A sequent calculus with procedure calls
Mahfuza Farooque, Stéphane Lengrand

To cite this version:
Mahfuza Farooque, Stéphane Lengrand. A sequent calculus with procedure calls. 2012. hal-00690577
A sequent calculus with procedure calls

Mahfuza Farooque¹, Stéphane Lengrand¹,²

¹ CNRS
² Ecole Polytechnique
Project PSI: “Proof Search control in Interaction with domain-specific methods”
ANR-09-JCJC-0006

23rd April 2012

Abstract
In this paper, we extend the sequent calculus ŁK[F [LM09] into a calculus ŁK(𝑇), allowing calls to a decision procedure. We prove cut-elimination of ŁK(𝑇).

Contents
1 The sequent calculus ŁK(𝑇) 2
2 Admissible rules 2
3 Invertibility of the asynchronous phase 3
4 Cut-elimination 5
5 Conclusion 9
1 The sequent calculus \(\text{LK}(T)\)

The sequent calculus \(\text{LK}(T)\) manipulates the formulae of first-order logic, with the specificity that every predicate symbol is classified as either positive or negative, and boolean connectives come in two versions: positive and negative.

Definition 1 (Formulae) Literals are predicates (a predicate symbol applied to a list of first-order terms) or negations of predicates. Literals are equipped with the obvious involutive negation, and the negation of a literal \(l\) is denoted \(l^\perp\).

Let \(P\) be the set of literals that are either predicates with positive predicate symbols, or negations of predicates with negative predicate symbols.

Positive formulae

\[
A, B ::= p | A \land^+ B | A \lor^+ B | \exists x A
\]

Negative formulae

\[
A, B ::= p^\perp | A \land^− B | A \lor^− B | \forall x A
\]

Formulae

\[
A, B ::= P | N
\]

where \(p\) ranges over \(P\).

Definition 2 (Negation) Negation is extended from literals to all formulae:

\[
(p)^\perp := p^\perp
\]
\[
(A \land^+ B)^\perp := A^\land^+ B^\perp
\]
\[
(A \lor^+ B)^\perp := A^\lor^+ B^\perp
\]
\[
(\exists x A)^\perp := \forall x A^\perp
\]

\[
(p^\perp)^\perp := p
\]
\[
(A \land^− B)^\perp := A^\land^− B^\perp
\]
\[
(A \lor^− B)^\perp := A^\lor^− B^\perp
\]
\[
(\forall x A)^\perp := \exists x A^\perp
\]

Definition 3 (\(\text{LK}(T)\)) The sequent calculus \(\text{LK}^p(T)\) manipulates two kinds of sequents:

- Focused sequents \(\Gamma \vdash [P]\)
- Unfocused sequents \(\Gamma \vdash \Delta\)

where \(\Gamma\) is a multiset of negative formulae and positive literals, \(\Delta\) is a multiset of formulae, and \(P\) is said to be in the focus of the (focused) sequent. By \(\text{lit}(\Gamma)\) we denote the sub-multiset of \(\Gamma\) consisting of its literals.

The rules of \(\text{LK}^p(T)\), given in Figure 1, are of three kinds: synchronous rules, asynchronous rules, and structural rules. These correspond to three alternating phases in the proof-search process that is described by the rules.

If \(S\) is a set of literals, \(T(S)\) is the call to the decision procedure on the conjunction of all literals of \(S\). It holds if the procedure returns \text{UNSAT}.

2 Admissible rules

Definition 4 (Assumptions on the procedure)

We assume that the procedure calls satisfy the following properties:

- **Weakening** If \(T(S)\) then \(T(S, S')\).
- **Contraction** If \(T(S, A, A)\) then \(T(S, A)\).
- **Instantiation** If \(T(S)\) then \(T(\{x\} S)\).
- **Consistency** If \(T(S, p)\) and \(T(S, p^\perp)\) then \(T(S)\).

where \(S\) is a set of literals.

Lemma 1 (Admissibility of weakening and contraction)

The following rules are admissible in \(\text{LK}(T)\).

\[
\begin{align*}
\frac{}{\Gamma \vdash [B]} & \quad \frac{}{\Gamma \vdash \Delta} \\
\frac{\Gamma, A \vdash [B]}{\Gamma, A, A \vdash [B]} & \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A, A \vdash \Delta} \\
\frac{}{\Gamma, A \vdash [B]} & \quad \frac{}{\Gamma, A \vdash \Delta}
\end{align*}
\]

Proof: By induction on the derivation of the premiss.
Proof: By induction on the derivation proving the conclusion of the asynchronous rule.

