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Complementary Observer for Body Segments Motion
Capturing by Inertial and Magnetic Sensors

Hassen Fourati, Noureddine Manamanni, Member, IEEE, Lissan Afilal, and Yves Handrich

Abstract—This paper presents a viable quaternion-based com-
plementary observer (CO) that is designed for rigid body attitude
estimation. We claim that this approach is an alternative one to
overcome the limitations of the extended Kalman filter. The CO
processes data from a small inertial/magnetic sensor module con-
taining triaxial angular rate sensors, accelerometers, and magne-
tometers, without resorting to GPS data. The proposed algorithm
incorporates a motion kinematic model and adopts a two-layer fil-
ter architecture. In the latter, the Levenberg Marquardt algorithm
preprocesses acceleration and local magnetic field measurements,
to produce what will be called the system’s output. The system’s
output together with the angular rate measurements will become
measurement signals for the CO. In this way, the overall CO design
is greatly simplified. The efficiency of the CO is experimentally in-
vestigated through an industrial robot and a commercial IMU dur-
ing human segment motion exercises. These results are promising
for human motion applications, in particular future ambulatory
monitoring.

Index Terms—Complementary observer (CO), inertial measure-
ment unit (IMU), motion capture, quaternion, wearable MEMS
sensors.

I. INTRODUCTION

MOTION tracking is the key technology in many fields
such as stroke rehabilitation [1], gait analysis [2], hu-

man motion monitoring [3], and other applications that require
continuous information about body attitude. The attitude acts
as a tool for biologists to enable them to estimate the power
transfer between the human body and the environment [4] in
many applications such as stride analysis, physical labor, and
rehabilitation [5]. A number of motion tracking systems have
already been developed for human motion including mechani-
cal, magnetic, optical, acoustic, and inertial/magnetic tracking
systems [1].
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Mechanical tracking systems use an exoskeleton that is at-
tached to the articulated structure intended to be tracked [6].
Goniometers within the skeletal linkages measure joint angles.
These systems only track one single rigid body. Optical tracking
systems using markers and vision are recently reported in the lit-
erature. Image-based systems determine position using multiple
cameras to track predesignated points on moving objects within
a working volume [7]. However, the use of markers is limited
to small areas and the approach using these tools needs specific
material (markers and cameras), which is relatively expensive
or not user friendly.

Body tracking using inertial and magnetic sensors has re-
cently attracted a strong interest. Inertial and magnetic track-
ing systems use a combination of inertial sensors (a set of
accelerometers and gyroscopes) and magnetic sensors (mag-
netometer) [8]. There is no inherent latency associated with this
sensing technology and all delays are due to data transmission
and processing. Another benefit is its lack of necessary source,
whereas electromagnetic, acoustic, and optic devices require
emissions from a source to track objects. Due to the recent tech-
nological advances, inertial and magnetic sensors have become
available with low-cost, small-size, and low-energy consump-
tion [9]. This helped to build wrist-watch-sized, self-contained
inertial/magnetic sensor modules. Consequently, human motion
estimation can be tracked outdoor using smaller ambulatory
measurement systems.

Inertial and magnetic sensors have varying advantages and
drawbacks. Accelerometers theoretically measure the sum of
linear acceleration and gravity [9]. In quasi-static situations, the
linear acceleration can be neglected with respect to the grav-
ity [10]. Measuring the gravity in the sensor coordinate frame
using accelerometers allows the estimation of orientation rel-
ative to the horizontal plane. However, in a dynamic situation
(free motion) the accelerometer measures linear acceleration
and gravity. In this case, it is not easy to dissociate these two
physical quantities, and thus, it becomes difficult to calculate
the attitude accurately. Gyroscopes measure angular velocity
and estimate a change in orientation. However, this solution
would be prone to drifting over time due to the build-up of bias
and drift errors [11]. Magnetometers are used to measure the
local magnetic field vector in sensor coordinates and allow the
determination of orientation relative to the vertical axis, which
provides additional information regarding orientation [12]. The
main problem with magnetometers is the influence of ferrous
material. An in-depth analysis in [13] describes some experi-
ments carried out to examine and characterize small-scale mag-
netic interference caused by typical objects and how this in-
terference affects the accuracy of orientation estimates from
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inertial/magnetic sensor modules. The only recommendation
stated in [13] is to maintain a distance of approximately 1 m
from the source of interference. Since each sensor shows some
advantages and drawbacks, the key element of the study is how
to combine these three data in order to improve the quality of
the motion reconstruction.

