N
N

N

HAL

open science

Calibration of accelerometers aboard GRACE satellites
by comparison with POD-based nongravitational
accelerations
Ales Bezdek

» To cite this version:

Ales Bezdek.  Calibration of accelerometers aboard GRACE satellites by comparison with
Journal of Geodynamics, 2010, 50 (5), pp.410.

POD-based nongravitational accelerations.
10.1016/j.jog.2010.05.001 . hal-00688184

HAL Id: hal-00688184
https://hal.science/hal-00688184

Submitted on 17 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00688184
https://hal.archives-ouvertes.fr

Accepted Manuscript

Journal of

GEODYNAMICS

Title: Calibration of accelerometers aboard GRACE satellites
by comparison with POD-based nongravitational accelerations

Author: Ales Bezdek

PII: S0264-3707(10)00087-6
DOI: doi:10.1016/j.jog.2010.05.001
Reference: GEOD 1003

To appear in: Journal of Geodynamics
Received date: 19-11-2009

Revised date: 4-5-2010

Accepted date: 9-5-2010

Please cite this article as: Bezdek, A., Calibration of accelerometers aboard GRACE

satellites by comparison with POD-based nongravitational accelerations, Journal of
Geodynamics (2008), doi:10.1016/j.jog.2010.05.001

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.


dx.doi.org/doi:10.1016/j.jog.2010.05.001
dx.doi.org/10.1016/j.jog.2010.05.001

*Manuscript

10

11

12

13

14

15

16

Calibration of accelerometers aboard GRACE satellites

by comparison with POD-based nongravitational
accelerations

Ales Bezdék

Astronomical Institute, Academy of Sciences of the Czephbite, Fricova 298, 251 65
Ondrejov, Czech Republic

Abstract

The proposed calibration method uses the precise kinerpasitions derived
from the data of the GPS receivers aboard the twin GRACElgassPOD, Pre-
cise Orbit Determination). The total satellite accelenasi are obtained numeri-
cally as a second derivative of the kinematic positiongnftbese the modelled
forces of gravitational origin are subtracted. The remglthongravitational ac-
celerations then serve as a calibration standard for thalibnated accelerometer
data. The calibration parameters for the GRACE acceleremndtave already
been published using other methods. The aim of our studyavalstain not only
the calibrated accelerometer measurements, but alsastistdly correct estimate
of their uncertainty.

The main problem in the application of a numerical derivatvobservational
data is the amplification of noise, especially at high fremues. Besides, the
filter of the numerical derivative introduces the corralatstructure in the noise,
which complicates the uncertainty estimates using thenarglileast squares. We
succeeded in solving both of these problems by using therglered least squares
(GLS) method.
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Using the proposed procedure, the calibration parameteralf three ac-
celerometer data components were obtained. To remove tia¢ garelation in
the POD positions, we used the GLS method together with & fitkoregressive
process. In this way, a realistic estimate of accuracy ottidrated accelerom-
eter data was obtained for the along-track component. Tine ¢volution of the
calibration parameters over a 1.5-year period2082—032004) display approx-
imately constant scale factors and slowly changing biasdsdth GRACE A and

B satellites, which is in accordance with the results in #fenences.
Key words: Space accelerometers, Nongravitational forces, Gemedhleast

squares, Autoregressive processes

1. Introduction

The wealth of quality data from the two GRACE satellites (lelvbed in 2002),
and also from its predecessor satellite CHAMP (launchedB0?, has substan-
tially contributed to the improved modelling of the globalrEh’s gravity field, its
static part as well as its temporal variations (Reigber .e2806; Schmidt et al.,
2006). As the orbital altitude of these satellites is very (below 550 km), they
are equipped with space accelerometers, whose purposensasure the non-
gravitational accelerations. When processing the measnts from the CHAMP
and GRACE missions to produce the gravity field models, thesmeements from
the onboard accelerometers have to be calibrated. Theyoavthe ground is so
much larger than the nongravitational accelerations nredsim space that the
electronic properties of a space accelerometer do not dttmabe calibrated be-
fore the launch. Many scientific teams using the CHAMP and GRAlata for

the gravity field modelling therefore calibrated the acamigeter measurements
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(Flury et al., 2006; Reigber et al., 2003, 2005a). Idedtig,¢alibrated accelerom-
eter measurements should be accompanied with correcttaimtgrestimates, but
this is usually impossible, because the accelerometdsraéibn parameters con-
stitute only a tiny part of the fitted parameters. Moreowestabilize the solution
of large regression equations in the gravity field studieg must usually use
some regularization scheme, but then the regularizedisolig biased and the
bias could be much larger than the computed confidence aite(ster et al.,
2005). Over the years it was found that the accelerometdiratibn parameters
can vary a lot depending on the analysis methods and thextmftdata usage
(Bettadpur, 2004a).

Besides the gravity field modelling, the accelerometer mressents may also
be used for the analysis of sources of the nongravitatieane¢t themselves, espe-
cially for studying problems related to thermospheric dtgremnd winds (Doorn-
bos et al., 2009; Flury et al., 2008). Specific for the at&tgthabilized satellites
CHAMP and GRACE are the firings of the attitude control theustwhich show
up inthe linear accelerometer measurements, mainly becddsruster misalign-
ments (Frommknecht et al., 2006). As real forces, the thardsings are properly
registered by the onboard accelerometers so that the faofjnagitational signal
can later be eliminated in the gravity field determinatits ts one of the reasons
why space accelerometers are useful in geodetic missionsvever, from the
point of view of aeronomy studies, the magnitude of the tteusvents is often at
the same order as that of the external nongravitationaleet®mns themselves,
especially in the cross-track and radial directions. Ondtier hand, thermo-
spheric density is derived from air drag, which is the domin@ongravitational

acceleration in the along-track direction. The use of theperly calibrated ac-
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celerometer data for aeronomy studies was the main motiwerfong this paper.

From the several calibration methods currently in use, wesetihe satellite
acceleration approach. The basic idea of the accelerapproach is to derive
satellite accelerations by double numericdlatientiation of the satellite positions
along the precise orbit. Newton'’s second law of motion thkslthe resulting ac-
celeration vectors to the forces acting upon the satellite. successful implemen-
tation of this technique with results comparable to thesitad, dynamic approach
was enabled by the fact that kinematic orbits can nowadagstaemined at a few
cm accuracy. The satellite acceleration approach has ssehlhy several scien-
tific teams for the modelling of the geopotential (e.g., Citrat al., 2006; Reubelt
et al., 2006;Svehla and Foldvary, 2006). Numerically, the acceletemeali-
bration is much simpler compared to the gravity field deteation, where one
needs an inversion of normal matrix with tens of thousandsiowns and mil-
lions of measurements, afficult computational problem, which requires special
techniques to be applied. In this study, the calibrationdsiad, the vector of the
POD-based nongravitational acceleration, is projectamthre accelerometer ref-
erence frame, where each component is directly comparéudtietuncalibrated
accelerometer data and the linear least-squares catibratbdel may be used. In
the ideal case, the residuals should be approximately ertgnt and normally
distributed to enable statistical inference concernirg#gression results. On the
other hand, the acceleration approach has the problem methrmplified noise.
The double numerical flierentiation increases the noise in the positions propor-
tionally to the squared frequency, and, therefore, the-higluency noise will be
amplified very significantly.