Lemma 2 (Admissibility of instantiation) The following rules are admissible in LK(T).

\[
\begin{align*}
\Gamma &\vdash [B] & \Gamma &\vdash \Delta \\
\{\forall x\} \Gamma &\vdash \{\forall x\} [B] & \{\forall x\} \Gamma &\vdash \{\forall x\} \Delta
\end{align*}
\]

Proof: By induction on the derivation of the premiss. \qed

3 Invertibility of the asynchronous phase

Lemma 3 (Invertibility of asynchronous rules)

All asynchronous rules are invertible in LK(T).

Proof: By induction on the derivation proving the conclusion of the asynchronous rule considered.

- Inversion of \(A \land \neg B\): by case analysis on the last rule actually used
 \[
 \begin{align*}
 \Gamma &\vdash A \land \neg B, C, \Delta' & \Gamma &\vdash A \land \neg B, D, \Delta'
 \end{align*}
 \]
 By induction hypothesis we get
 \[
 \begin{align*}
 \Gamma &\vdash A, C, \Delta' & \Gamma &\vdash A, D, \Delta' & \Gamma &\vdash B, C, \Delta' & \Gamma &\vdash B, D, \Delta'
 \end{align*}
 \]
 By induction hypothesis we get
 \[
 \begin{align*}
 \Gamma &\vdash A \land \neg B, C, \Delta' & \Gamma &\vdash A \land \neg B, C \land \neg D, \Delta'
 \end{align*}
 \]
 By induction hypothesis we get
 \[
 \begin{align*}
 \Gamma &\vdash A, C, D, \Delta' & \Gamma &\vdash B, C, \Delta'
 \end{align*}
 \]
 And
 \[
 \begin{align*}
 \Gamma &\vdash A \land \neg B, (\forall x C), \Delta' & \Gamma &\vdash B, C \land \neg D, \Delta'
 \end{align*}
 \]
 By induction hypothesis we get
 \[
 \begin{align*}
 \Gamma &\vdash A \land \neg B, (\forall x C), \Delta'
 \end{align*}
 \]
By induction hypothesis we get

\[\Gamma \vdash A, C, \Delta' \quad x \notin \text{FV}(\Gamma, \Delta', A) \] \quad \text{and} \quad \Gamma \vdash B, C, \Delta' \quad x \notin \text{FV}(\Gamma, \Delta', B) \]

\[\Gamma, \Delta' \vdash A \land B, C, \Delta' \] \quad \text{and} \quad \Gamma, \Delta' \vdash A, (\forall x C), \Delta' \quad \text{and} \quad \Gamma, \Delta' \vdash B, (\forall x C), \Delta' \quad \text{and} \quad \Gamma, \Delta' \vdash A \land B, C, \Delta' \quad \text{and} \quad \Gamma, \Delta' \vdash A, (\forall x C), \Delta' \quad \text{and} \quad \Gamma, \Delta' \vdash B, (\forall x C), \Delta' \]

\[\Gamma \vdash A, \Delta' \quad C \text{ positive or literal} \]

\[\Gamma, \Delta' \vdash A \land B, C, \Delta' \] \quad \text{and} \quad \Gamma, \Delta' \vdash A, \Delta' \quad C \text{ positive or literal} \quad \text{and} \quad \Gamma, \Delta' \vdash B, \Delta' \quad C \text{ positive or literal} \]

\[\Gamma \vdash A, C, \Delta' \quad \text{and} \quad \Gamma \vdash A, B, D, \Delta' \]

\[\Gamma \vdash A, C, D, \Delta' \quad \text{and} \quad \Gamma \vdash A, B, C \land D, \Delta' \]

\[\Gamma \vdash A, C, D, \Delta' \quad \text{and} \quad \Gamma \vdash A, B, (\forall x C), \Delta' \]

\[\Gamma \vdash A, (\forall x A), \Delta' \quad C \text{ positive or literal} \]

\[\Gamma \vdash A, C, \Delta' \quad \text{and} \quad \Gamma \vdash A, D, \Delta' \]

\[\Gamma \vdash A, C, \Delta' \quad \text{and} \quad \Gamma \vdash A, D, \Delta' \]

\[\Gamma \vdash A, (\forall x A), \Delta' \quad \text{and} \quad \Gamma \vdash A, (\forall x A), D, \Delta' \]

\[\Gamma \vdash A, C, \Delta' \quad \text{and} \quad \Gamma \vdash A, D, \Delta' \]

\[\Gamma \vdash A, C, \Delta' \quad \text{and} \quad \Gamma \vdash A, D, \Delta' \]

\[\Gamma \vdash A, C, D, \Delta' \quad \text{and} \quad \Gamma \vdash A, C \land D, \Delta' \]

\[\Gamma \vdash A, C, \Delta' \quad \text{and} \quad \Gamma \vdash A, D, \Delta' \]
Theorem 4 (cut\textsubscript{1} and cut\textsubscript{2}) The following rules are admissible in \(LK(T) \).