Many studies of motion tracking using inertial and magnetic
sensors have been performed using a number of fusion tech-
niques in order to overcome the drawbacks that appear when
we use each sensor individually. The orientation drift resulting
from gyroscope bias [11] can be bounded by additional sen-
sors. In [2] and [14], the authors describe an attitude estimation
algorithm based on a three-axis gyroscope and three-axis ac-
celerometer data. The proposed approaches used the cyclical
nature of human gait and a Kalman filter (KF). The change in
orientation calculated using gyroscopes is fused with the in-
clination measured by accelerometers to estimate an accurate
orientation even with the presence of accelerations. In [15], an
orientation tracking system is performed using nine-axis sensor
modules containing three orthogonally mounted triads of angu-
lar rate sensors, accelerometers, and magnetometers. A linear
KF was designed to process the sensor signals and to estimate
the desired sensing variables of the gravity and magnetic field
and further the orientation of the body segment. This nine-
axis sensor module is also used in [16] to develop an extended
Kalman filter (EKF) for real-time estimation of human limb
segment orientation. This EKF presents some drawbacks such
as the difficulty to guarantee the global convergence of the filter
due to the linear approximation of its nonlinear process model.
The work reported in [17] considered the subproblem of using
integrated inertial and magnetic sensing to track the attitude.
Experiments are performed to validate the developed KF only
using small clinical motion and a small rotational perturbation.
A wearable sensing system is developed in [18] for the tracking
and monitoring of functional arm movement. A body-sensing
module was designed, integrating an optical linear encoder and
an accelerometer. The authors concluded that the best recon-
structed human motion is still not perfect. Recently, the authors
in [19] have described a method to determine the attitude of a
human body based on micro inertial/magnetic sensor units. The
approach employs a KF. A commercial inertial measurement
unit (IMU) is used in [20] to measure the attitude, necessary for
biofeedback problems.

Through the cited data fusion approaches, a multitude of atti-
tude representation is used. Quaternion is introduced to improve
computational efficiency and to avoid singularities. Due to the
unconventional nature of quaternion kinematics, the filtering
approaches have been designed in two different ways according
to the formulation of the error vector and the update of state
estimates. We can differentiate between the additive and multi-
plicative quaternion techniques [5], [16], [21], [22]. These two
techniques are used in the calculation of error vector and in the
update of state estimates. The developed EKF in [16] is based
on a quaternion additive technique. This approach is easy to
implement but is considered as localized approximation since it
is valid for only small attitude changes. A complementary fil-
ter is developed in [5], [22] based on quaternion multiplicative

technique and can be applied for larger attitude maneuvers. It
will also be used during this study.

In this paper, a complementary observer (CO) approach is
developed for human segment motion estimation. In order to
produce 3-D orientation estimates relative to an Earth-fixed ref-
erence frame, the CO uses input from a sensor module contain-
ing a triad of orthogonally mounted accelerometers, angular rate
sensors, and magnetometers. Quaternion is used to represent the
attitude. The algorithm incorporates a motion kinematic equa-
tion to model the human segment motion. It adopts a two-layer
filter architecture in which the Levenberg Marquardt algorithm
(LMA) preprocesses acceleration and local magnetic field mea-
surements to produce what will be referred to as the system’s
output. The latter together with the angular rate data becomes
measurements for the CO. In this way, the overall CO design is
greatly simplified.

The primary contributions of this paper can be stated within
the following points.

1) The experimental validation of the CO performance for
human posture tracking applications.

2) The development of estimation approach without the in-
termediate step of gyro bias estimation/correction like pre-
vious attitude estimation approaches [21], [23].

3) The data fusion of inertial and magnetic measurements
without resorting to GPS data.

