N
N

N

HAL

open science

A Real-Time Architecture Design Language for
Multi-Rate Embedded Control Systems

Julien Forget, Frédéric Boniol, David Lesens, Claire Pagetti

» To cite this version:

Julien Forget, Frédéric Boniol, David Lesens, Claire Pagetti. A Real-Time Architecture Design Lan-
guage for Multi-Rate Embedded Control Systems. 25th ACM Symposium On Applied Computing,

Mar 2010, Sierre, Switzerland. pp.527-534. hal-00688490

HAL Id: hal-00688490
https://hal.science/hal-00688490

Submitted on 17 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00688490
https://hal.archives-ouvertes.fr

A Real-Time Architecture Design Language for Multi-Rate
Embedded Control Systems’

Julien Forget
ONERA, Toulouse, France
julien.forget@onera.fr

David Lesens
EADS Astrium Space
Transportation, Les Mureaux,
France

ABSTRACT

This paper presents a language dedicated to the description
of the software architecture of complex embedded control
systems. The language relies on the synchronous approach
but extends it to support efficiently systems with multiple
real-time constraints, such as deadline constraints or peri-
odicity constraints. It provides a high-level of abstraction
and benefits from the formal properties of synchronous lan-
guages. The language defines a small set of rate transi-
tion operators, which enable the description of user-defined
deterministic multi-rate communication patterns between
components of different rates. The compiler of the language
automatically translates a program into a set of communi-
cating real-time tasks implemented as concurrent C threads
that can be executed on a standard real-time operating sys-
tem.

Categories and Subject Descriptors

C.3 [Special purpose and application-based systems]:
Real-time and embedded systems; D.2.11 [Software Archi-
tectures]: Languages; D.3.2 [Language classifications]:
Data-flow languages

General Terms
Languages; Design
Keywords

Real-time systems; Synchronous; Scheduling; Compilation;

1. INTRODUCTION

Our work is specifically targeted for embedded control sys-
tems. An embedded control system consists of a control loop
including sensors, control algorithms and actuators that reg-
ulate the state of the system in its environment. Spacecraft

*This work was funded by EADS Astrium Space Trans-
portation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’10 March 22-26, 2010, Sierre, Switzerland.

Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

Frédéric Boniol
ONERA, Toulouse, France
frederic.boniol@onera.fr

Claire Pagetti
ONERA, Toulouse, France
claire.pagetti@onera.fr

and aircraft flight control systems are good examples of con-
trol systems. Their objective is to control the position, speed
and attitude of the vehicle thanks to physical devices, such
as control surfaces for an aircraft or thrusters for a space-
craft.

These systems are highly critical as a malfunction can
lead to dramatic consequences. Thus, their implementation
must be deterministic, not only functionally (producing the
right outputs for given inputs) but also temporally (produc-
ing outputs at the right time). They are also often multi-
periodic, as different devices of the system have different
physical characteristics and must therefore be controlled at
different rates. Finally, the system must respect deadline
constraints corresponding to maximum end-to-end latencies
between an observation (inputs) and the corresponding re-
action (outputs).

1.1 Case study: The Flight Application Soft-
ware

To motivate our work, we consider the programming of an
adapted version of the Flight Application Software (FAS) of
the Automated Transfer Vehicle (ATV) designed by EADS
Astrium Space Transportation for resupplying the Interna-
tional Space Station (ISS). The FAS handles all the software
functionalities of the system as long as no fault is detected.
Its architecture is described informally in Fig. 1. Each op-
eration is represented by a box and arrows between boxes
represent data-dependencies. Arrows without sources repre-
sent system inputs and arrows without destination represent
system outputs. Data-dependencies define a partial order
between the different operations of the system, as the con-
sumer of a data-flow must execute after the producer of the
data-flow.

The FAS first acquires data: the orientation and speed
from gyroscopic sensors (GyroAcq), the position from the
GPS (GPS Acq) and from the star tracker (Str Acq) and
telecommands from the ground station (TM/TC). The Guid-
ance Navigation and Control function (divided into an up-
stream part, GNC_US, and a downstream part, GNC_DS) then
computes the commands to apply while the Failure De-
tection Isolation and Recovery function (FDIR) verifies the
state of the FAS and looks for possible failures. Finally,
commands are computed and sent to the control devices:
thruster orders for the Propulsion Drive Electronics (PDE),
power distribution orders for the Power System (PWS), solar
panel positioning orders for the Solar Generation System

<300ms

A

Command : Process : Acquisition

10Hz H 10Hz
< H

10Hz
<

Gyro Acq

1Hz

: GPS Acq :
: 0.1Hz |

Str Acq

A

Figure 1: The Flight Application Software

(SGS) and telemetry towards the ground station (TM/TC),
etc. Each operation has its own rate, ranging from 0.1Hz
to 10Hz. An intermediate deadline constraint is imposed
on data produced by the GNC Upstream (300ms while the
period is 1s). Operations of different rates can communi-
cate, which is an essential feature of such systems and has
very important impacts on the complexity of the design and
implementation process.

1.2 Contribution

Control systems like the FAS are very complex, their de-
velopment involves several teams, which separately define
the different functions of the system. The functions are
then assembled by the integrator, who specifies the real-time
properties of the functions and the communication schemes
between the functions.