The prime motivation of this paper is that for a proper usdefdccelerometer
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measurements, and more generally of any observationglaaaneeds not only
the measurement result, a point estimate of the true valua|fo an estimate of
the uncertainty of the result, a realistic error bar, which guantitative statement
about where the true value ‘really’ is, with a given prob#pi(cf., Taylor and
Kuyatt, 1994). Without error bars it is not possible to asgbs quality of obser-
vations in question, to compare two competing theoriesguie observational
data, to properly combine measurements frofffiedent sources, or to correctly
combine the measurements even from the same experimdrgyihave noncon-

stant variance.

2. Gravitational and nongravitational accelerations

2.1. GRACE project and SuperSTAR accelerometer

The Gravity Recovery And Climate Experiment (GRACE) is ajt)SGerman
satellite mission (Tapley et al., 2004) designed to veryeately map variations
in the Earth’s gravity field. The two almost identical GRACE&tallites were
launched in March 2002 into a near polar orbit at about 50Gkitude, separated
by approximately 200 km. Each spacecraft carries a sciesgegd consisting of
microwave ranging system, GPS receiver, star cameras asteaameter. Based
on data from this mission, the most recent global Earth ¢atenal field models
were published (Forste et al., 2008; Pavlis et al., 2008lelaet al., 2007).

The SuperSTAR accelerometer on board of the GRACE satelita three
axis capacitive accelerometer with two sensitive and os® $ensitive axes. The
sensitive axes point in the flight and radial directions |&%s sensitive axis points
in the cross-track direction. The precision of the sensitixes is specified to be

1019 ms2, and that of the less sensitive axis 1®n s2, within the bandwidth
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of 2x107%=10"! Hz (Flury et al., 2008). Compared to the CHAMP accelerome-
ter, the GRACE accelerometers have thermally controlletr@mment with the

temperature variations below 0.Jdfbit (Tapley and Reigber, 2002).

2.2. Nongravitational accelerations

Figure B.1 shows the simulated nongravitational acceteratacting on the
GRACE A satellite during one orbital revolution. The prdjea of the accelera-
tion vectors refers to the satellite local reference frathe;three components are
the along-track (A-T; projected to the velocity directipih)e cross-track (C-T;
direction of angular momentum) and the radial one (RAD; cletegs the right-
handed system). The figure is typical for satellites in lowtlEarbits (LEO,
altitudes 100-2000 km, mainly 150-800 km): the dominanignawitational ac-
celerations change with the satellite local reference éraections; the close-
Earth motion makes the satellite to pass through the Eastiesiow, which is
visualized by the characteristic jumps. In the along-tregknponent, the main
nongravitational driver is thatmospheric dragDRAG), pointing always in the
direction opposite to the satellite’s motion. Even in thengi-track component,
there may appear jumps in the smooth waveform of the drageaetien caused
by thedirect solar radiation pressuréDSRP), whose action is dominant in the
sunlit part of the cross-track and radial components. Irstiedow of Earth, the
terrestrial infrared radiation(IR) dominates the radial component. Sometimes,
when the satellite passes directly below the Sun, also gmakirom thereflected
solar radiation(ALB) may be recognizable in the graphs of the nongravitetio
accelerations. In each panel, there is also the sum of tivadodl simulated non-
gravitational accelerationaﬁ'g'. The magnitude of the nongravitational forces in

each local reference frame direction depends on the satstiape and its phys-
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ical properties; in this study, for the GRACE satellites veed the macro model
and surface properties from Bettadpur (2007) and the mass l8DGQGFZ data
centre (http/isdc.gfz-potsdam.dgrace). General formulae for computing the
nongravitational accelerations may be found e.g. in Mdotieck and Gill (2001)
or Milani et al. (1987), in this study we used the model of nauhermospheric
density DTM-2000 (Bruinsma et al., 2003) and the zonal amd@eal models of
the Earth’s albedo and emissivity (Knocke et al., 1988).

Figure 1 should be positioned here.

Figure 2 should be positioned here.

Figure B.2 displays the Level-1B accelerometer data of GRACduring
the same period as in Figure B.1. There is an apparent sityilzgtween the
waveforms of the sum of the simulated nongravitational lecagons (Fig. B.1)
and the uncalibrated accelerometer readouts (Fig. B.2)s iShtypical for all
GRACE Level-1B accelerometer data and provides evidenaettie smoother
simulated nongravitational accelerations and the acoeleter measurements are
consistent with each other. On the other hand, if we comperenits on vertical
axes of graphs in Figures B.1 and B.2, it is clear that thelacm®meter data are
not calibrated; for example, it follows from the geometryltd GRACE A motion
during the revolution in question that in the radial compuriee nongravitational

acceleration must pass through zero. In the cross-trackaaina components, the
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sudden spikes in the waveform correspond to the cold-gastgirfirings, which
are activated on average every 2.3 minutes by the attitutkeat®ystem in order
to satisfy the pointing requirements of the microwave raggystem (Flury et al.,
2008).

Figure 3 should be positioned here.

2.3. Gravitational vs. nongravitational accelerations

The histograms in Figure B.3 show the magnitude of the indial acceler-
ations in the satellite local reference frame componente. simulated the or-
bital evolution of the GRACE A satellite during 1.5 yearsegv60 minutes we
recorded the magnitudes of the accelerations acting oratkéite and then draw
a histogram for each acceleration. We do not show the spexifitbers for the
histogram counts on the vertical axis, which is linear, @&s¢hare only formal
depending on the sampling period and would add complexitigegaraphs.

The dominant acceleration is due to the static gravitatiiaell; the accel-
eration caused by the central term (GRA¥; 8.5 ms?) is projected mainly
in the radial direction because of the almost circular oobithe GRACE satel-
lites. Then follows the acceleration due to the Earth flatigiGRAV J,) and to
the remaining terms of the geopotential (GRAV rest). Comsidy the range of
the nongravitational accelerations (DRAG, DSRP, ALB, IR5Q@0 nm s?), it is
clear that for a successful accelerometer calibration thismther accelerations
of gravitational origin must be taken into account: direstisolar perturbations
(LUNISOL), solid Earth tides (SETID), ocean tides (OTIDhdarelativistic cor-
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rection (REL).

2.4. Geopotential — acceleration with respect to its degree

The graphs in Figure B.4 show the accelerations producedhdgpherical
harmonic terms of the geopotential model EGM96 summed tveotders for a
given degree. The individual curves correspond to theudkitof a satellite in a
circular orbit around the Earth.

The histograms in Figure B.3 set the upper limit of the nowigaional ac-
celerations acting on the GRACE satellites to be/30F0 nm s? for the along-
track/cross-trackadial components, while the altitude of the satellitesrel@sed
from 510 km to 450 km. From Figure B.4 we infer that the geoptéé-induced
accelerations approximately equal in magnitude to the upp#é must start at de-
gree 50-6B0-10070-90 and go up to degree 125-150 to cover 1 Tinhosver
limit of the nongravitational acceleration level, or up tegdee 150-180 to reach
0.1 nms?. In this study, we used the geopotential harmonic expansio

degree and order 180 (or the maximum allowable value of angivedel).

Figure 4 should be positioned here.