\[
\begin{align*}
\text{cut\textsubscript{1}} & : \quad T(\text{lit}(\Gamma), p^+) \quad \Gamma, p \vdash \Delta \\
\text{cut\textsubscript{2}} & : \quad T(\text{lit}(\Gamma), p^+) \quad \Gamma, p \vdash [B]
\end{align*}
\]

Proof: By simultaneous induction on the derivation of the right premiss.

We reduce cut\textsubscript{2} by case analysis on the last rule used to prove the right premiss.

\[
\begin{align*}
& \quad \Gamma, p \vdash B, \Delta \quad \Gamma, p \vdash C, \Delta \\
\text{cut\textsubscript{1}} & : \quad T(\text{lit}(\Gamma), p^+) \quad \Gamma, p \vdash B \land C, \Delta \\
\end{align*}
\]

reduces to

\[
\begin{align*}
& \quad \Gamma, p \vdash B, \Delta \\
\text{cut\textsubscript{1}} & : \quad T(\text{lit}(\Gamma), p^+) \quad \Gamma, p \vdash C, \Delta \\
& \quad \Gamma \vdash B \land C, \Delta
\end{align*}
\]

\[
\begin{align*}
& \quad \Gamma, p \vdash B_1, B_2, \Delta \\
\text{cut\textsubscript{1}} & : \quad T(\text{lit}(\Gamma), p^+) \quad \Gamma, p \vdash B_1 \lor B_2, \Delta \\
& \quad \Gamma \vdash B_1 \lor B_2, \Delta
\end{align*}
\]

\[
\begin{align*}
& \quad \Gamma, p \vdash \forall x B, \Delta \\
\text{cut\textsubscript{1}} & : \quad T(\text{lit}(\Gamma), p^+) \quad \Gamma, p \vdash B, \Delta \\
& \quad \Gamma \vdash \forall x B, \Delta
\end{align*}
\]

We have \(T(\text{lit}(\Gamma), p^+, B^+) \) as we assume the procedure to satisfy weakening.

If \(P^+ \in (\Gamma, p) \),

\[
\begin{align*}
& \quad \Gamma, p \vdash [P] \\
\text{cut\textsubscript{1}} & : \quad T(\text{lit}(\Gamma), p^+) \quad \Gamma, p \vdash B, \Delta \\
& \quad \Gamma \vdash B, \Delta
\end{align*}
\]

as \(P^+ \in (\Gamma) \).
Proof: reduces to

\[\frac{T(\text{lit}(\Gamma), p^\perp)}{\Gamma, p \vdash} \]

using the assumption of consistency.

We reduce \(\text{cut}_2 \) again by case analysis on the last rule used to prove the right premiss.

\[\frac{T(\text{lit}(\Gamma), p^\perp), \Gamma, p \vdash [B]}{\Gamma \vdash [B \land C]} \]

reduces to

\[\frac{T(\text{lit}(\Gamma), p^\perp), \Gamma, p \vdash [B]}{\Gamma \vdash [B]} \]

\[\frac{T(\text{lit}(\Gamma), p^\perp), \Gamma, p \vdash [C]}{\Gamma \vdash [C]} \]

If \(p' \in \Gamma, p \),

\[\frac{T(\text{lit}(\Gamma), p^\perp), \Gamma, p \vdash [p']}{\Gamma \vdash [p']} \]

reduces to

\[\frac{T(\text{lit}(\Gamma), p^\perp)}{\Gamma \vdash [p']} \]

if \(p' \in \Gamma \)

Finally,

\[\frac{T(\text{lit}(\Gamma), p^\perp)}{\Gamma \vdash [p']} \]

since weakening gives \(T(\text{lit}(\Gamma), p^\perp, p^\perp) \) and consistency then gives \(T(\text{lit}(\Gamma), p^\perp) \).

\[\square \]

Theorem 5 (\text{cut}_3, \text{cut}_4 \text{ and } \text{cut}_5) The following rules are admissible in \(LK(\mathcal{T}) \).