4) The use of robust observer instead of EKF. EKF presents
some drawbacks such as the difficulty in guaranteeing the
global convergence of the filter due to the linear approxi-
mation of the nonlinear process model [24].

5) The development of an observer based on a quaternion
multiplicative technique, rarely used in the literature al-
though it is more convenient for the nature of quaternion
algebra.

This paper is organized as follows. Section II details the ma-
terials used and methods: the problem position, the physical
system, and the proposed CO for attitude estimation. Section III
explains the experimental methodology deployed on a robot and
a human subject. Section IV is devoted to the results interpreta-
tion and discussion. The final section provides some conclusions
and future work.

II. MATERIALS AND METHODS

A. Physical System and Process Model

As stated previously, the objective of this paper is to design
a CO for body motion estimation. Therefore, it is necessary to
establish a process model representing body motion dynamics.
We adopted the attitude kinematic differential equation (1) used
in [25] to describe the motion of a rigid body

q̇r =
1
2
qr ⊗ ω̄g (1)

where qr = [ qr,0 qT
r,vect ]T is the unit quaternion that denotes

the mathematical representation of a rigid body attitude be-
tween two frames: 1) body-fixed frame B (XB , YB , ZB ) and 2)
earth-fixed frame N (XN , YN , ZN ). The XN -axis points true
north. The ZN -axis points toward the interior of the Earth,
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perpendicular to the reference ellipsoid. The YN -axis completes
the right-handed coordinate system, pointing east (NED: north,
east, down).

The unit quaternion qr is expressed as

qr = qr,0 + qr,vect = qr,0 + qr,1i + qr,2j + qr,3k (2)

where qr,vect = qr,1i + qr,2j + qr,3k = [ qr,1 qr,2 qr,3 ]T

represents the imaginary vector and qr,0 is the scalar element.
The quaternion product of qra = [ qra0 qT

ra,vect ]T and
qrb = [ qrb0 qT

rb,vect ]T is defined as

qra ⊗ qrb =
[

qra0 −qT
ra,vect

qra,vect I3×3qra0 +
[
q×ra,vect

]
] [

qrb0

qrb,vect

]

(3)
where I3×3 is the identity matrix and

[
q×ra,vect

]
represents the

skew-symmetric matrix defined as

[
q×ra,vect

]
=

⎡
⎢⎣

qra,1

qra,2

qra,3

⎤
⎥⎦
×

=

⎡
⎢⎣

0 −qra,3 qra,2

qra,3 0 −qra,1

−qra,2 qra,1 0

⎤
⎥⎦ . (4)

More details about quaternion can be founded in [26].
ω̄g = [ 0 ωT

g ]T is the quaternion representation of the angu-
lar velocity ωg = [ωgx ωgy ωgz ]T expressed in B [27], [28].
ωg is measured by a three-axis gyroscope and can be often cor-
rupted with noises and bias Λ (t) [24], [29]. The operator ⊗ is
defined in (3).

Equation (1) describes the time rate of attitude variation as a
result of rigid body angular rates measured by the gyroscope.
Including Λ (t), (1) can be written as

q̇n =
1
2

[ −qT
n,vect

I3×3 qn,0 +
[
q×n,vect

]
]

(ωg + Λ (t)) (5)

where
[
q×n,vect

]
is defined in (3) and I3×3 is the identity matrix

of dimension 3.
The process model (Σ) is composed of (5) and the output y

(Σ) :

⎧⎨
⎩

q̇n = 1
2

[ −qT
n,vect

I3×3 qn,0 +
[
q×n,vect

]
]

(ωg + Λ (t))

y = qm

(6)

where qn is the mathematical representation of a rigid body real
attitude expressed between two frames: 1) body-fixed frame B
and 2) Earth-fixed frame N . It represents the attitude variation
derived from the rigid body angular rates integration. Accelera-
tion and local magnetic field measurements are used to produce
what is called the system’s output qm ∈ �4×1 based on the LMA.