3. Method of calibration — a general look

In this section, we will explain the proposed method of aalilton using the
simulated positions and accelerations. To the simulatedlisapositions we will
add white noise of a known variance, to have an approximgesentation of

the POD positions. The uncalibrated accelerometer datebwitepresented by
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the simulated nongravitational accelerations, shiftedl staled by given values.
We will look for a linear filter that would realize the secoretigrative of positions,
taking into account the character of the waveforms in quegtigs. B.1 and B.2).
Filtering the positions yields the estimated second dawves, the POD-based to-
tal acceleration vectors, from which the modelled graiotadl accelerations are
subtracted. In this way, the POD-based nongravitatione¢lacation vector is
obtained, which serves as the calibration standard (étaldre calibration equa-
tion then connects the mean curve, given here by the sintutedegravitational
accelerations, with the calibration standard as the observvector containing a
random component. From this simple linear regression moedelfind the bias
and scale factor as the calibration parameters for eaclteaoneeter component.
When filtering the positions, the filter of the second denwatntroduces serial
correlation into the random component of the POD-based nawitgtional accel-
erations. While the mean values of the fitted calibratiorapeaters are not much
affected, the standard fit error and all the confidence intearalsot correct. The
generalized least squares method (GLS) is used to find thect@stimates of the
uncertainty in the calibrated nongravitational accelerst

An important aspect of the presented calibration methotias we use the
kinematic orbits, i.e. those determined directly from GP&surements and not
influenced by any force models (cf. Ditmar et al., 2006). Tikisf concern es-
pecially for modelling the accelerations due to the geopade where diferent
geopotential models might givefterent POD-based nongravitational signals. Itis
an assumption of the presented method that the noise in ttellad gravitational
accelerations is negligible compared to that of the PO dastal acceleration

(more on this point in Sec. 5.4).
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3.1. Simulated POD positions

Simulated positions are computed by the numerical integralf the satellite
motion using the simulated gravitatiorag},, and nongravitationahy ¥ accel-
erations (SIM stands for ‘simulated’ or ‘modelled’). Theng step of positions
and other quantities used in this study is 10 seconds. T thpproximately
error-free positions, which are given in the celestial refiee frame, we added a
normally distributed white noisg, with a variance ot-?>=1 cm in each position
component. The resulting sequence of random vectoepresents the kinematic

positions from the POD.

3.2. Filter of the second derivative

We obtain the POD-based total acceleratiaf{sy, by double diferentiation
of the positionsr. For this purpose we used tl&avitzky-Golayr polynomial
smoothing filterge.g., Press et al., 2001). A polynomial of a chosen order is
least-squares fitted to the data points within a running aawndf a chosen length;
the approximate numerical derivative at the central paintitained by the dier-
entiation of the fitted polynomial.

We looked for the best agreement between the simulated abdii2®ed non-
gravitational accelerations, when no noise in positionsti®duced. We started
with the first approximation to the numerical second denregatthe simple three-
-point formula, but we found that such low order derivatipesduce too high a
bias (10° m s2 with the time step of 1 sec, 1dm s2 with 10 sec) between the
simulated and POD-based nongravitational acceleratiWeghen systematically
tested many combinations of the polynomial orders and wini@agths to find a
suitable pair with low values of both parameters that woutstipce a satisfactory

agreement between the simulated and POD-based nongandtiedccelerations.
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Finally, we have chosen the combination of the polynomideo6 with the win-

dow length 9; other combinations, e.g/18, 911, 921 yielded similar results.
The tested combinations comprised also the case with noteimgpwhere the
window length equals the polynomial order plus one, butragae bias was too
high for our purposes. For later reference, we will symladlcwrite the filtering

of positions as the convolution of the second-derivativterfiF and the radius-
vectorr,

a$8TDAL =F =T, (1)

3.3. POD-based nongravitational accelerations

The calibration standard, the POD-based nongravitatiacedleration vec-
tor a 2P, is obtained from the POD-based vector of total acceleta#for, by

subtracting the modelled accelerations of gravitationigio a2y,

POD _ .POD SIM
ang = 9roTaL — AGRAV > (2)

where the vectoaZhy, is the sum of the acceleration vectors caused by the Earth
static gravitational field, direct lunisolar perturbatsosolid Earth and ocean tides,
and relativistic &ects (Sec. 2.3). The relatively high degree and order of the
geopotential model, which is necessary for the generatigmnavitational accel-
erations of low enough magnitude comparable to that of thiereéed accelerom-
eter measurements, was discussed in Section 2.4.

While the numerical dierentiation of the positions is most easily done in the
(inertial) celestial reference frame, the POD-based rengational accelerations
obtained in Eq. (2) must be projected into the science referérame, in which
all GRACE Level-1B data products are specified (Case et @04P The axes

of the science reference frame are close to those of thditatetal reference
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frame (Sec. 2.2) to within a few degrees, except for the signthis section,
we use the exact satellite local reference frame, in Sedtjamhere the attitude
information of the GRACE satellites is used, we perform aptersign change
to have all our calculations and figures in an approximaiglgatiocal reference
frame. The motivation for using the satellite local refareiframe lies in its clear
physical meaning, e.g. the air drag vector always pointhénrtegative along-
track direction, the terrestrial infrared radiation in fhesitive radial direction.

In Figure B.5 the components of the POD-based nongrawuitalt&cceleration
vector ai,2° in the satellite local reference frame are shown. Using dueisd-
derivative filter, the 1-cm noise in positions is amplifiechigh-frequency noise
in accelerations with oscillations on the order of 4@ s2. The “true” signal

aya of amplitudes 10-500 nm%is buried in noise.

Figure 5 should be positioned here.

3.4. Calibration equation

The calibration equation is given by the linear model
aye =B+Sdgc" +e (3)

whereB is bias,S scale factoray~c”- uncalibrated accelerometer datatatisti-
cal error. On the assumption that the accelerometer mesasutependently in its
three axes, we have one independent calibration equatidar(8ach accelerom-
eter axis.

In this section, the uncalibrated dagic”" are represented by the simulated
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nongravitational acceleratiors, which were scaled b$=1.1 and shifted by

B=1.2x10°ms2

3.5. Problem of autocorrelated noise

The probability modely = by + by X + €, for which the ordinary least squares
(OLS) method of estimation is best suited, relates the dreer predictor variable
x and the random variablg (see Appendix A). In this respect, the calibration

equation (3) matches well the OLS model: the noise in the lsited nongravita-

tional accelerationsyy=x is several orders of magnitude lower than that of the

response variablal,2°=y (Fig. B.5). Also the noise in the accelerometer readouts

should be, according to the specifications (Sec. 2.1), nawérithan that o0&}, 2°.

The OLS provide correct uncertainty estimates, if the sie@re independent
and normally distributed. If the random errors are posl§icerrelated, the uncer-
tainty in the fitted parameters is usually underestimatag giving a false sense
of accuracy (e.g., Chatterjee and Hadi, 2006; Rawlings. £1998).

When a digital filter is applied to a data sequence contaiairendom compo-
nent, the random errors within the filter window are lineaxtynbined to the new
output value; hence the newly formed random vector has caegs, which are
correlated. This happens to the POD-based nongravitdtimealerations{2°
obtained from the positions by applying the second-daviedtlter (1) and after
subtracting the modelled accelerations of gravitationglio in Eq. (2); the noise
in positions, which in this section is supposed to be whiex(S8.1), after filtering
becomes a correlated random componem€@P. The OLS applied to the calibra-
tion equation (3) now enables one to calculate acceptabieass ofB andS, as
the point estimates of the regression parameters are ysudlinuch &ected by

the autocorrelated errors, but it is not possible to colyr@stimate the uncertainty
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of the calibrated accelerations. For a correct estimatfaheuncertainties i3
andS, we will use the generalized least squares method; see AppBnfor a

short review.