\[\frac{\Gamma \vdash [A] \quad \Gamma \vdash A^\perp, \Delta}{\Gamma \vdash \Delta} \quad \text{cut}_3 \]

\[\frac{\Gamma \vdash N \quad \Gamma, N \vdash \Delta}{\Gamma \vdash \Delta} \quad \text{cut}_4 \]

\[\frac{\Gamma \vdash N \quad \Gamma, N \vdash [B]}{\Gamma \vdash [B]} \quad \text{cut}_5 \]

Proof: By simultaneous induction on the following lexicographical measure:

- the size of the cut-formula (\(A \) or \(N \))
- the fact that the cut-formula (\(A \) or \(N \)) is positive or negative (if of equal size, a positive formula is considered smaller than a negative formula)
- the height of the derivation of the right premiss
Weakenings and contractions (as they are admissible in the system) are implicitly used throughout this proof.

In order to eliminate cut_3, we analyse which rule is used to prove the left premiss. We then use invertibility of the negative phase so that the last rule used in the right premiss is its dual one.

\[
\begin{align*}
\Gamma \vdash [A] & \quad \Gamma \vdash [B] \\
\Gamma \vdash [A \land B] & \quad \Gamma \vdash A_1 \lor B, \Delta \\
\end{align*}
\]

Using the admissibility of instantiation.

\[
\begin{align*}
\Gamma \vdash [\forall x. A] & \quad \Gamma \vdash A_1, \Delta \\
\Gamma \vdash [\exists x. A] & \quad \Gamma \vdash (\forall x. A \land \exists x. A), \Delta \\
\end{align*}
\]

Using the admissibility of contraction.

\[
\begin{align*}
\Gamma \vdash [p] & \quad \Gamma \vdash p, \Delta \\
\end{align*}
\]

In order to reduce cut_4, we analyse which rule is used to prove the right premiss.

\[
\begin{align*}
\Gamma \vdash \text{lit}(\Gamma) & \quad \Gamma, p, p, \Delta \\
\end{align*}
\]

If N is not an literal (hence, it is not passed on to the procedure).

\[
\begin{align*}
\Gamma, p, N \vdash [N^+] & \quad \Gamma \vdash \text{lit}(\Gamma), p^+ \\
\end{align*}
\]

If p^+ is an literal passed on to the procedure.

\[
\begin{align*}
\Gamma, p^+ \vdash [N^+] & \quad \Gamma \vdash N, p^+, N^+, \Delta \\
\end{align*}
\]
\[
\begin{align*}
\Gamma, N & \vdash B, \Delta & \Gamma, N & \vdash C, \Delta \\
\hline
\Gamma & \vdash N & \Gamma, N & \vdash B \wedge \neg C, \Delta \\
\hline
\Gamma & \vdash B \wedge \neg C, \Delta
\end{align*}
\]

reduces to
\[
\begin{align*}
\Gamma, N & \vdash B, \Delta & \Gamma, N & \vdash C, \Delta \\
\hline
\Gamma & \vdash B, \Delta & \Gamma & \vdash C, \Delta
\end{align*}
\]

reduces to
\[
\begin{align*}
\Gamma, N & \vdash B, C, \Delta \\
\hline
\Gamma & \vdash B, C, \Delta
\end{align*}
\]

reduces to
\[
\begin{align*}
\Gamma, N & \vdash B \lor \neg C, \Delta \\
\hline
\Gamma & \vdash B \lor \neg C, \Delta
\end{align*}
\]

reduces to
\[
\begin{align*}
\Gamma, N & \vdash \forall x B, \Delta \\
\hline
\Gamma & \vdash \forall x B, \Delta
\end{align*}
\]

reduces to
\[
\begin{align*}
\Gamma, N, B^+ & \vdash \Delta \\
\hline
\Gamma, B^+ & \vdash \Delta
\end{align*}
\]

using weakening, and if \(B\) is positive or a negative literal.

We have reduced all cases of \(\text{cut}_4\); we now reduce the cases for \(\text{cut}_5\) (again, by case analysis on the last rule used to prove the right premise).