B. Inertial/Magnetic Sensors for Motion Estimation: CO

CO design is described in Section II-A. The state vector is
composed of four elements of quaternion. Fig. 1 shows the

Fig. 1. Scheme of the estimation algorithm.

block diagram of the proposed approach. Acceleration and local
magnetic field measurements are used as inputs to the LMA
(see Section II-C) to produce the system’s output. The system’s
output together with the angular rate measurements becomes
inputs for the CO. Therefore, we can take advantages of the
precision near to zero (≺ 1◦), given by the rate gyros integration
in the short term (≈1s) and the reliable long-term accuracy
provided by accelerometer / magnetometer [21].

The emphasis of the proposed observer is based on the mul-
tiplicative correction technique [26] written as follows:

q (k + 1) = δq (k + 1) ⊗ q (k) (7)

where q (k + 1) and q (k) represent the post- and preupdate val-
ues of the quaternion estimates, respectively. Quaternion mul-
tiplication is used in (7) to correct and update the quaternion
calculation. δq (k + 1) is the correction term which is a func-
tion of the error quaternion. This technique is more convenient
for the transition between two quaternions in the case of large
attitude motions. Finally, the CO can be designed from (5) and
(7) as (8), shown at the bottom of the page, where q is the es-
timated quaternion by the three sensors and

[
q×vect

]
is defined

in (4). δK 1 represents the switching correction term and δK 2

is the linear correction term. In order to perform the quater-
nion multiplication, each correction term should be converted
into a quaternion. This conversion is obtained using the forced
normalization method [30]. δK 1 and δK 2 are computed using

δK 1 =
1

‖χ1‖
χ1 ; δK 2 =

1
‖χ2‖

χ2 (9)

where

χ1 = K1

[
1 sat

[
qe,vect

ρ

] ]T

χ2 = K2 [ 1 qe,vect ]T

(10)
with

K1 =

⎡
⎢⎣

1 0 0 0
0 k1 0 0
0 0 k2 0
0 0 0 k3

⎤
⎥⎦ K2 =

⎡
⎢⎣

1 0 0 0
0 k4 0 0
0 0 k5 0
0 0 0 k6

⎤
⎥⎦ .

(11)

⎧⎪⎨
⎪⎩q̇ =

⎡
⎢⎣

q̇0
q̇1
q̇2
q̇3

⎤
⎥⎦ = δK 1 ⊗ δK 2 ⊗

⎛
⎝1

2

[
−qT

vect
I3×3q0 +

[
q×vect

]
] ⎛

⎝
⎡
⎣ ωgx

ωgy

ωgz

⎤
⎦ + Λ (t)

⎞
⎠

⎞
⎠ (8)
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The term qe,vect in (10) represents the imaginary
part of the error quaternion qe . qe measures the differ-
ence between the complementary estimated quaternion q̄ =
[ q0 −q1 −q2 −q3 ]T and the system’s output qm . qe is
expressed by

qe = q̄ ⊗ qm = [ qe0 qe,vect ]T . (12)

The scalar parts of χ1 and χ2 are chosen equal to unity
since the incremental quaternion corresponds to a small rotation
angle [26]. The saturation function in (10) is used to avoid the
high-frequency chattering [31]. It can be written according to

sat [qe,vect/ρ] =

⎧⎪⎨
⎪⎩

1, qe,vect ≤ ρ

qe,vect/ρ, |qe,vect | ≤ |ρ|
−1, qe,vect ≥ ρ.

(13)

The parameter ρ is the surface boundary layer. It determines
the behavior in the vicinity of qe,vect = 0. To preserve the unit
quaternion norm, the estimated quaternion q in (8) can be nor-
malized to avoid the divergence [30].

C. System’s Output qm Calculation: LMA

The LMA is used for a single-frame estimation of the sys-
tem’s output qm . The algorithm was proposed to solve the Wahba
problem [32] that involved the determination of rigid body at-
titude in reference to a fixed coordinate system based on a set
of observation vectors known in a fixed frame and measured
in a mobile frame. A minimum of two vectors are required to
compute the optimal attitude represented by qm .