3.6. Use of GLS to remove autocorrelation

In fact, the non-diagonal covariance matrix of the randomponent inaf2°
was created by the action of the second-derivative fifieirom the covariance

matrix of the white nois&/ ar(Z)=c?1. Namely,
Var(e) = FVar(2)F’ = o°FF, (4)

whereF is a square matrix, generated from the foeents of the filters and
whose multiplication is equivalent to the action of the filte.g., Gray, 2006).
But the situation, where wienowthe covariance matrix of the random errors in a
linear model, is exactly what the GLS method is suited fobuncase, finding the
GLS transformation matrix is straightforward/=F 1. After applyingW to the
calibration equation (3), and solving the transformed &qugEqg. B.3) through
the OLS, the residuals become again uncorrelated and thimalo-? should be
recovered. As regards the implementation of the filtering thvow away the first
and last few acceleration points during the filter warm-upggh and we find the
transformation matrixV through the Cholesky decomposition of the covariance

matrix FF’ (cf. Eq. B.2).

3.7. Decorrelation of the observations

The results of the GLS transformation of the POD-based raviigitional ac-
celerationsaf{ 2" are in Figure B.6; only the solution in the along-track compo

nent is shown. As the GLS transformation matF~! is actually the inverse
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to the second-derivative filter, which produces accelenatifrom positions, the
“nongravitational positions” are obtained as a sort of deltegral ofaf2P. Ef-
fectively, we got back into the positions, but now with thengtational signal
removed.

In the upper panel of Figure B.6, the nongravitational posg are shown
(YoLs1) as the observations for the OLS estimates, and the fittedtiumyo,s1),
which is the simulated nongravitational accelera#@fy transformed to positions
by W. Several statistics shown in the lower panels confirm thetfat the OLS
residuals in the middle panel are uncorrelated normal: cautelation function
(ACF), partial autocorrelation function (PACF; more abiin Sec. 4.2), normal
probability plot and Jarque-Bera test (e.g., Brockwell Badis, 2002). Through
the OLS applied to the transformed linear model (Eqg. B.3griafyom the es-
timates of the calibration parametér@sand b, the original error variance of the
nongravitational positions (Sec. 3.1) is estimated by th8 @sidual mean square

62 (labelled asrig estin Fig. B.6).

Figure 6 should be positioned here.

3.8. Very high correlation between the calibration paraenst

In Figure B.6 the reader may have noticed that theffoment of correlation
between the fitted calibration parametbgsandb; is very close to one, typically,
when calibrating the simulated or real accelerometer dm:gei;o(f)o, 61)20.999. ..
Of course, such a high correlation is not good for the stgtwli the fitted param-

eters. The cause of this situation lies in the collinearitthe predictor variables,
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one of the standard problems encountered in multiple regnege.g., Chatterjee
and Hadi, 2006; Rawlings et al., 1998; Weisberg, 2005).

For simplicity, let us use for the calibration equation (8¢ ihotation of the
OLS from Appendix A and calibrate the accelerometer measentds against
the simulated nongravitational accelerations, so in thissectionx=a,~ " and
y=ayy. We may approximately take bos(Fig. B.2) andy (Fig. B.1) as signals
made up by two components, by a constant signal plus anatscillcomponent
(sum of sinusoids). This is not very far from the truth, as pla¢terns of one
revolution in Figures B.1 and B.2 repeat themselves radbtixegularly during a
period of weeks or so. From the point of view of Fourier anglythe constant
componeni and the oscillatory component £ X) are orthogonal to each other,
the same applies tpand § — y), so comparing the constantsy would produce
an estimate of an ‘intuitive’ bias, i.e. a distance betwdenrhean valueg and
y, and fitting the oscillations(— x) and § — y) would estimate the ‘scale factor’,
i.e. a mean ratio of the oscillatory amplitudes (provideat #handy are in phase,
which is true here). But this is not the case of the calibragquation (3); here
the parametel; multiplies the predictox, which is a sum of the constartand
oscillations & — X), but the predictor connected wilg is also a constant, hence
the collinearity. What makes the correlation betwbgandb; so high is the very
large value of the fisetx in the accelerometer readouts compared to the ampli-
tude of the oscillationsx— X). For large sample sizes axdsd2, whereo? is
the sample variance of we may approximate the expression for thefioent

of correlation (Eg. A.6) by

RV RV ~2
p(Bo By) = — ~ = (1— 15). (5)

G+ X 2 X2

Taking the along-track component af\="" in Figure B.2 as a quantitative ex-
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ample, the power of the constant compongfnt(10-°)? m?s* and that of the
oscillatory component2=(5.108)%/2 m? s give p(bo, b;) ~ 0.9995.

The extremely high correlation between the paramelgrand b; may be
avoided by changing the calibration model (3). From Eq. i%,correlation be-
tween the parameters in the simple linear regression is #eh@ predictorx has

zero mean. In the notation of Appendix A, a modified calilmmatnodel might be
y—-X=Db +bj(x-X) +e, (6)

together with the definitiong*=y — x and x*=x — x. The modified model has
perfectly uncorrelated parametdysandby, moreover, one can easily show that

by =y—x is the ‘intuitive’ bias mentioned above. The scale factarsb; of both

models have the same fitted valﬁg,:ﬁl, and, perhaps surprisingly, also the same

standard errorqr(f)l):&(BI). Only the modified intercedy has a substantially
smaller standard error, from (A.Ae);(fig):&/\/ﬁ. Indeed, the calculated values of
the modified intercepﬁ)g are much less noisy compared to thoséef But on
rearranging the terms in (6),= x+ b} — b X+ by x + €, one can express the ‘old’

calibration parametets, andb; by means of the modified ones,
bo = by + X(1 - b}), b, = bj. (7

We might believe that the ‘statistically better’, complgtancorrelated parame-
tersby, b} and their uncertainties would somehow hledpb; to have less correla-
tion — but this does not happen; starting from (7) and usiegties for variances
of the linear functions of random variables (e.g., Rawliagal., 1998), we arrive
at exactly the same formulae (A.4), (A.6) as before.

In this study, for the regression calculations themselvesised the modified

model (6). During the inversion of the normal equations, MAB (2007) indi-
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cated a bad condition number, which was caused byfardnce of several orders
between the magnitudes of the two predictors; a simple isolutas to multiply
the intercepb} by 107". In fact, both these computational modifications are anal-
ogous to standardizing the predictor variables in multiplgression or using the
MATLAB option ‘center and scale X data’. For the sake of comgxan of our
calibration parameters with those computed by other groampd because, after
all, the calibration models (3) and (6) are equivalent, thalfiesults are given in

terms of the original parametelog andb;.

4. Calibration of the accelerometer data over several revoltions

In this section we will apply the calibration method to thalr6RACE data
covering several orbital revolutions in order to analyze ¢alibration results in
more detail. As the POD positions, we used the high-qualitgdcond kinematic
orbits of the GRACE satellites, kindly provided by Bvehla (TU Munich). The
orbits were computed using the zerdfeience ionosphere-free phase measure-
ments, the 10-sec orbits are based on the interpolatedc3@&P satellite clocks
(Svehla and Rothacher, 2005).

The simulated gravitational accelerations, needed fainioig the POD-based
nongravitational accelerations (Sec. 3.3), the coordit@nsformations and the
simulated nongravitational accelerations were calcdlayeour own orbital prop-
agator NUMINTSAT (Bezdék et al., 2009). When working witretreal-world
data, it has become clear that in contrast to simulationaskef the most up-to-
date physical models is crucial for obtaining meaningfuibcation results. We
used: coordinate transformations between ICRF and ITREs\s (McCarthy
and Petit, 2003), the model of static gravitational field ENG5C to order and
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degree 180 (Forste et al., 2008), lunar and solar epheesedBL DE405, the
model of solid Earth tides (anelastic Earth; McCarthy, J9¢6 model of ocean
tides CSR 4.0 (Bettadpur, 2004b).

