Joint time-frequency spectrum sensing for Cognitive Radio
Guibène Wael, Hayar Aawatif

To cite this version:

HAL Id: hal-00689807
https://hal.archives-ouvertes.fr/hal-00689807
Submitted on 20 Apr 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Joint Time-Frequency Spectrum Sensing for Cognitive Radio

Wael Guibène and Aawatif Hayar
EURECOM - Mobile Communications Dept.
P.O. Box 193, 06904 Sophia Antipolis, France
Email: {guibene, hayar}@eurecom.fr

Abstract—In this paper, we propose a new concept of spectrum sensing techniques based on a joint time-frequency detection of primary users. In this new approach, we aim at detecting the presence of the PU in frequency and in time as well.

The proposed technique based on an algebraic detection of the spectrum is compared to one of the most well known tool in time frequency analysis tools: the Wigner Ville Distribution.

Simulation results show how reliable the proposed technique is comparing to classical energy detection in time-frequency plane.

Index Terms—Cognitive radio, sensing algorithm, Wigner Ville distribution, algebraic detector, joint time frequency detection.

I. INTRODUCTION

Cognitive Radio (CR) as introduced by Mitola [1] is a self aware and “intelligent” device that can adapt itself to the Wireless environment changes. Such a device is able to detect the changes in Wireless network to which it is connected and adapt its radio parameters to the new opportunities that are detected. In CR networks, these opportunities are spectrum resources left idle by a licensed user, also called Primary User (PU), and can be exploited by an unlicensed user also called Secondary User (SU).

Many techniques already exist to model the spectrum use: we talk about Black Areas when the PU is present in the transmission sub-band. These areas of the spectrum are so occupied by the PU. Other regions are the Gray Areas where the PU transmission power enables the SU to transmit but with high interference level with the PU. The most secure areas are the White Areas, also called holes, where the SU can transmit with nearly no interference with the PU.

Spectrum Sensing in CR aims in finding the holes in the PU transmission which are the best opportunities to be used by the SU. Many statistical approaches already exist. The easiest to implement and the reference on in complexity is still the Energy Detector (ED). Nevertheless, the ED is highly sensitive to noise and does not perform well in low Signal to Noise Ratio (SNR). Other advanced techniques based on signals modulations and exploiting some of the transmitted signals inner properties were also developed. For instance, the detector that exploits the built-in cyclic properties on a given signal is the Cyclostationary Features Detector (CFD). The CFD do have a great robustness to noise compared to ED but its high complexity is still a consequent draw back.

The paper is organized as follows. After the presentation of the system model in Section II, some key notes are given in Section III. Then, the AD implementation is presented in Section IV. In Section V, the performance evaluation and advantages are described, and a comparison with some statistical approaches is given. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

In this section, we describe the system model that will be used throughout this paper. For the radio channel measurement we have chosen to thoroughly investigate the DVB-T primary user system. In this system, the transmitted signal is convolved with a multi-path channel and a Gaussian noise is added. The received signal at time \(n \), denoted by \(x_n \), can be modeled as:

\[
x_n = A_n s_n + e_n
\] (1)

where \(A_n \) being the transmission channel gain, \(s_n \) is the transmit signal sent from primary user and \(e_n \) is a stationary, Gaussian noise with zero mean. The goal of spectrum sensing is to decide between the following two hypothesis:

\[
x_n = \begin{cases}
 e_n & H_0 \\
 A_n s_n + e_n & H_1
\end{cases}
\] (2)

We assume the sensed sub-band to be unoccupied if it contains only a noise component, as defined in \(H_0 \); on the other hand, once there exist primary user signals besides noise in a specific band, as defined in \(H_1 \), we say the band is occupied. Let \(P_F \) be the probability of false alarm given by:

\[
P_F = P(H_1 | H_0) = P(s_n \text{ is present} | H_0)
\] (3)

that is the probability of the spectrum detector having detected a signal under hypothesis \(H_0 \), and \(P_D \) the probability of detection expressed as:

\[
P_D = 1 - P_M = 1 - P(H_0 | H_1) = 1 - P(s_n \text{ is absent} | H_1)
\] (4)

the probability of the detector having detected a signal under hypothesis \(H_1 \), where \(P_M \) indicates the probability of missed
IV. ALGEBRAIC DETECTION TECHNIQUES

Before talking about the AD as a spectrum sensing approach, it is to be noticed that the signal feeding this sensing algorithm is the Short-Time Fourier Transform STFT defined by:

\[F_x(t, f; \omega) = \int_{-\infty}^{+\infty} x(u) \, \omega^*(u - n) \, e^{-j2\pi fu} \, du \]

where \(\omega(t) \) is a short time analysis window As far as the proposed technique is concerned, the short time analysis window \(\omega(t) \) is a simple sliding one. The discrete version of the STFT is given by:

\[F_x(n, f; \omega) = \sum_{i=-\infty}^{+\infty} x(i) \, \omega^*(i - n) \, e^{-j2\pi fiT_e} \]

The AD is a new approach based on the advances lead in the fields of differential algebra and operational calculus. In this method, the primary user’s presence is rather casted as a change point detection in its transmission spectrum [7] [6]. In this approach, the mathematical representation of the amplitude spectrum of the received signal is assumed to be a piecewise \(N^{th} \) polynomial signal expressed as following:

\[F_x(n, f) = \sum_{i=1}^{K} \chi_i[f_{i-1}, f_i](f) p_i(n, f - f_{i-1}) + E_n(f) \]

where \(\chi_i[f_{i-1}, f_i] \) is the characteristic function, \((p_i)_K \) is a polynomial series that is assumed \(N^{th} \) order polynomials and \(E_n(f) \) is the additive corrupting noise and \(n \) represents the discrete time.