In the present case, the three-axis magnetometer is a sensor
that provides the Earth’s magnetic field h in the body frame B.
The theoretical output of a magnetometer can be written using
the estimated quaternion such as [12]

h = [hx hy hz ]T = MB
N (q)m + δh (14)

where MB
N (q) is the rotation matrix expressed as

MB
N (q) =⎡

⎢⎣
2q2

0 + 2q2
1 − 1 2 (q1q2 + q0q3) 2 (q1q3 − q0q2)

2 (q1q2 − q0q3) 2q2
0 + 2q2

2 − 1 2 (q0q1 + q2q3)
2 (q0q2 + q1q3) 2 (q2q3 − q0q1) 2q2

0 + 2q2
3 − 1

⎤
⎥⎦ . (15)

δh ∈ �3 is a vector of white noise and m represents the
magnetic field vector measured in the Earth frame N as

m = [mx 0 mz ]T = [ ‖m‖ cos (θ) 0 ‖m‖ sin (θ) ]T .
(16)

The theoretical model of the magnetic field nearest to reality
considers this vector with an inclination angle of θ = 60◦ and
a vector norm of ‖m‖ = 0.5 Gauss [33]. The magnetic field is
locally constant in the fixed frame N and can be represented by
the vector m, which denotes the first observation vector.

The three-axis accelerometer measures the specific force f in
the body frame B as follows [34]:

f = [ fx fy fz ]T = MB
N (q) [a + g] + δf (17)

where g = [ 0 0 9.81 ]T is the gravity vector and a =
[ ax ay az ] is the linear acceleration of the body, expressed
in the Earth frame N [35], [36]. The rotation matrix MB

N (q) is
expressed in (15) and δf ∈ �3 is a vector of white noise. In a
quasi-static situation, the gravitational field g dominates the ac-
celerometer measurements f (‖a‖2 � ‖g‖2) [21]. In this case,
the quantity g is also constant in the Earth frame N and could
provide the second observation vector.

The LMA is an estimator that uses the Earth’s magnetic field
m and the gravity vector g as the observation vectors and the
real measurements fB

m and hB
m to deduce the system’s output

qm . It is based on the following steps.
1) Measure the readings fB

m and hB
m from the accelerometer

and magnetometer, respectively.
2) Calculate [ 0 fN

m ]T = q ⊗ [ 0 fB
m ]T ⊗ q̄ and do the

same for [ 0 hN
m ]T . fN

m and hN
m represent the estimated

acceleration and magnetic field vectors in the Earth frame
N .

3) Calculate the navigation errors fe = g − fN
m and he =

m − hN
m in order to form z = [he fe ]T .

4) Calculate the Jacobian matrix J = −2[ [[
hN

m

]×]T [[
fN

m

]×]T ]T

.

5) Calculate the pseudoinverse O∗ =
[
JT J + λI3×3

]−1
JT .

The constant λ is chosen small (between 10−1 and 10−2)
to ensure the nonsingularity of the minimization problem
[37].

6) Calculate the quaternion error such as qer = αO∗z. α is a
smooth parameter chosen between 0 and 1 [32].

7) Calculate qm such as qm = q ⊗ [ 1 qer ]T . q is estimated
at each integration step by the CO.

D. Performance Analysis of the Designed Observer

A frequency analysis of inertial and magnetic sensor data
shows that they have a complementary frequency spectrum [24].
The resulting structure of the proposed CO blends two frequency
regions and is based on the complementary filtering theory [38].

1) The accelerometer and magnetometer data are character-
ized by a low-frequency region, where the attitude is usu-
ally more accurate.

2) The gyroscope data are located in the high-frequency re-
gion, where the integration of the angular velocity yields
better attitude estimates.

To study the stability and performance of the CO, we estab-
lished the block diagram of the linearized quaternion observer
(see Fig. 2). This block diagram results from the (6), (8)–(13),
and the system’s output qm issued from the LMA. We applied
the Laplace transform (s is the Laplace operator) to qm , q̇n ,
and q. The Laplace transformation (LT) of the quaternion qm

is qm (s) and sqng (s) is the LT of q̇ng . Here, we suppose that
q̇ng = q̇n where qng is the quaternion obtained by integrating
the three-axis gyroscope measurements using (6). In Fig. 2, the
linearization led to approximate q̄ ⊗ qm by qm − q. More details
on the linearization can be founded in [39].
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Fig. 2. Block diagram of the transform domain (Laplace) of the linearized quaternion observer.