We obtain the POD-based nongravitational acceleraif3in Eq. (2) using
the second-derivative filter (1) and the modelled accataratof gravitational ori-
gin. Figure B.7 shows a typical result for the three accaterier axes, the ampli-
fied noise from the POD positions being roughly of the sameroofl magnitude
as that for the simulated case in Figure B.5. The componé&ntsrsin Figure B.7
are not exactly ‘along-track’, ‘cross-track’ and ‘radiad’s the accelerometer read-

outs are now given in the science reference frame (Sec. 3.3).

Figure 7 should be positioned here.

4.1. Correlated noise in the POD positions

We apply the GLS transforidV to the calibration equation (3), which now
relates the observations given &° and the regressor equal to the uncalibrated
accelerometer readow§<"-. The acquired “nongravitational positions” are in
Figure B.8; clearly, the OLS residuals from the real POD tass are correlated
(middle panel), which is confirmed by the graph of the estadatutocorrelation
function (ACF; in blue, bottom left panel). This is not sugimg, the kinematic
orbits are reported to be correlateé8vehla and Foldvary, 2006). On the other
hand, the standard error of the OLSitof a few centimetres as an estimate of

the noise in the real kinematic POD positions is a plausiblae
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Figure 8 should be positioned here.

4.2. Removing the autocorrelation with an AR model

In this subsection, we will use a general approach for drgwtatistical in-
ferences from time series (Brockwell and Davis, 2002; Célaitfil995). In most
practical problems involving time series we see only onézaigon, but we imag-
ine it to be one of the many sequences that might have occultresinecessary
to setup a hypothetical probability model to represent tita;cafter an appropri-
ate family of models has been chosen, it is then possibletim&® parameters,
check for goodness of fit to the data, and possibly to use tied fihodel.

We suppose that the correlated OLS residuals (middle pdifédoB.8) are a
realization of a stationary process and we want to représasgrrelation structure
by fitting an appropriate autoregressive moving-averageMA) model. This
class of linear time series models has the property that atocavariance func-
tion that asymptotically tends to zero can be approximatedrarily well by the
autocovariance function of some ARMA process. The fact thatsample au-
tocorrelation function (ACF) is negligible for some finitaglg suggests that a
moving-average model MAJ might provide a good representation of the data.
Analogously, thepartial autocorrelation function(PACF; in cyan, bottom left
panel of Fig. B.8) of a causal autoregressive procesppRzero for lags greater
thanp. Both the ACF and PACF of the OLS residuals are in the bottdhpbnel
of Figure B.8. The sample PACF clearly fallingfowe chose the pure AR(7)
process to be fitted to the residuals using the Yule-Walkimeson. The ACF
of the fitted AR process of order 7 (in green, bottom left pari€lig. B.8) agrees
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well with the sample ACF for lags less than 100; in our expexg the order 7 is
suficient to match the correlation structure of the OLS resislual

We suppose that the OLS residuals may be viewed as a reafizztihe fitted
AR(7) process, in other words, as an output to filtering a &hivise input by
the corresponding AR filter. Therefore, the covariance xaii the correlated
residuals in Fig. B.8 is now given as that of the fitted AR pesce This new
covariance matrix replaces the matkbar(Z) in Eq. (4) and the GLS method
is applied in the same way as in Section 3.6. We will use thes@ult 2 to
distinguish the new GLS transformation. The GLi&ansformation matriX\,
is obtained numerically by the Cholesky decomposition @f tlew covariance
matrix (Eq. B.2). After transforming the calibration egoat(3) usingW,, and
using the OL$ estimation to find the calibration parameters, we finallyagban
approximately uncorrelated series of residuals, in thedieiganel of Figure B.9.

Indeed, the ACF and PACF (bottom left panel) are negligikkept at zero lag.

Figure 9 should be positioned here.

4.3. Calibrated accelerometer measurements

On solving the calibration equation (3) by the GL8ethod described in the
previous section, we obtained the calibrated acceleranme¢éasurementaSac
and their estimated uncertainty banSa:) given by the confidence interval (B.5).
The fact that the GLSresiduals appear to be approximately uncorrelated and nor-
mal (bottom panels of Fig. B.9) for the along-track compdrmrmits us to use

statistical inference and to assert that the ‘true’ signedsured by the accelerom-
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eter should be located with a high level of confidence witheut35-(a5As) band
aroundaSac. Thisis in accordance with the usual definition of @87-percent con-
fidence intervalwithin which we expect the ‘true’ value of the estimatedgrar
eter to be located with the coverage probability of 99.7 %emvthe normal dis-
tribution is sampled (‘three-sigma rule’). For the statetr@ uncertainties in this
study, we used the coverage factor (CF) of 1 (‘one-sigmaktamty, coverage
probability 68.3 %) or that of 3 (coverage probability 99.7. %

The calibrated accelerometer measuremafts together with the 8(aSAs
uncertainty band for two orbital revolutions are in Figurd® The uncertainty
band is wider when the fitted value is farther from the meamilarly to the usual
OLS model (A.7). The sample me#&Bd(a3as)), which we can use to characterize
the obtained uncertainty band in the along-track compomeatound 25 nm=s.

In the same way, we can use the calibration equation to fitithelated non-
gravitational accelerations and obta}y-“*". As is apparent from Figure B.10,
the uncertainty bands of both(@SAL) anda(aSy ") are of similar size. But the

calibration equation (3) was used in a usual OLS sense, lfewafter the GLS

transformation\, was applied. In the bottom panel of Figure B.10 there are the

calibrated accelerometer and simulated nongravitatiaoceglerations with their
means subtracted and then projected to thespace. It is evident that the )WV
transformation matrix is an integrator, which, inversathe second-derivative
filter (1), effectively filters out the high frequencies from baffft andaj“"".

Indeed, the estimated frequency response of the iteshows that only sinu-
soids of periods longer than 30 minutes are retained. Aihdhe accelerometer
waveform give more details in the ‘acceleration domainhttize modelled non-

gravitational accelerations, the calibration in the Gh8ticed nongravitational
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positions &ectively smoothes thesefti#rences out, and the final uncertainties

(6(aSAL)) and(G(ag ")) are very close.

Figure 10 should be positioned here.

Similar calibration results have been obtained also for#tagal component;
the mean uncertaint{s-(a5as)) is around three times larger, but the normality of
the GLS residuals is questionable. In the cross-track directiahave not suc-
ceeded to find a suitable AR process to decorrelate the Galbration residuals.
So, in the cross-track and radial directions, we found thbredion parameters
bo andby, but we are not able to calculate a reliable estimate of themainty
of afAt. From the point of view of the atmospheric density modellittgs is
not a problem, by far the strongest signal from the atmosplizag is in the
along-track component and besides, the cross-track ama cadnponents of the

accelerometer readouts contain the disturbing signal thenattitude thrusters.

5. Evolution of calibration parameters over 1.5 years

The presented calibration method has been applied to tledeacmeter data
of both GRACE satellites within a period of 1.5 years /@382-032004), for
which the 10-sec kinematic orbits were available to us. Dewing calibration
scheme is based on the assumption that the calibration pteesmary slowly
in time. As the accelerometer data as well the POD positionsain relatively
frequent portions of outliers (cf. Flury et al., 2008), weedsa running window
covering several satellite revolutions, within which wéilmated the accelerome-

ter readouts. From these calibration results we seleceeddh-overlapping seg-

24

Page 24 of 64



545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

ments with the best statistical properties. Simple longitexpressions for the
calibration parameters may be obtained by fitting the lifeaguadratic) regres-
sion models to the selected calibration results. The |lengptstatistical results
are better suited for a comparison offdrent gravitational models and calibration

algorithms than a few days studies, where chance may pldga ro

5.1. Long-term values of the obtained uncertainties

In the regression analysis, the squared standard erroeditih? (A.5) is an
estimate of the constant variance of the observationsjgedihe assumptions of
the OLS are met. As a factar,then enters the uncertainty estimates (A.4, A.7, A.8).