We propose a Real-Time Architecture Design Language
designed to support this integration process. The language
transposes the synchronous semantics [3] to the architecture
design level. Defining the language as an ADL provides a
high-level of abstraction, while relying on a synchronous se-
mantics benefits from well-established formal properties. A
program of this language consists of a set of imported nodes,
implemented outside the program using other existing lan-
guages (C or LUSTRE for instance), and data-flows between
the imported nodes. The language allows to specify multi-
ple deadline and periodicity constraints on flows and nodes.
It also defines a small set of rate transition operators that
allows the programmer to precisely define the communica-
tion patterns between nodes of different rates. A program is
automatically translated into a set of concurrent tasks imple-
mented in C, which can be executed by standard real-time
operating systems.

1.3 Paper Outline

This paper provides a complete presentation of the lan-
guage and focuses on the illustration of its expressiveness
through a series of examples. The formal semantics of the
language is not detailed here and the compilation is only
briefly described, due to lack of space. We first compare the
language with existing work in Sect. 2. Then, we define the
formal foundations of the language in Sect. 3. The main
features of the language are detailed in Sect. 4. The expres-
siveness of the language is illustrated in Sect. 5. Finally,
Sect. 6 gives an overview of the compilation process.

2. RELATED WORK

Probably the most widely used technique for program-

ming real-time systems is to directly program the system
with traditional imperative languages. These languages were
not originally designed for real-time systems and the real-
time aspects are mostly supported by Application Program-
ming Interfaces (API) for real-time, which are very close to
the underlying Real-Time Operating System (RTOS). For
instance, the POSIX extensions for real-time [23] are a pop-
ular real-time API for C or ADA. Most real-time APIs share
the same general principles: each operation of the system is
first programmed as a separate function and functions are
then grouped into threads, scheduled concurrently by the
OS. As threads are related by data-dependencies, when deal-
ing with critical systems the programmer must control the
order in which data is produced and consumed (otherwise
the behaviour of the system might not be predictable). This
requires to implement synchronization mechanisms between
threads, which can be a tedious and error-prone process.
This gradually leads programmers to consider languages
with a higher-level of abstraction, which rely on an auto-
mated code generation process that translates the input pro-
gram into lower level code. This greatly reduces the dura-
tion of the development process and produces more reliable
software, as the correctness of the lower-level program is
ensured by the translation process. The synchronous ap-
proach [3] proposes such a high level of abstraction, based
on mathematical foundations, which make it possible to han-
dle the compilation and the verification of a program in a
formal way. This approach was originally mostly targeted
for mono-periodic systems, ie systems where inputs and out-
puts are all acquired or produced at the same rate, but was
later extended with real-time primitives, which enables the
support of multi-periodic systems (different rates for differ-
ent inputs/outputs). [6] supports the definition of deadline
constraints in ESTEREL, but generates fully sequential code,
which leads to a poor processor utilization factor in the case
of multi-periodic systems. [12] defines primitives to specify
multiple deadline and periodicity constraints on a LUSTRE
program, but the compilation process is very specific to the
target architecture (TTA). [1] extends this work and pro-
poses a more generic compilation process, which generates
a set of real-time tasks executable on a standard multi-task
RTOS. Task communications are handled using the protocol
proposed by [25], which ensures the conservation of the syn-
chronous semantics of communicating tasks thanks to data-
buffering mechanisms based on task priorities. Our language
has a similar approach but focuses on the description of com-
munication patterns between operations of different rates.
Architecture Description Languages (ADL) provide an ad-
ditional layer of abstraction compared to synchronous lan-
guages, by focusing on the modelling of the interactions be-
tween high-level components of a system (typically, by as-
sembling threads instead of functions). Threads specified
in an ADL specification are considered as “black-boxes”,
implemented outside the ADL specification. AADL [14],
CLARA [13], or GIOTTO [18] are specifically dedicated to
the modelling of embedded real-time systems and describe a
system as a set of communicating high-level real-time com-
ponents. As far as we know, automated code generation
is not supported by CLARA yet. Concerning AADL, the
programmer only has a limited choice for the description of
the communication schemes between components and can-
not define its own schemes. This choice is even more limited
in GIOTTO, where tasks can only consume data produced

before their release dates (instead of before the actual begin-
ning of their execution), effectively leading to high end-to-
end latencies. Finally, the MARTE profile for UML includes
a powerful Clock Constraint Specification Language (CCSL)
[2] for specifying the timing properties of a system. CCSL is
far more expressive than our language, however it is targeted
for system specification and system verification, not for au-
tomated code generation. Due to its expressivness, efficient
code generation would most likely require to only consider
a subset of the clock constraints provided by the language.

A possible approach to our problem would be to con-
sider multi-periodic systems as a special case of Globally
Asynchronous Locally Synchronous systems to reuse exist-
ing work [5, 19, 7, 8, 10]. However, multi-periodic systems
are in essence completely synchronous, treating them as such
allows to more clearly identify the real-time properties of a
system (during the specification), provides better analysis
possibilities (proving the correct synchronization of the op-
erations, performing schedulability analysis) and allows the
production of more optimized code (specific communication
protocols).