\[
\begin{align*}
\Gamma, N & \vdash [B] & \Gamma, N & \vdash [C] \\
\hline
\Gamma & \vdash [B] & \Gamma & \vdash [C]
\end{align*}
\]

\[
\begin{align*}
\Gamma, N & \vdash [B \wedge C] \\
\hline
\Gamma & \vdash [B \wedge C]
\end{align*}
\]

\[
\begin{align*}
\Gamma, N & \vdash [B_1] \\
\hline
\Gamma & \vdash [B_1]
\end{align*}
\]

\[
\begin{align*}
\Gamma, N & \vdash [B_1 \lor B_2] \\
\hline
\Gamma & \vdash [B_1 \lor B_2]
\end{align*}
\]

\[
\begin{align*}
\Gamma, N & \vdash \{\forall x\} B \\
\hline
\Gamma & \vdash \{\forall x\} B
\end{align*}
\]

\[
\begin{align*}
\Gamma, N & \vdash [\exists x B] \\
\hline
\Gamma & \vdash [\exists x B]
\end{align*}
\]

\[
\begin{align*}
\Gamma, N & \vdash N' \\
\hline
\Gamma & \vdash N'
\end{align*}
\]

\[
\begin{align*}
\Gamma, N & \vdash [p] \\
\hline
\Gamma & \vdash [p]
\end{align*}
\]

since \(p\) has to be in \(\Gamma\).

\[
\begin{align*}
\Gamma & \vdash (\text{lit}(\Gamma), p^+) \quad \text{reduces to} \\
\hline
\Gamma & \vdash (\text{lit}(\Gamma), p^+) \quad \text{reduces to}
\end{align*}
\]

\(\square\)
Theorem 6 \((\text{cut}_6, \text{cut}_7, \text{cut}_8, \text{and} \ \text{cut}_9)\) The following rules are admissible in \(\text{LK}(T)\).

\[
\begin{align*}
\Gamma, \Delta &\vdash N, \Delta & \Gamma, N &\vdash \Delta & \text{cut}_6 & \\
\Gamma &\vdash \Delta & & & & \\
\Gamma, l &\vdash \Delta & \Gamma, l^\perp &\vdash \Delta & \text{cut}_8 & \\
\Gamma &\vdash \Delta & & & & \\
\Gamma, l_1, \ldots, l_n &\vdash \Delta & \Gamma, (l_1^\perp \lor \ldots \lor l_n^\perp) &\vdash \Delta & \text{cut}_9 & \\
\Gamma &\vdash \Delta & & & & \\
\end{align*}
\]

Proof: \text{cut}_6 \ is proved admissible by induction on the multiset \(\Delta\): the base case is the admissibility of \text{cut}_4, and the other cases just require the inversion of the connectives in \(\Delta\).

For \text{cut}_7, we can assume without loss of generality (swapping \(A\) and \(A^\perp\)) that \(A\) is negative. Applying inversion on \(\Gamma \vdash A^\perp, \Delta\) gives a proof of \(\Gamma, A \vdash \Delta\), and \text{cut}_7 \ is then obtained by \text{cut}_6:

\[
\begin{align*}
\Gamma &\vdash A, \Delta & \Gamma, A &\vdash \Delta & \text{cut}_6 & \\
\Gamma &\vdash \Delta & & & & \\
\end{align*}
\]

\text{cut}_8 \ is obtained as follows:

\[
\begin{align*}
\Gamma, l^\perp &\vdash \Delta & \Gamma, l &\vdash \Delta & \\
\Gamma &\vdash \Delta & \Gamma &\vdash l, \Delta & & \text{cut}_7 & \\
\Gamma &\vdash \Delta & & & & \\
\end{align*}
\]

\text{cut}_9 \ is obtained as follows:

\[
\begin{align*}
\Gamma, (l_1^\perp \lor \ldots \lor l_n^\perp) &\vdash \Delta & \Gamma &\vdash l_1^\perp, \ldots, l_n^\perp, \Delta & \text{cut}_7 & \\
\Gamma &\vdash \Delta & \Gamma &\vdash \Delta & & & & \\
\Gamma &\vdash \Delta & \Gamma &\vdash \Delta & & & & \\
\end{align*}
\]

\(\square\)

5 Conclusion

It is worth noting that an instance of such a theory is the theory where \(T(S)\) holds if and only if there is a literal \(p \in S\) such that \(p^\perp \in S\).

We proved the admissibility of \text{cut}_4 and \text{cut}_9 as they are used to simulate the \text{DPLL}(T) procedure \cite{NOT06} as the proof-search mechanism of \(\text{LK}(T)\).

Further work will consist in using the cut-admissibility results to:

- show that changing the polarities of the connectives and predicates that are present in a sequent, does not change the provability of that sequent in \(\text{LK}(T)\);
- prove the completeness of \(\text{LK}(T)\) with respect to the standard notion of provability in first-order logic, working in a particular theory \(T\) for which we have a (sound and complete) decision procedure;
- show how the \text{DPLL}(T) procedure can be simulated in \(\text{LK}(T)\) (with backtracking as well as with backjumping and lemma learning).

References