Although the correlated noise in the POD positions prevérgsisual 3 in-
terpretation of the OLSresiduals (in the middle panel of Fig. B.8), in physics
and engineering this ‘RMS value* is widely used to characterize the power of
the residual signal. The upper panel of Figure B.11 showstdwedard error of
the fitoo s for the 1.5-year period. The label OL&fers to the case, where the
GLS transformation is based only on the inverse secondatarm/filter W=F 1,
and thus the acceleratioa§yc"- andagy are ‘integrated’ to give the ‘nongrav-
itational positions’ (Sec. 3.6). This is interesting, bh&s@on supposing that the
modelled gravitational accelerations have negligiblerstiro s; then estimates
the RMS value of the POD positions when compared with thegaddently mea-
sured accelerometer data. The figure shows that the empdigtabutions of
Gous: for bothaSAk andasy"“*- are very close, with no statistically significant
difference, their mean values being equal to around 3 cm with proamate
uncertainty of 1-2 cm.

The aim of this paper is to obtain the calibrated accelerenddta together

with a realistic error bar. As mentioned in Section 4.3, tas be achieved in
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the along-track component only. The uncertainty estimate¢le calibrated ac-

celerometer and simulated nongravitational acceleratigaC ) anda(agy ")

in the lower panel of Figure B.11 are again statisticallyiegjent, the mean un-

certainty being 8.53.0 nms?. This is due to the severe smoothing, when the
SIM,CAL

acceleration®as anday, - are calibrated against the POD positions, as ex-

plained in Section 4.3.

Figure 11 should be positioned here.

The results in Figure B.11 come from the calibrating the EBroeneter data
within a running window of 2 revolutions. We processed thesterometer data
from both GRACE satellites using the window of 2—4 orbitataltions. The
long-term results for both satellites were statisticaliyigalent. The estimated
RMS valueop, s; of the POD positions compared to the integrated acceleemet
signal is: 3—4 cm in the along-track, 4—7 cm in the crosskirand 6—12 cm
in the radial components, the values are increasing withethgth of the fitting
window. At the same time, the mean uncertainty of the caidat@accelerometer
measuremeni&-(a5as)) in the along-track component decreased from 8.51fm s
to 6.5 nms?2.

Let us note here that we also calibrated the acceleromete@mdénout a spe-
cial treatment of the autocorrelation present in the PORlveds (Sec. 4.2). Then,
in the along-track component we obtained the long-term noédme uncertainty
((a5AE))=1.0 nm s?, which is approximately 7 times “better” than that stated
above (window of 3-revs. used). This illustrates the ovepyimistic accuracy

estimates, when the autocorrelated errors are ignoree iimimar regression prob-
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lems (Sec. 3.5, Appendix B).

5.2. Long-term evolution of scale factors and biases

In the long term, the scale factéw of the accelerometer data is approxi-
mately constant (upper panel of Figure B.12), with the meanesnear 1 for
both GRACE satellites, with the @-uncertainty of a few percent. Using the fitted
value ofb, and Eq. (7), the biasds are obtained, which we can subsequently
fit with a straight line regression model to obtain simplegdarm expressions
(lower panel of Fig. B.12), similarly to Bettadpur (2004a).

In Figure B.13, there are the results of the same procedyledo the mod-
elled nongravitational accelerations. While the longristatistical results of the
scale factorﬁl are comparable for both accelerometer-based and simudated
celerations, the biases ardfdrent: on average, the simulated nongravitational
accelerations are very close to the calibration stanalft8 the fitted mean value
of by is less than 0.01 nm% but the variation in the straight-line model of the
bias is 3-8 times greater in the simulated acceleratiomsithtne accelerometer-
based accelerations. In other words, the long-term aarekger bias is more
stable with respect to the calibration standard than the dfishe simulated non-
gravitational accelerations. This may be attributed tdflilngtuating errors in the

nongravitational acceleration models, which depend omth#al conditions.

Figure 12 should be positioned here.

Figure 13 should be positioned here.
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5.3. Comparison with the calibration parameters from anependent study

In a technical note, Bettadpur (2004a) states the constate $actors and
simple linear (or quadratic) models of the changes in biag&oh accelerometer
axis of the GRACE 2B satellites. These estimates were obtained in the GRACE
data processing for the precise orbit and gravity field deitestion, and their limit
of applicability is from the launch until 1 November 2003.

Considering the very high correlation between the fittetbcation parameters
(Sec. 3.8), we can set the scale factmrequal to the values specified in Bettadpur
(2004a) and expect that the biases will ‘adapt’ their valssordingly. Indeed,
in the three accelerometer axes of GRACE A, Figure B.14 sleosimilar time
evolution of our biases and those from the report. In thigctse fixed values
of the scale factors were 0.961 (along-track), 0.98 (ctemsk), 0.94 (radial). We
obtained similar results for GRACE B, Figure B.15, for thesfixscale factors
0.947 (along-track), 0.97 (cross-track), 0.92 (radial).

Figure 14 should be positioned here.

Figure 15 should be positioned here.
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s0 5.4, Uncertainties for dgiferent gravity field models

631 In Table B.1, there are the long-term means of the estimaM8 Bf noise

s22 1IN the POD positiongoo,s;) and of the uncertainty in the calibrated accelerom-
s eter measurementd(asas)) obtained using selected models of the static gravity
2« field. We calculated the accelerations for degweger 180 or less, according to
s the definition of the model (indicated by superscripts).

636 In the first group, there are the most recent models basedoalshe data

sz from the GRACE mission: EIGEN-5C (Forste et al., 2008), BE@®MPavlis et

s al., 2008), GGMO3(S (Tapley et al., 2007). These models provided the best re-
0 SUlts; the accelerometer calibration also does not ineli@ay statistical dierence

«0 between the results from the combination and satellitg-gravity field models

s« GGMO3C and GGMO03S.

642 The second group in Table B.1 are models computed using teMEPdata,

s but notthose from GRACE: EIGEN-CHAMPO3S (Reigber et alQ2), DEOSCHAMP-
ss  01C.70 (Ditmar et al., 2006). To test the influence of including ktiigher degree

«s  terms of the static geopotential models on the proposedeaocceeter calibration,

«s  We also used the EIGEN-5C model limited to degoeder 70 (Sec. 2.4). From the
v Statistical point of view, the results of this group of malate equivalent to the
«s GRACE models. While there is no visible change in the reqétsaining to the

«9 along-track component, those of the cross-track and radiaponents display a
o Slight systematic decrease in the precision for the modikstive maximum de-

e gregorder 70, which might be attributed to the lower magnitudéhefnongravi-

2 tational accelerations in these directions (Fig. B.3). @@fprecise accelerometer
es3 Calibration it is better to include the higher degoeder gravity terms.

654 The results based on the pre-CHAMP gravity models EGM96 (tiemet al.,
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1998) and GRIM5C (Gruber et al., 2000) are worse by a fact@bolut 4 in the

cross-track and radial components. Thus the proposedeacogtter calibration
provides an indirect evidence that the gravity missions @HpAand GRACE have
appreciably contributed to improve the higher degyeser terms of the current

global static gravity field models.