Our language can be compared with other languages as
follows:

e ADLs: The level of abstraction of the language is
the same as that of existing ADLs but the language
relies on a different semantics (the synchronous ap-
proach) and allows the programmer to define its own
communication patterns between tasks. Furthermore,
the complete compilation scheme is defined formally;

e Synchronous languages: Though the language has
a synchronous semantics and shares similarities with
LUSTRE [16], it addresses a different phase of the de-
velopment (the integration) and enables efficient trans-
lation into a set of real-time tasks;

e Imperative languages: Though a program is in the
end translated into (correct-by-construction) impera-
tive code, the program is written in a data-flow style,
which is easier to analyze and to verify.

3. SYNCHRONOUS REAL-TIME

This section presents the formal foundations of the lan-
guage, which rely on the synchronous data-flow approach.
The synchronous model is extended to support multi-rate
systems more efficiently.

3.1 Synchronous Data-Flow

The synchronous approach simplifies the programming of
real-time systems by abstracting from real-time and reason-
ing instead on a logical-time scale, defined as a succession
of instants, where each instant corresponds to a reaction
of the system. The synchronous hypothesis says that the
programmer does not need to consider the dates at which
computations take place during an instant, as long as the
computations finish before the beginning of the next instant.

The synchronous approach has been implemented in sev-
eral programming languages, our language is a synchronous
data-flow language and is thus close to LUSTRE [16], SIGNAL
[4] or LUCID SYNCHRONE [24]. Exactly as in LUSTRE, the
variables and expressions of a program are flows, that is to
say infinite sequences of values. The clock of a flow defines
the instants during which the values of the flow must be

computed. A program consists of a set of equations, struc-
tured into nodes. The equations of a node define its output
flows from its input flows. A very simple program is given
below:

imported node plusl(i:int) returns (o:int) wcet 5;
node N(i: int) returns (o: int)

let o=plusl(i); tel

The program first declares an imported node (plus1), imple-
mented outside the program using other existing languages
(C or LUSTRE for instance). The imported node has one
integer input and one integer output. The duration of the
node is also declared (this will be explained later). The pro-
gram then defines a node N, with one input i and one output
o and one equation. At each reaction of the program, the
current value of the flow o is defined as the result of the
application of plus1 to the current value of the flow i. Im-
ported node calls follow the usual data-flow semantics: an
imported node cannot start its execution before all its inputs
are available and produces all its outputs simultaneously at
the end of its execution.

3.2 Relating Instants and Real-Time

In a classic synchronous data-flow program, the program
describes the behaviour of the system for each of its basic
iterations. Such an approach is not very well suited to the
case of multi-periodic systems. Indeed, if we consider the
system of Fig. 2, which consists of a fast operation F with
a rate of 10Hz and a slow operation S with a rate of 2Hz,
it is unclear what a basic iteration should consist of: one
iteration of F and a varying part of S or one iteration of S
and five iterations of F 7

basic iteration ? (2Hz)

basic iteration ? (10Hz)
— :

time
Figure 2: Base rate for a multi-periodic system

Therefore, we define a synchronous model that allows to
relate instants to real-time. The main idea of this model is
that a multi-periodic system can be considered as a set of
locally mono-periodic synchronous processes assembled to-
gether to form a globally multi-periodic synchronous system.
Locally, each process has its own logical time scale. When
we assemble processes of different rates, we assemble pro-
cesses of different logical time scales so we need a common
reference to compare instants belonging to different logical
time scales. This common reference is the real-time scale.

Our synchronous real-time model relies on the Tagged-
Signal Model [20]. Given a set of values V, a flow is a
sequence of pairs (v;, t;)ien Where v; is a value in V and ¢; is
a tag in Q, such that for all 4, t; < ¢;+1. The clock of a flow,
is its projection on Q. A tag represents an amount of time
elapsed since the beginning of the execution of the program.
Following the relazed synchronous hypothesis of [12], at each
activation a flow is required to be computed before its next
activation. Thus, each flow has its own notion of instant
and the duration of the instant ¢; is t;41 — t;. Two flows
are synchronous if the durations of their instants are the
same. We can compare the durations of the instants of two

flows to determine if a flow is faster than the other and more
importantly, we can determine how much faster this flow is.

3.3 Strictly Periodic Clocks

A clock is a sequence of tags, we define a particular class
of clocks called strictly periodic clocks as follows:

DEFINITION 1. (Strictly periodic clock). A clock h =
(ti)ien, t; € Q, is strictly periodic if and only if:

IneQt™, VieN, tiy1—ti=n

n is the period of h, denoted w(h) and to is the phase of h,
denoted o(h).

A strictly periodic clock defines the real-time rate of a flow
and is uniquely characterized by its phase and by its period:

DEFINITION 2. The term (n,p) € Q" x Q denotes the
strictly periodic clock a such that: w(a) = n, ¢(a) = 7(a)*p

We then define clock transformations specific to strictly
periodic clocks, which produce new strictly periodic clocks:

DEFINITION 3. Let a be a strictly periodic clock, opera-
tions /., x. and —. are periodic clock transformations, that
produce new strictly periodic clocks satisfying the following
properties:

m(a/ k) =k*x7m(a), ola/ k) = p(a),k e N
mlax* k) =7(a)/k, olax* k)= p(a),k € N*
m(a —. q) =7(a), pla—. q) = p(a) +gx7m(a),q € Q

Divisions and multiplications respectively decrease or in-
crease the frequency of a clock while phase offsets shift the
phase of a clock.