From Fig. 2, the transfer function F1 (s) based on the ac-
celerometer and magnetometer inputs is given by

F1 (s) =
q (s)

qm (s)
=

Ks−1

1 + Ks−1 =
K

s + K
. (18)

Equation (18) has the form of a first-order low-pass filter.
Therefore, the system’s output qm (s) is low-pass filtered with
respect to q (s). So, the perturbation effects due to the high-
frequency components (resulting from the linear acceleration
a) of accelerometer signals are filtered from qm (s). The gain
K can be written as K = K1K2 , where K1 and K2 are given in
(11). Similarly, from Fig. 2, the transfer function based on the
gyroscope inputs can be written as

F2 (s) =
q (s)

qng (s)
=

1
1 + Ks−1 =

s

s + K
. (19)

Equation (19) has the form of a first-order high-pass filter. The
gyroscope measurements are high-pass filtered with respect to
the output q (s). Thus, the perturbations due to low-frequency
components of gyroscope signal (the noises and biases) are
filtered from qg (s).

The general requirement to prove the stability in the com-
plementary filtering theory is that one of the transfer functions

complements the sum of the others [22]. Then, this requirement
can be verified for the CO by the following [22]:

F1 (s) + F2 (s) =
q (s)

qm (s)
+

q (s)
qng (s)

=
K

s + K
+

s

s + K
= 1.

(20)
The global transfer function of the CO is

q (s) =
(

K

s + K

)
qm (s) +

(
s

s + K

)
qng (s) . (21)

III. EXPERIMENTAL METHODOLOGY

A. Experimental Tools for the Attitude Estimation:
MTi and MTi-G

In order to evaluate the efficiency of the proposed CO under
several conditions in real applications, a set of experimental data
was collected using two IMUs: the MTi and the MTi-G. These
sensor modules are designed by Xsens Technologies [40]. Sens-
ing components for these units include a three-axis accelerom-
eter, a three-axis magnetometer, and a three-axis gyroscope
providing calibrated digital outputs at a rate of 100 Hz (3-D
acceleration, 3-D angular rate, and 3-D local magnetic field).
The MTi-G is a GPS-enhanced attitude and heading reference
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Fig. 3. (a) Experimental setup: the MTi is mounted on the robot for orientation
tracking. (b) Coordinate system (B) of a rigid body represented in the Earth-
fixed frame (N ).

system (AHRS). The calibration procedure of the sensors is per-
formed by the manufacturer. The MTi and the MTi-G measure
the attitude based on an embedded EKF [40]. The EKF com-
bines measurements from the inertial/magnetic sensors and a
GPS module (the GPS is only for the MTi-G) to estimate the
attitude in quaternion or rotation matrix representations. In the
following experiments, the calibrated data from the MTi and the
MTi-G are used as inputs to the CO.

B. Experimental Setup

The experimental setup used to evaluate the algorithm for
the attitude estimation consists of three tests: 1) robot mounted
tests; 2) improvement of the MTi shortcomings; and 3) human
segments motion evaluation. The MATLAB computing program
was used for all post-trial data processing and analysis.

1) Robot Mounted Tests: The experiments were carried out
in the robotic laboratory of “PSA Peugeot Citroën” company
based in Metz, France. The experimental setup used to evalu-
ate the CO consists of an industrial robot IRB 2400 from the
ABB Group [41] and the MTi. The robot is considered as the
orientation reference since it offers an excellent motion control
of around six axes and gives a high performance in the material
handling with a position repeatability of 0.06 mm and 0.1◦. The
ranges of velocity rate used to move the robot are [0–1 m/s] and
[0–20 ◦/s].

Fig. 3(a) shows the complete setup. In order to mitigate pos-
sible magnetic effects generated by the steel construction of
the robot, the MTi is mounted on a nonferrous extension below
the terminal effector of the robot. The extension is made of a
piece of Plexiglas board and is approximately 50 cm in length.
Two aligned frames are considered in this experimental setup:
T_st_iner and TooL0 correspond to the MTi and the terminal
effector of robot, respectively [see Fig. 3(b)].