Table 1 should be positioned here.

The main purpose of including this section was to show thatcthlibration
method does not depend upon a particular gravity model usesther words
that it is plausible to suppose that the errors in the acattars derived from the
gravity field model are negligible compared to those of theebrations derived
from kinematic positions. This is clearly demonstratedhsylbng-term results in
Table 1, where the four most recent gravity models, deriwedifferent groups
using diferent processing schemes, give statistically equivaésuiits in all three
accelerometer components. Besides, if nowadays the batdlae gravitational
model EGMO08 goes up to degyeeder 2159, and the new EIGEN or GGM mod-
els go up to degre¢erder 360, then we may expect that they are consistent in
predicting the geopotential functionals with a relativigy limit of degregorder
less than 150 and that they should generate rather closesetthe gravitational

acceleration.

6. Discussion

As mentioned in Section 1, many scientific teams have catdlthe cali-

bration codicients of the GRACE accelerometers for periods fiieding length,
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from days to years. The question of the accuracy of the @kdraccelerometer
measurements, however, seems not to be discussed very asueither the pri-

mary research objective in other studies is the gravity fisbdlelling, or the com-

plexity of the calibration process prevents the uncenyagstimates from quanti-
fying, e.g. due to regularization.

Van den ljssel and Visser (2007) estimated the nongraeitatiaccelerations
for the CHAMP and GRACE A satellites as piecewise constargigoal accel-
erations via the reduced-dynamic POD approach. To obtaotuian, regular-
ization was necessary. Only the longer wavelengths wem@veeed, at best in
the along-track direction, with a bias in the cross-tradlection. The authors
concluded that no meaningful solution could be obtainet@radial direction.

Van Helleputte et al. (2009) used the reduced-dynamic P@bEnique to de-
termine the calibration parameters of the CHAMP and GRACE gatellites over
a 5-year period. The method needs strong constraints td loa slee a priori bias
values in the cross-track and radial direction.

For the derivation of the satellite accelerations from kaaéic positions, Reubelt
et al. (2006) used the second derivative of the Gregory-hewiterpolation scheme;
the explicitly stated ca@cients of the 9-point filter are the same as those from the
second derivative of a 9-point polynomial filter of order & (iwith no smoothing,
cf. Sec. 3.2). The choice of this filter was driven by the ainthef study, which
was the determination of the gravity field parameters frore&y of the CHAMP
kinematic orbits without a regularization to guarantee abiased solution.

There are several scientific groups, which used the fitted ARMdels when
solving the inverse problem of the gravity field determioatibut with diferent

aims and details of implementation compared to our methadhe context of
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processing the future GOCE gradiometer data, Schuh (20€8) the discrete
linear filters and the GLS method for handling the correlaegsurements in the
frequency domain. The target was to obtain decorrelatedreagonal equations
and to distribute the computationdf@rt to a cluster of computers. A need to treat
the huge least-squares problems in the gravity field detextioin motivated Klees
et al. (2003) and Ditmar et al. (2007) to study how the coldureise represented
by the ARMA processes might be used as a fast method to solve@iiz system
of linear equations.

Ditmar et al. (2007) points out that the assumption aboutsthgonarity of
the noise in the kinematic POD positions may not be realistrnany cases, due
to a quickly changing constellation of visible GPS satedlifor a LEO satellite,
and therefore, the orbit accuracy may vary considerablynie.t This might be
the reason for the increase in the estimated RMS of the POilgswith longer
length of the fitting windows (Sec. 5.1).

The fact that the RMS of noise in the cross-track and radiedpanents of
the POD positions is several times worse, when comparingdbelerometer cal-
ibration statistics based on the pre-CHAMP gravity field eledvith those using
the recent models including the CHAMP and GRACE data (Sdg, i.in accor-
dance with a similar improvement in the accuracy of the faatlait component

of the altimeter satellites (Klokocnik et al., 2005, 2p08

7. Conclusions

In this study it was demonstrated that the proposed methochidration
of the linear accelerometer measurements is capable oh{jrite point esti-

mates of the calibration parameters in all three acceletlem@mponents for
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both GRACE AB satellites. A statistically correct estimate of the aacyrof
the calibrated accelerometer measurements have beeneibtar the along-track
component of the accelerometer data.

The calibration procedure makes use of the generalizetidgaares method,
which might be useful in other linear regression problentseng one has to deal
with the correlated residuals. In the case of the acceleimealibration, the sit-
uation is particularly convenient for the application oétBLS method, as we
know exactly the regression mean function, equal to theliloreted accelerom-
eter measurements, and we need to shift it to the “right plaetermined by the
calibration standard.

From the point of view of aeronomy and atmosphere reseanehmist im-
portant is the along-track component of the accelerometta, dvhere the signal
from the atmospheric drag is dominant; moreover, the ciegsand radial com-
ponents of the accelerometer data contain the relativetpgtdisturbing signal
due to the action of the attitude control thrusters.

Throughout the study, we have also used the modelled noitafianal ac-
celerations, whose waveform matches well that of the agm®leter readouts but
is generally smoother, and in the cross-track and radialpoorants it does not
contain the spikes caused by the attitude thrusters. Afiercalibration of the
along-track component, the accelerometer data and thelladdengravitational
accelerations have approximately the same mean uncgrtéins is due to the
fact that the GLS calibrationfiactively integrates the acceleration signal, so in
the calibration only the longer period waves are actuallgdusThis is closely
connected with the fact that the calibration standard isutated from the orbital

positions.
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We applied the calibration method to the accelerometer cataring a 1.5-

year period in 2002—-2004. Taking into account the previoyp&gence, we sup-

posed that the calibration parameters, i.e. the scalerfaatad biases for each

accelerometer axis, evolve slowly in time. We used the mgpmvindow of 2—4
orbital revolutions, within which we calibrated the accelaeter data and finally
selected the non-overlapping segments with the besttstatisesults. The time
evolution of the calibration parameters agrees well wittt gublished in an inde-
pendent report.

On the assumption that the errors in the modelled accedesatif gravitational
origin are very small, the GLS calibration method definesadformation of the
accelerometer data, which may be used to estimate the RM&s#® im the kine-
matic positions. Based on this comparison between the P@&natic positions
with the independently measured accelerometer data sébwd plausible mean
values of (3—4; 4-7; 6—12) cm in the (along-track; crosskreaadial) directions.

We compared the long-term calibration results for severalets of the Earth
static gravity field. The recent models EIGEN-5, EGM08 and\®3, which are
based also on the data from the CHAMP and GRACE missions, gjatistically

equivalent results, the mean uncertainty in the along<tcamponent of the cali-

brated accelerometer data being 6.5-8.5 Miane sigma). The same long-term

results were also obtained using the EIGEN-CHAMPO03 modaickvdoes not

contain the GRACE data. The estimated statistical errardymred using the pre-

CHAMP gravity models were several times worse in the crossktand radial

components.
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Appendix A. Ordinary least squares (OLS)

In the ordinary least squaresve suppose that the vector of observatigns
is given as the sum of a deterministic mean functi{l) to which a vector of
random errorg with constant variance is added. The probability model ef th
simple linear regressiors

y=Dbo+bix+e, (A.1)

wherey is the vector oh observationsy, interceptb; slope,x predictor,e statis-

tical error. The OLS estimatds andb, are given by
by = SXYSXX by =y- biX (A.2)

whereSXY=Y (x — X)(Yi — ), SXX&Y (% — X)2. Usingbg andb; we form the fitted

functiony as the estimate of the mean functié(y)
¥ = bo + bix. (A.3)

Under the assumption that the errersre independent and normal with constant

variancer?, the OLS estimatels,, b, are also normally distributed with the stan-

35

Page 35 of 64



793

794

795

796

797

798

799

800

801

802

803

804

805

806

dard errors

M) = — L 6By = St (A4)
o\D1) = SXX, o\p) =0 n SXX, "
where the standard error of the OLS fit is
n
&= J Wi -9 -2). (A.5)
i=1

In general, the estimated parameters are correlated vatbadficient of correla-
tion (Weisberg, 2005)

A —X
p(bo,by) = ——. (A.6)
SXX/'n + x?