Strictly periodic clocks are actually a subset of the usual
clocks of synchronous languages, which are defined using
Boolean activation conditions. However, by restricting to
this particular class of clocks, we are able to specify the real-
time properties of a system more explicitly and to compile
a program efficiently into a set of real-time tasks.

4. LANGUAGE DEFINITION

This section provides a detailed presentation of the lan-
guage, focusing on its real-time primitives.

4.1 Real-time constraints

Real-time constraints are specified on node inputs and
outputs, thus they represent constraints related to the envi-
ronment of the node instead of constraints related to imple-
mentation concerns. First, the programmer can specify the
period and the phase of an input/output as follows:

node periodic(i: int rate (10,1/2))

returns (o: int rate (10,0))
let ... tel

¢ has period 10 and phase %, so its clock sequence is (5, 15,
25, 35, ...) Time units correspond to whichever metric the
underlying operating system uses for durations.
The programmer can also specify deadline constraints:
node deadline(i: int rate (10,0) before 2)

returns (o: int rate (10,0) due 8)
let ... tel

x: due d specifies that x has a deadline constraint of d. For
each tag t; in the clock of x, the computation of the value of
x for this tag must complete before date t;+d. x: before d
specifies that x should be acquired by the program before
the deadline d. In practice, this means that, before this
deadline, the program must copy the value produced by the
sensor to a local variable accessible to the other operations
of the program.

Finally, the programmer must specify the duration of each
imported node of the program. For instance, the following
declaration specifies that the worst case execution time of
plusl is 5 time units.

imported node plusl(i:int) returns (o:int) wcet 5;

4.2 Rate transition operators

We define a series of rate transition operators, based on
periodic clock transformations. These operators enable the
definition of user-specified communication patterns between
nodes of different rates. First, the programmer can over-
sample or under-sample a flow periodically as follows:
node sampling(i: rate (10,0))
returns (o: rate (10,0))

var vf, vs;
let (o, vf)=F(i,(0 fby vs)x"3); vs=S(vf/"3); tel

e/ " k only keeps the first value out of each k successive
values of e. If e has clock « then e/ "k has clock o/ k. on
the opposite, e *"k duplicates each value of e, k times. If e
has clock «, then e *"k has clock a*. k. The fby operator is
borrowed from LUCID SYNCHRONE. cst by e first produces
cst and then the values of e delayed by the period of e.
The clock of cst fby e is the same as the clock of e. The
behaviour of these operators is illustrated in Fig. 6

date 0 10 20 30 40 50 60
vE vfo vfi vfa vfs vfi vfs vfs
vE/"3 v fo v f3 v fe
Vs VS0 vS1 vS2
0 fby vs 0 ER) vS1
(0 fby vs)*"3 0 0 0 vsg WvSg VSy VS

Figure 3: Periodic sampling operators

Three different operators based on clock phase offsets are
available, as illustrated in the following program:
node offsets (i:rate(10,0))
returns (o:rate(10,1);p:rate(10,0);q:rate(10,1/2))
let

o=tail(i); p=0::0; gq=i~ >1/2;
tel

tail (e) drops the first value of e. If e has clock «, then
tail (e) has clock & —. 1, so tail (e) becomes active one
period later than e. cst :: e produces cst one period earlier
than the first value of e and then produces e. If e has clock
«, then cst :: e has clock a —. —1. If e has clock a, e ~> ¢
delays each value of e by ¢ * () (with ¢ € Q1). The clock
of e ~> qis @ —. gq. The behaviour of these operators is
illustrated in Fig. 4.

date 0 5 10 15 20 25 30
i 20 71 12 i3
o=tail(i) 71 19 i3
p=0::0 0 21 12 i3
i~~>2 10 11 19

Figure 4: Phase offset operators

4.3 Polymorphic clocks

As we have seen in some of the previous examples, the
types of the inputs and outputs of a node can be left un-
specified. In this case, they will be inferred by the compiler.
Similarly, clocks can be left unspecified, in which case they
will be inferred by the compiler too. Furthermore, rate tran-
sition and phase offset operators can be applied to flows the
rate of which is unspecified. For instance, the following node
definition is perfectly valid:
node under_sample (i) returns (o)
let o=i/"2; tel
This program simply specifies that the rate of o is half that
of i (ie twice the period of o), regardless of what the rate
of i may be. The actual rate of the flows will only be com-
puted when instantiating the node. The node can even be
instantiated with different rates in the same program, for
instance:
node poly(i: int rate (10, 0); j: int rate (5, 0))

returns (o, p: int)
let o=under_sample(i); p=under_sample(j); tel

The clock inferred for o is (20,0), while the clock inferred
for p is (10, 0). Such clock polymorphism increases the mod-
ularity with which systems can be programmed.

S. PROGRAMMING MULTI-RATE
SYSTEMS

A key feature of the language is that it gives the program-
mer the freedom to choose the pattern used for the commu-
nications between operations of different rates, while most
languages only allow a small set of predefined patterns. Rate
transition operators apply very simple flow transformations
but can be combined to produce various communication pat-
terns. The formal definition of the language and the static
analyses performed by the compiler ensure that only deter-
ministic patterns are used.