The reference paths for the six degrees of freedom of the
IRB robot are generated with a programmed model (a trajectory
like a straight line). The simulated motion is recorded and used
afterward to move the IRB robot. The measured MTi signals are
used for the estimation of the MTi’s attitude with the proposed
CO. The estimated quaternion is compared to the one obtained

Fig. 4. (a) Whole system. The frame axes of a piece of Plexiglas board, MTi,
and MTi-G are aligned (b) Motions performed during the evaluation test; the
dashed arrow describes the direction of the motion.

Fig. 5. Exercise 1 performed with the foot segment. (a) Toe rise foot. (b)
Clockwise ankle rotation. (c) Lateral foot rotation. (d) Eversion.

from the incremental encoders of the IRB robot denoted as
reference signals in the following. This motion is repeated four
times by the robot to investigate the accuracy of the proposed
filtering approach. During the experiment, we have chosen to
increase the robot velocity at each test.

2) Improvement of the MTi Shortcomings: In this test, the
goal is to elaborate an overall view of the attitude estimation
using three methods: 1) the proposed CO; 2) the EKF in the
MTi; and 3) the EKF in the MTi-G. The test procedure consists
of attaching the MTi and the MTi-G to a piece of Plexiglas board
using an adhesive strapping. Their frame axes are aligned as
shown in Fig. 4(a). The subject took the overall package in
his hand and is asked to perform the four motions outlined in
Fig. 4(b) as follows: 1) move along the y-axis of the Plexiglas
board in the level plane; 2) move along the z-axis of the Plexiglas
board; 3) move along the x-axis of the Plexiglas board in the
level plane; and 4) move around the x-axis, y-axis, and z-axis
of the Plexiglas board (free motion).

3) Human Segments Motion Evaluation: Numerous experi-
ments were conducted on a human subject to qualitatively eval-
uate the capability of the CO in the case of human body tracking.
In each experiment, the MTi-G is attached to the human limb to
be tracked using an elastic strapping. In most cases, this method
appeared to keep the sensors fixed relative to the limb. The MTi-
G’s signals are used for an estimation of the limb’s attitude with
the proposed CO. The estimated quaternion is compared to the
one obtained from the MTi-G’s EKF. To validate the effective-
ness of the CO, the experiments were chosen to cover a wide
majority of the 3-D human motion. The subject was asked to
perform four exercises on the following human segments: 1) the
foot segment (see Fig. 5); 2) the lower leg segment (see Fig. 6);
3) the upper arm (see Fig. 7); and 4) the head (see Fig. 8).

In the first exercise, the subject performed the following four
tasks with the foot segment for 80 s: 1) a toe rise foot; 2)
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Fig. 6. Exercise 2 performed with the lower leg segment. (a) Knee extension.
(b) Clockwise and anticlockwise rotation.

Fig. 7. Exercise 3 performed with the upper arm. (a) Clockwise and anticlock-
wise shoulder rotation. (b) Clockwise and anticlockwise rotation around the line
defined along the upper arm segment. (c) Random motion.

Fig. 8. Exercise 4 performed with the head. (a) Clockwise and anticlockwise
neck rotation. (b) Clockwise and anticlockwise rotation around the dashed line
lateral axis of the head. (c) Random motion.

a clockwise ankle rotation; 3) a lateral foot rotation; and 4)
an eversion (see Fig. 5). In the second exercise, the subject
carried out two tasks with the lower leg segment for 60 s: 1) an
extension of the knee and 2) a rotation of the leg in clockwise
and anticlockwise directions (see Fig. 6). The third exercise is
done on the upper arm for 60 s. It consists of three tasks: 1) a
shoulder rotation; 2) a rotation around the axis defined along the
upper arm; and 3) a random motion (see Fig. 7). The exercises
were completed by one performed on the head for 70 s. The
subject did three tasks: 1) a rotation of the neck in clockwise
and anticlockwise directions; 2) a rotation around the lateral
axis of the head; and 3) a random motion (see Fig. 8). To ensure
legal and personal conditions, the experiments conformed to the
National Center for Scientific Research (CNRS) Standard of
Ethics.