We can calculate the uncertainty band around the fitted ifiom§t which is

called theconfidence interval

(x —%)?
SXX

o) =0 % + (A.7)

and theprediction interva) the uncertainty of a single (possibly future) observa-

tion yg,

A 1 (X —X)?
O'(yF)—O'\/l-i-ﬁ-l-W. (A8)

Appendix B. Generalized least squares (GLS)

Defining X as the matrix of predictors armas the vector of parameters, let
y=Xb+e€ (B.1)

be an OLS problem, where the post-fit tests showed that tltnarrrorss are
correlated or have a nonconstant variance, i.e. the cox@iaatrix of the random
errors is not equal to the scaled identity matkbar(e)=0?V+021. Thegeneral-

ized least squareGLS) then define a linear transformation (e.g., Rawlingd.et
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1998)
W=T"%  where V=TT, (B.2)

which maps the original linear model into a new one,
y = Xb+¢€, (B.3)

such that the covariance matrix of the transformed egdisagain a scaled iden-

tity matrix. Indeed,
Var(e') = WVane)W = o?TITT TV = ¢21. (B.4)

In the transformed variableg;=Wy, X*=WX, the usual OLS are then used to
find the regression parametdyof the original problem with correct estimates
of their uncertainties. The thus obtained GLS estimété also known as the
Aitken estimator. By using the inverse transformation mmafr=W-, we may
obtain the confidence and prediction intervals ofdhginal fitted functiony=Ty*
from (A.7) and (A.8). Namely, the estimated confidence wakofy is expressed

in matrix notation as the square root of the diagonal of theance matrix
Var()) = 6°TP'T, (B.5)

whereP*=X*(X*'X*)"1X*" is the ‘hat matrix’ of the transformed model.

Figure 16 should be positioned here.

Figure 17 should be positioned here.
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To illustrate the importance of taking into account the aateelated errors,
we generated the random errergs a realization of an autoregressive model of
order 7 with coéicients found in Section 4.2. In Figure B.16 we directly used
the OLS to findy"as an estimate of the true vali€y)=10. The standardized
residuals and the estimated autocorrelation function ®fdésiduals (middle and
bottom panels) show clearly that the residuals are cog@lafThe confidence
interval with the coverage factor of 3 locates the estimatael value within the
interval y+35(y)=9.02+0.21; this interval is too narrow, it does not contain the
actualE(y); using the OLS will not give correct uncertainty estimates

When the GLS method is used to solve the problem with the satagBig. B.17),
the confidence interval of iS 9.073.8 and does indeed cover the true value. In
this example, the GLS confidence interval is approximatetytimes larger than
that of the OLS estimate. Also the autocorrelation funcobthe OLS residuals
in the transformed variableg,—y', is now that of a white noise (bottom panel of

Fig. B.17).
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Figure captions

Figure B.1: Simulated nongravitational accelerationsirdurone orbital revolution of the

GRACE A satellite (11 Aug 2003). Shown are the componenthéndatellite local reference
frame, namely the accelerations in the along-track (A-Tpargpanel), cross-track (C-T; middle
panel) and the radial direction (RAD; lower panel). Theltatzeleration (in black) is a superposi-
tion of the accelerations due to atmospheric drag (DRAGgatisolar radiation pressure (DSRP),

reflected solar radiation pressure (ALB) and terrestribired radiation (IR).

Figure B.2: Uncalibrated accelerometer dati>"" (the same arc as in Fig. B.1).

Figure B.3: Histograms of gravitational and nongravitatibaccelerations in the satellite local
reference frame components (GRACE A/2&2-032004).

Figure B.4: Acceleration due to the spherical harmonic geofithe gravitational model EGM96

grouped according to the degree.

Figure B.5: The POD-based nongravitational accelerataffd® in the satellite local reference
frame (derived from the simulated POD positions). Also shawe the simulated nongravitational

accelerationsg Y.

Figure B.6: The ordinary least squares applied to “nongamtienal positions”: observations and
the fitted function (upper panel), residuals and numeriesilits of the fit (middle panel), several
indicators that the residuals are uncorrelated and notovaé( panels). Simulated data were used,

only along-track component is shown.
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Figure B.7: The POD-based nongravitational accelerataffd® in the satellite local reference
frame (derived from the kinematic positions, GRACE A, 25 N@03).

Figure B.8: The ordinary least squares applied to “nongméienal positions” (panels as in
Fig. B.6). Real data used (GRACE A, 25 Nov 2003, along-track)

Figure B.9: The ordinary least squares applied to the tomrms#d residuals from Fig. B.8, the

transformation matrix is based on the fitted AR(7) process.

Figure B.10: Calibrated accelerometer readouts and stedifeongravitational accelerations (up-
per panel), after centring and the transformation given byMdttom panel) (GRACE A, 25 Nov
2003, along-track).

Figure B.11: Time evolution of the standard fit error for thengravitational positions (up-
per panels) and the uncertainty of the calibrated acc@esa{lower panels) compared for the
accelerometer-based and simulated nongravitationalexatiens (GRACE A, along-track, win-

dow of 2 revs., approx. 2000 values).

Figure B.12: Long-term fit of the calibration parameters floe accelerometer measurements

(GRACE A, along-track, window of 2 revolutions).

Figure B.13: Long-term fit of the calibration parameterstfgr simulated nongravitational accel-

erations (GRACE A, along-track, window of 2 revolutions).

Figure B.14: Comparison of the computed bias for GRACE A it derived independently by
Bettadpur (2004a).

Figure B.15: Comparison of the computed bias for GRACE B whtit derived independently by
Bettadpur (2004a).
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Figure B.16: Example of a linear model with the errors geteglay a stationary AR(7) process:
the direct ordinary least squares solution. Upper pargldéfine the confidence interval around

¥, ¥e1 the prediction interval; middle panel: standardized nesisland the fit results; lower panel:

autocorrelation function of residuals.

Figure B.17: Data as in Fig. B.16: the generalized leastrsgpusolution.
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b1m=0.893, b1m_std=0.0063, CFxblm_std=0.019, n=2000 (GA; A-T, a2p)
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gravity (GoLsp) (cm)  (6(aRe)) (nm.s?)

model A-T C-T RAD A-T C-T RAD
EIGEN-5C#) 34 53 90 74 - 209
EGM08¥Y 35 51 91 75 - 211
GGM03C®Y 35 53 99 7.7 - 226
GGM03S18) 35 53 98 7.7 - 225
EIG-CHO3%") 35 49 98 76 - 221
DEOS-CH® 35 6.2 107 7.7 - 231
EIGEN-5C® 35 6.1 107 7.7 - 235
EGM96180 42 20.1 463 84 - 472
GRIM5C2) 39 188 405 88 - 464

Table B.1: Statistical results of selected gravity field misdor GRACE A over the period of 1.5
years. The numbers in superscript indicate the dé¢greer of the model used in our calculations

(window of 3 revs., mean of approx. 1000—-1400 values).
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