We detail a series of communication patterns and show
that common patterns can easily be defined as generic li-
brary operators that can be reused in different programs.
We illustrate the different patterns on the simple example of
Fig. 5, where a fast operation F (of period 10ms), exchanges
data with a slow operation S (of period 30ms) and operation
F exchanges data with the environment of the program.

10ms 30ms

[F s |
Figure 5: Simple multi-periodic communication loop

5.1 Sampling

The simplest communication pattern that can be imple-
mented with our language is based on data sampling. For
the example of Fig. 5, we obtain the node sampling pre-
sented previously in Sect. 4.2. Notice that we need a delay
either from S to F or from F to S, otherwise there is a causal-
ity loop between F and S, the compiler cannot find an order
for the execution of the program that respects all the data-
dependencies. In the sampling version of the system, the
delay avoids the reduction of the deadline of operation S.
Let us now consider an alternative implementation:
node sampling2(i: rate (10, 0)) returns (o)

var vf, vs;
let (o, vf)=F(i, vsx"3); vs=S((0 fby vf)/"3); tel

This version is also correct but an important difference with
the previous version is that S must end before a relative
deadline of 10ms, as it must end early enough for F to end
before its own deadline (10ms). In the previous version,
the delay avoids this restrictive deadline. The behaviours of
these two examples are compared in Fig. 6.

date 0 10 20 30 40 50 60
vf vfo vfi vfe vfs vfa vfs vfs
vs VS0 V81 VSo
vi/"3 v fo vf3 v f6
(0 fby vs)*"3 0 0 0 VS VS0 VS0 VS
(0 fby v£)/"3 0 v fo vfs
vs*~3 VS0 CER) VS V81 VS VS vSg

Figure 6: Data sampling: the place of the delay

Using the operator tail, it is possible to choose which of
the successive values of the fast operation should be con-
sumed (ie not necessarily the first). For instance, we can
consume the second value instead of the first:
node sampling_tail(i: rate (10, 0)) returns (o)

var vf, vs;
let

(o, vi)=F(i, (0::((0 fby vs)*"3)));

vs=S ((tail(vf))/"3);
tel

The behaviour of this program is illustrated in Fig. 7.

date 0 10 20 30 40 50
vi vfo vfi vfe vfs vfs vfs
tail(vi)/ 3 vfi vfa
vs V80 vS1
(0 fby vs)*"3 0 0 0 CERICEN
0::((0 fby vs)*"3) 0 0 0 0 vsg VSo

Figure 7: Data sampling: starting the sample on the
second value

5.2 Queuing

Combining rate transition operators and LUSTRE arrays,
we can implement different communication patterns based
on data quewing. First, we define a node that stores n suc-
cessive values of a flow:
node store_n(const n:int;i,init) returns (A:int n)
lef« [n—-1]=i;

A[0..(n=2)]=(init "(n—1)) fby (A[1l..(n—1)]));
tel
int~n denotes an integer array of size n. A[n] denotes the
nt" value of array A. init~(n-1) denotes an array of size n—
1 where each value of the array is set to init. A[1..(n-1)]
denotes a slice of array A, from cell 1 to cell n — 1. The
behaviour of this node is the following. The n successive
values of flow i are stored in the array A of size n. At each
iteration, the node queues the current value of i at the end
of A, moving the previous values of 7 by one cell towards the
beginning of the array. At each instant, the array A contains
the current value of i along with its n — 1 previous values.
The previous values are initialised to the value init. This
is illustrated in Fig. 8.

i | 20 71 12 i3
A [10,0,40] [0,40,21] [éo,%1,02] [i1, %2, i3]

Figure 8: Storing successive values of a flow (n = 3,
init = 0)

Then we define two more complex rate transition nodes:

node split(const n: int;i) returns(o)

var ifast ;

let ifast=i*x"n; o=ifast [count_-n(n)]; tel
node join(const n: int; i,init) returns(o)
var ofast ;

let ofast=store_n(n,i,init); o=ofast/"n; tel

The node count_n used in this example is a counter mod-
ulo n. The node split handles communications from slow
to fast operations. It takes an array of size n as input and
splits it into n successive values. The outputs are produced
n times faster than the input. The node join handles com-
munications from fast to slow operations. It joins n succes-
sive values of its input into an array. The output is n times
slower than the input. This behaviour is illustrated below:

i 10 21 12 i3 B4 i5
i’=join(3,i,0) | [0,0,io] [i1, 92, i3]
split(3,i’) 0 0 o i1 i i3

We can then define a different version of the example of
Fig. 5 that uses a queuing communication pattern:

node queuing(i: rate (10, 0)) returns (o)
var vf, vs;
let

(o, vi)=F(i, split(3, 0 fby vs));
vs=S(join (3, vf, 0));
tel

This version requires flows vf and vs to be arrays of integers

instead of simple integers and thus node S must return an
array, not just an integer.

