Marchenko-Pastur Theorem and Bercovici-Pata bijections for heavy-tailed or localized vectors

Abstract : The celebrated Marchenko-Pastur theorem gives the asymptotic spectral distribution of sums of random, independent, rank-one projections. Its main hypothesis is that these projections are more or less uniformly distributed on the first grassmannian, which implies for example that the corresponding vectors are delocalized, i.e. are essentially supported by the whole canonical basis. In this paper, we propose a way to drop this delocalization assumption and we generalize this theorem to a quite general framework, including random projections whose corresponding vectors are localized, i.e. with some components much larger than the other ones. The first of our two main examples is given by heavy tailed random vectors (as in a model introduced by Ben Arous and Guionnet or as in a model introduced by Zakharevich where the moments grow very fast as the dimension grows). Our second main example is given by vectors which are distributed as the Brownian motion on the unit sphere, with localized initial law. Our framework is in fact general enough to get new correspondences between classical infinitely divisible laws and some limit spectral distributions of random matrices, generalizing the so-called Bercovici-Pata bijection.
Type de document :
Article dans une revue
ALEA : Latin American Journal of Probability and Mathematical Statistics, Instituto Nacional de Matemática Pura e Aplicada, 2012, 9 (2), pp.685-715
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00690425
Contributeur : Florent Benaych-Georges <>
Soumis le : mardi 9 octobre 2012 - 14:18:00
Dernière modification le : mardi 11 octobre 2016 - 13:42:13
Document(s) archivé(s) le : jeudi 10 janvier 2013 - 03:40:18

Fichiers

MP_8_10_12.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00690425, version 4
  • ARXIV : 1204.5154

Collections

Citation

Florent Benaych-Georges, Thierry Cabanal-Duvillard. Marchenko-Pastur Theorem and Bercovici-Pata bijections for heavy-tailed or localized vectors. ALEA : Latin American Journal of Probability and Mathematical Statistics, Instituto Nacional de Matemática Pura e Aplicada, 2012, 9 (2), pp.685-715. <hal-00690425v4>

Partager

Métriques

Consultations de
la notice

301

Téléchargements du document

158