IV. RESULTS ANALYSIS AND DISCUSSION

A. Robot Tests: Results and Performance Analysis

Fig. 9(a) illustrates the evolution of the quaternion compo-
nents in the case where the robot moves at 0.75 m/s. Fig. 9(a)
obviously shows that the estimated quaternion by the CO is
in good accordance with the reference signals calculated by
the IRB robot. The observer is stable and estimates the truth
attitude smoothly. Fig. 9(b) shows the quaternion estimation
error between the CO and the reference (robot) after observer
convergence. The obtained results illustrate that the quaternion
estimation error remains in the interval that varies in ±0.015
which proves the efficiency of the CO.

Fig. 9. (a) Comparison between quaternion components estimated by the CO
and those given by the robot. (b) Quaternion estimation errors.

Fig. 10. Attitude estimation with the MTi, MTi-G, and CO.

B. Improvement of the MTi Shortcomings: Results and
Performance Analysis

The CO is fed with inertial/magnetic data recorded from the
MTi-G during the four motions. The estimated attitude is ex-
pressed with the Euler angle representation. Fig. 10 shows the
time history evolution of the Euler angles obtained from the MTi,
the MTi-G, and the CO. This figure shows the effectiveness of
the estimates produced by the CO during the motion. One can
notice that the estimation error of quaternion remains close to
zero (between [1◦, 3◦] for roll and pitch angles and between
[2◦, 5◦] for a yaw angle). This experiment shows the drawbacks
of the MTi’s EKF during the intervals (17–34 s) and (37–42 s)
where the estimation errors are between 10◦ and 20◦.

C. Human Segments Motion Evaluation: Results and
Performance Analysis

The estimated attitude by the CO is compared to the one ob-
tained from the MTi-G’s EKF considered as reference in each
exercise. The attitude is expressed also in the Euler angle rep-
resentation using the mathematical transformation between the
estimated quaternion and Euler angles given in [42]. Fig. 11(a)
illustrates the obtained results from the exercise on the upper
arm as an illustrative example. The time history evolution of
the Euler angles obtained from the MTi-G’s EKF and the CO
is shown in this figure. We obviously deduce a strong correla-
tion between the attitudes obtained from the EKF and the CO,
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Fig. 11. (a) Euler angles estimated by the CO and those obtained by the
MTi-G’s EKF. (b) Estimation errors (exercise on the upper arm).

respectively. The convergence rate is fast and around 2 s. The
Euler angle estimation errors are shown in Fig. 11(b), which
provide an overview of the overall performance of the proposed
approach in this paper. These errors are computed as the dif-
ference between the Euler angle estimates produced by the CO
and the EKF, respectively. The performance consistency of the
observer is illustrated in this figure since the estimation errors
are around 2◦ for the roll and pitch angles and 3◦ for the yaw
angle. This test shows the attitude estimation capability of the
CO without resorting to the GPS data (GPS data are used only in
the MTi-G’s EKF). During this test, the observer was evaluated
under a large range of movement and the estimation errors were
very similar (between 2◦ and 4◦ for the roll and pitch angles,
between 3◦ and 5◦ for the yaw angle).

V. CONCLUSION

This paper has presented the design and experimental results
of a quaternion-based CO for human body motion tracking us-
ing inertial/magnetic sensor modules containing orthogonally
mounted triads of accelerometers, gyroscopes, and magnetome-
ters. The CO was designed with the goal of being able to produce
highly accurate orientation estimates without resorting to GPS
data. The observer design makes use of a simple kinematic mo-
tion equation to describe the system model. The CO design is
further simplified by preprocessing accelerometer and magne-
tometer data using the LMA. The quaternion calculated by the
LMA is provided as input to the CO along with the angular rate
data. Some experiments were carried out on a robot and human
body segments through sensor measurements provided by an
IMU. The obtained results and estimation errors illustrate the
performance of the proposed approach. Future work will focus
on designing a low-cost, lightweight, and embedded prototype
for this application.
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