5.3 Mean value

We give a third example of communication pattern, which
is an intermediate between sampling and queuing. Instead
of queuing the successive values produced by the fast oper-
ations, we take their mean value:

node mean_n(const n: int;i, init) returns (m: int)

var n_values, n_sum: int “n;
let
n_values=store_n(n, i, init);

n_sum [0]=n_values [0];
n_sum [1..n—1]=n_values [1..n—1]4+n_sum [0..n—2];
m=(n_sum [n—1]/n)/ " n;

tel

Notice that there is no causality loop in the third equation
as each n_sum[i] depends on n_sum[i-1], which are inde-
pendent variables. The behaviour of this node is illustrated
in Fig. 9.

i
n_values | [0,0,1] [0,
n_sum [0,0,1] [0,
m 0

Figure 9: Computing the mean value of 3 successive
“fast” values, (with init = 0)

We can then define a different version of the example of
Fig. 5 that takes the mean value of 3 successive fast values
(flow v£) and over-samples fast values (flow vs):

node sampling (i: rate (10, 0)) returns (o)
var vf, vs;
let

(o, vi)=F(i, (0 fby vs)*"3);
vs=S(mean_n (3, vf, 0);
tel

5.4 A Complete Example

Fig. 10 gives a program for the FAS of Fig. 1 using commu-
nication patterns based on data sampling. Each operation
of the system is first declared as an imported node. The pro-
gram then specifies the wcet of each sensor and each actuator
(for each input/output of the node FAS). The node FAS is
the main node of the program. It first specifies the inputs
(gyro, gps, str, tc) and outputs (pde, sgs, gnc, pws, tm)
of the system with their rates (for instance gyro has period
100) and deadline constraints (for instance gnc has dead-
line 300). The body of the node then specifies the real-time
architecture of the system. For instance, the first equation
says that the node Gyro_Acq computes the variable gyro_acq
from the input gyro and from the variable tm. As tm is pro-
duced with a period of 10s while Gyro_Acq has a period of
100ms, we over-sample tm by a factor 100. We use a delay
before performing the over-sampling, to avoid reducing the
deadline of node TM_TC. Some flows are over-sampled with-
out using a delay, for instance when the outputs of the ac-
quisition nodes are consumed by faster nodes (gps_acq*~10
in the equation of the FDIR for instance). This implies that
the acquisition nodes will have a deadline much shorter than
their period, which means that they execute less frequently
but they must respond fast. Communications from fast to
slow nodes are handled using the under-sampling operator
/~. For instance, the node TM_TC has a period of 10s and
consumes the flow fdir_tm, which is produced with a pe-
riod of 100ms, so we under-sample fdir_tm by a factor 100.
Finally, in the equation of node PWS we apply a phase offset
of one half to its input gnc_pws, which causes the node PWS
to execute with a phase of half its period (it has period 1000
and phase 500).

6. COMPILATION

This section gives an overview of the compilation of a
program.

6.1 Static Analyses

The compilation puts strong emphasis on the verification
of the correctness of the program to compile. This consists of
a series of static analyses, which are performed before code
generation. The first analysis is the type-checking. The lan-
guage is a strongly typed language, in the sense that the
execution of a program cannot produce a run-time type er-
ror. The type-checking is fairly standard and follows [22].

The causality check verifies that the program does not
contain cyclic definitions: a variable cannot instantaneously
depend on itself (i.e. not without a £by in the dependencies).
For instance, the equation x=plusi1(x); is incorrect, it is
similar to a deadlock since we need to evaluate plusl(x) to
evaluate x and we need to evaluate x to evaluate plusi(x).
This analysis is similar to that of LUSTRE [17].

The clock calculus verifies that a program only combines
flows that have the same clock. When two flows have the
same clock, they are synchronous as they are always present
at the same instants. Combining non-synchronous flows
leads to non-deterministic programs as we access to unde-
fined values. For instance we can only compute the sum of
two synchronous flow, the sum of two non-synchronous flows
is ill-defined (ambiguous). The clock calculus ensures that
a synchronous program will never produce ill-defined val-
ues. The clock calculus of the language is more specific than
other analyses. It extends the work of [11] and is defined

imported node Gyro_Acq(gyro, tc: int)

returns (o: int) wcet 3;
imported node GPS_Acq(gps, tc: int)
returns (o: int) wcet 3;
imported node Str_Acq(str, tc: int)
returns (o: int) wcet 3;

imported node FDIR(gyr, gps, str, gnc: int)
returns (to_pde, to_gnc, to_tm: int) wcet 15;
imported node GNC.US(fdir, gyr, gps, str: int)

returns (o: int) wcet 210;
imported node GNCDS(us: int)
returns (pde, sgs, pws: int) wcet 300;

imported node TM.TC(from_gr, fdir: int)
returns (cmd: int) wcet 1000;

imported node PDE(fdir , gnc: int)

returns (pde_order: int) wcet 3;
imported node SGS(gnc: int)

returns (sgs_order: int) wcet 3;
imported node PWS(gnc: int)

returns (pws_order: int) wcet 3;

sensor gyro wcet 1; sensor gps wcet 1;
sensor str wcet 1; sensor tc wcet 1;
actuator pde wcet 1; actuator sgs wcet 1;
actuator gnc wcet 1; actuator pws wcet 1;
actuator tm wcet 1;