Let \(S(n, f) \) the clean version of the received signal given by:

\[S(n, f) = \sum_{i=1}^{K} \chi_i[f_{i-1}, f_i](f) p_i(n, f - f_{i-1}) \]

And let \(b \), the frequency band, given such as in each interval \(I_b = [f_{i-1}, f_i] = [\nu, \nu + b], \nu \geq 0 \) one and only one change point occurs in the interval \(I_b \). Denoting \(S_n(t, f) = S(t, f + \nu), \nu \leq b \) for the restriction of the signal in the interval \(I_b \) and redefine the change point relatively to \(I_b \) say \(f_\nu \) given by:

\[f_\nu = 0 \quad \text{if } S_n \text{ is continuous} \]
\[0 < f_\nu \leq b \quad \text{otherwise} \]

The primary user presence on a sensed sub-band is equivalent to find \(0 < f_\nu \leq b \) on this band. The AD gives the opportunity to build a whole family of detectors for spectrum sensing, depending on a given model order \(N \). Depending on this model order, we can show that performance of the AD is increasing as the order \(N \) increases.

The proposed algorithm is implemented as a filter bank with composed of \(N \) filters mounted in a parallel way. The impulse response of each filter is:

\[h_{k+1}(f) = \begin{cases} \left(\frac{(f+b-f)^{N+k}(k)}{[l-1]^l} \right), & 0 < f < b \\ 0, & \text{otherwise} \end{cases} \]

where \(k \in \{0..N-1\} \) and \(l \) is chosen such as \(l > 2 \times N \). The proposed expression of \(h_{k+1}[k] \) was determined by
modeling the spectrum by a piecewise regular signal in frequency domain and casting the problem of spectrum sensing as a change point detection in the primary user transmission [7]. Finally, in each stage of the filter bank, we compute the following equation:

\[\varphi_{k+1}(n, f) = \int_0^{+ \infty} h_{k+1}(\nu).F_x(n, f - \nu).d\nu \]

(10)

In order to infer whether the primary user is present in its sub-band, a decision function is computed as follows:

\[Df(n, f) = \| \prod_{k=0}^{N-1} \varphi_{k+1} \| \]

(11)

The decision is made by computing the threshold \(TH \) through a Monte Carlo simulation satisfying a given probability of false alarm.

V. PERFORMANCE EVALUATION

For simulation results, the choice of the DVB-T primary user system is justified by the fact that most of the primary user systems utilize the OFDM modulation format. This choice is done in the context of the European research project SENDORA [12]. The channel models implemented is AWGN. The simulation scenarios are generated by using different combinations of parameters given in Table I.

![Fig. 1. Time Frequency representation of the DVBT signal at SNR=0dB using AD](image1)

![Fig. 2. Time Frequency representation of the DVBT signal at SNR=0dB using WVD](image2)

TABLE I

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>8MHz</td>
</tr>
<tr>
<td>Mode</td>
<td>2K</td>
</tr>
<tr>
<td>Guard interval</td>
<td>1/4</td>
</tr>
<tr>
<td>Channel models</td>
<td>AWGN</td>
</tr>
<tr>
<td>Frequency-flat</td>
<td>Single path</td>
</tr>
<tr>
<td>Sensing time</td>
<td>1.25ms</td>
</tr>
</tbody>
</table>

Figures (1) and (2) are the plots of the joint time frequency analysis for the AD and WVD respectively at SNR=0dB.

It is clearly shown through these figures how accurate the location of energy is for the proposed algorithm. Figures (3) and (4) are the plots of the joint time frequency analysis for the AD and WVD respectively at SNR=15dB. Figure (4) shows that no signal can be detected at such an SNR using the WVD, whereas for the proposed approach we can still distinguish the presence of PU in its sub-band.

Finally, we plot the \(P_{\text{detection}} \) Vs SNR for the two detectors (Fig.5) for SNR ranging from -40 dB to 0 dB and at \(P_F = 0.05 \).

VI. CONCLUSION

In this paper, we presented a new approach for spectrum sensing. The implementation of such a technique is easy and the proposed algorithm takes in consideration the noise effect in its inner structure which gives good, accurate and reliable results even in low SNRs. In comparison with the reference time frequency analysis tool, the proposed joint detection out performs the WVD.

REFERENCES

Fig. 3. Time Frequency representation of the DVBT signal at SNR=−15dB using AD

Fig. 4. Time Frequency representation of the DVBT signal at SNR=−15dB using WVD

Fig. 5. Probability of detection Vs SNR at constant false alarm rate = 0.05

