolkit.
http://code.google.com/webtoolkit/.

[5] Nodejs. http://nodejs.org/.

[6] C. Queinnec. Continuations and web servers.
Higher-Order and Symbolic Computation,
17(4):277–295, Dec. 2004.

[7] M. Serrano, E. Gallesio, and F. Loitsch. Hop, a
language for programming the web 2.0. In Dynamic

Languages Symposium, Oct. 2006.