node FAS(gyro: rate (100,0); gps: rate (1000,0);
str: rate (10000,0); tc: rate (10000,0))
returns (pde, sgs;gnc: due 300; pws, tm)
var gyro_acq, gps-acq, str_acq, fdir_pde,
fdir_gnc , fdir_tm , gnc_pde, gnc_sgs, gnc_pws;
let
gyro_acq = Gyro_Acq(gyro, (0 fby tm)*x"100);
gps_acq = GPS_Acq(gps, (0 fby tm)=*"10);
str_acq = Str_Acq(str, 0 fby tm);
(fdir_pde, fdir_gnc, fdir_tm) =FDIR(gyro_acq,
gps_acq*"10, str_acqg*"100, (0 fby gnc)x"10);
gnc=GNC_US(fdir_gnc/"10, gyro_acq/ 10, gps_acq,
str_acqgx"10);
(gnc_pde, gnc_sgs, gnc_pws)=GNCDS(gnc);
pde = PDE(fdir_pde, (0 fby gnc_pde)x~10);
sgs = SGS(gnc_sgs);
pws=PWS(gnc_pws™ >1/2);
tm = TM.TC(tc, fdir_tm/"100);
tel

Figure 10: The FAS, with data-sampling

in details in [15]. If all the static analyses succeed, then the
program has a well-defined, deterministic semantics and can
be translated into lower-level code.

6.2 Muti-Task Code Generation

The compiler translates the program into C code. How-
ever, the translation differs from the classic "single-loop” se-
quential code generation, as we deal with multi-periodic sys-
tems. Let us consider the example below:
imported node A(i: int) returns (o: int) wcet 1;
imported node B(i: int) returns (o: int) wcet 5;
node multi(i: rate(3, 0)) returns (o)

var v;
let v=A(i); o=B(v/"3); tel

Out of three successive repetitions of A, only the first one
must execute before a repetition of B. As shown in Fig. 11,
a sequential execution of the program cannot respect all the
deadline constraints of the program, the second repetition
of operation A will miss its deadline (at date 6). We cannot
find a sequence of execution for operations A and B that will
respect the periodicity constraints of the two operations.

: L :
0 9
A h

0 3 6 9

Figure 11: Sequential execution of node multi

However, if we implement operations A and B as two sep-
arate tasks and execute them concurrently with a preemp-
tive RTOS, we can find a schedule for the execution of the
tasks that respects the periodicity constraints of the two
operations. Thanks to preemption, it is possible to start
the execution of the second repetition of A earlier and thus
to find a schedule that respects the deadline constraints of
both tasks, as shown in Fig. 12. Marks on the time axis of
B represent task preemptions and restorations: at date 3,
B is suspended to execute the second repetition of A. Af-
ter A completes, B is restored (at date 4) and resumes its
execution where it stopped.

B B %
0 9
0 3 6 9

Figure 12: Preemptive scheduling of node multi

6.3 Overview of the Code Generation

The compiler translates the program into a set of com-
municating real-time tasks. Each imported node call of the
program is translated into a task. The real-time attributes
(T3, Cs, 713, d;) of a task 7; are obtained as follows: the period
T; is the period of the clock of the corresponding imported
node, the initial release date r; is the phase of the clock,
the execution time C; is the wcet specified for the imported
node and the relative deadline d; is either that specified for
an input/output or by default equal to the period. For in-
stance, the node multi described above is translated into
two tasks: 74 of attributes (3,1,0,3) and 75 of attributes
(9,5,0,9).

Tasks are related by data-dependencies, each task con-
sumes data produced by other tasks (the inputs of the im-
ported node) and produces data for other tasks (the outputs
of the imported node). This implies precedence constraints
between tasks: a task cannot start its execution before all
the tasks that produce its inputs complete their execution
and the task produces all its outputs simultaneously at its
completion. A simple way to handle such inter-task com-
munications is to allocate a buffer for each communication
in a global memory, the producer of the data writes to this
buffer when it executes and the consumer reads from this
buffer when it executes. However, to preserve the semantics
of the initial program, communications must respect two
important properties. First, the producer must write before
the consumer reads. Second, as we deal with periodic tasks,
we must ensure that a new instance of the producer does
not overwrite the value produced by its previous instance, if
this previous value is still needed by some task.

To satisfy the first property, the compiler extends the tech-
nique proposed by [9] to the case of multi-periodic tasks.
This consists in encoding task precedences by adjusting task
real-time attributes. The deadline of each task is adjusted
so as to be lower than that of its successors, and the re-
lease date of each task is adjusted so as to be higher that
of its predecessors. The encoded task set can then simply
be scheduled by the Earliest-Deadline-First policy [21]. As
priorities are affected based on deadlines, each task will have
a priority higher than that of its successors and lower than
that of its predecessors, thus the first requirement is satis-
fied.

To satisfy the second property, the compiler implements
a communication protocol based on data-buffering mecha-
nisms, which ensure that the inputs of a task remain avail-
able until its deadline. The protocol is similar to that of [25]
but is specifically targeted and optimized for multi-periodic
systems. An important feature of this protocol is that it re-
quires no specific synchronization primitives (semaphores).

7. CONCLUSION

We proposed a language for programming multi-rate em-
bedded control systems. It transposes the synchronous se-
mantics to an Architecture Design Language. It enables
the description of a set of high-level communicating com-
ponents with multiple deadline and periodicity constraints.
The language focuses on the precise description of deter-
ministic multi-rate communication patterns. The compiler
translates a program into a set of communicating real-time
tasks that respects the semantics of the original program. A
prototype of the compiler has been implemented in OCAML
(approximately 4000 lines of code). It generates a set of con-
current C threads and relies on the POSIX extensions for
real-time to handle the real-time aspects.

8. REFERENCES

[1] M. Alras, P. Caspi, A. Girault, and P. Raymond.
Model-based design of embedded control systems by
means of a synchronous intermediate model. In
International Conference on Embedded Software and
Systems (ICESS’09), Hangzhou, China, May 2009.

[2] C. André and F. Mallet. Combining CCSL and Esterel
to specify and verify time requirements. In ACM
SIGPLAN/SIGBED 2009 Conf. on Languages,
Compilers, and Tools for Embedded Systems
(LCTES’09), Dublin, Ireland, June 2009.

[3] A. Benveniste and G. Berry. The synchronous
approach to reactive and real-time systems. In
Readings in hardware/software co-design. Kluwer
Academic Publishers, 2001.

[4] A. Benveniste, P. Le Guernic, and C. Jacquemot.
Synchronous programming with events and relations:
the Signal language and its semantics. Sci. of Compu.
Prog., 16(2), 1991.

[5] G. Berry and E. Sentovich. Multiclock esterel. In 11th
IFIP WG 10.5 Advanced Research Working
Conference on Correct Hardware Design and
Verification Methods (CHARME’01), Livingston,
Scotland, Sept. 2001.

[6] V. Bertin, E. Closse, M. Poize, J. Pulou, J. Sifakis,

P. Venier, D. Weil, and S. Yovine.
TAXYS=Esterel+Kronos. a tool for verifying
real-time properties of embedded systems. In 40th
IEEE Conference on Decision and Control, volume 3,
2001.

[7] L. P. Carloni, K. L. McMillan, and A. L.
Sangiovanni-Vincentelli. Theory of Latency-Insensitive
Design. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems., 20(9), Sept. 2001.

[8] P. Caspi, C. Mazuet, and N. R. Paligot. About the
design of distributed control systems: The
quasi-synchronous approach. In 20th International
Conference on Computer Safety, Reliability and
Security (SAFECOMP’01), Budapest, Hungary, 2001.

[9] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

24]

(25]

scheduling of real-time tasks under precedence
constraints. Real-Time Systems, 2, 1990.

A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti,

F. Plateau, and M. Pouzet. N-Synchronous Kahn
Networks: a relaxed model of synchrony for real-time
systems. In ACM International Conference on
Principles of Programming Languages (POPL’06),
Charleston, USA, Jan. 2006.

J.-L. Colago and M. Pouzet. Clocks as first class
abstract types. In Third International Conference on
Embedded Software (EMSOFT’03), Philadelphia,
USA, Oct. 2003.

A. Curic. Implementing Lustre Programs on
Distributed Platforms with Real-Time Constraints.
PhD thesis, Université Joseph Fourier, Grenoble, 2005.
S. Faucou, A.-M. Déplanche, and Y. Trinquet. An
ADL centric approach for the formal design of
real-time systems. In Architecture Description
Language Workshop at IFIP World Computer
Congress (WADL’04), Aug. 2004.

P. H. Feiler, D. P. Gluch, and J. J. Hudak. The
architecture analysis & design language (AADL): An
introduction. Technical report, Carnegie Mellon
University, 2006.

J. Forget, F. Boniol, D. Lesens, and C. Pagetti. A
multi-periodic synchronous data-flow language. In
11th IEEE High Assurance Systems Engineering
Symposium (HASE’08), Nanjing, China, Dec. 2008.
N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous data-flow programming language
LUSTRE. Proc. IEEE, 79(9), 1991.

N. Halbwachs, P. Raymond, and C. Ratel. Generating
efficient code from data-flow programs. In Third
International Symposium on Programming Language
Implementation and Logic Programming (PLILP ’91),
Passau, Germany, 1991.

T. A. Henzinger, B. Horowitz, and C. M. Kirsch.
Giotto: A time-triggered language for embedded
programming. Proc. IEEE, 91(1), 2003.

P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann.
Polychrony for system design. Technical Report
RR-4715, INRIA - Rennes, Feb. 2003.

E. A. Lee and A. L. Sangiovanni-Vincentelli.
Comparing models of computation. In International
Conference on Computer Aided Design (ICCAD’96),
San Jose, USA, 1996.

C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time
environment. Journal of the ACM, 20(1), 1973.

B. C. Pierce. Types and programming languages. MIT
Press, Cambridge, USA, 2002.

POSIX.13. IEEE Std. 1003.13-1998. POSIX Realtime
Application Support (AEP). The Institute of Electrical
and Electronics Engineers, 1998.

M. Pouzet. Lucid Synchrone, version 3. Tutorial and
reference manual. Université Paris-Sud, LRI, 2006.
C. Sofronis, S. Tripakis, and P. Caspi. A
memory-optimal buffering protocol for preservation of
synchronous semantics under preemptive scheduling.
In Sizth International Conference on Embedded
Software (EMSOFT’06), Seoul, South Korea, 2006.

