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Symmetry between partially polarized light and parial polarizers
in the vectorial Pauli algebraic formalism

The problem of the gain of dichroic devices is gpatl in a framework based on a vectorial pure
operatorial (non-matrix) Pauli algebraic approaoh polarization optics. We show that the
partially polarized light and the partial polarigeian be described in this framework by absolutely
similar, symmetric quantities. In this sense, agitally essential device parameter, the degree of
dichroism, is defined. This symmetry between thecdption of the polarized light and of the
polarization devices leads to an expressive forithefgeneralized Malus’ law, the consequences
of which are analyzed in detail. Most importantbne can for the first time describe and
graphically illustrate the generalized structuréhaf gain of a dichroic device.

Keywords: Pauli algebra, Malus’ law, dichroic p@ation device

1. Introduction

The generalized Malus’ law is a classical subjedhe theory of light polarization, e.g. (1) p. 110
and (2, 3), which is intimately connected, in faquivalent, with that of determining the gain
given by a partial polarizer for partially polarizencident light (1, 4, 5).

Letting aside the use of some theorems and proesdii linear algebra expressed in their
pure operational form (e.g. polar decompositiomgsiar value decomposition), all the
approaches to these problems are, in the lashirstanatrix ones (Jones or Mueller). The matrix
approaches have the advantage to “follow a fixadime in which little thought is required
beyond looking up the vectors and matrices in &tahd performing the standard multiplication
operations”, (6) p. 122, but the drawback of kegpiis far away from the intuition about the
physical phenomenon. When one wants, finally, easgrthe physical signification of the results,
a considerable effort is required for coming backT the mathematics to the physics involved.

In what concerns the gain, the Jones matrix agprdar example, uses the well-known
formula:

_Tr(TTY
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Let us quote from Azzam and Bashara (1) p. 14%hi§ is] an elegant form of the
intensity transmittance in terms of the coherenatrim of the incident light);, and the Jones

matrix of the optical systeml. However this equation is difficult to interpreeédause of the
implicate way the coherence matrix carries the information about the intendifydegree of
polarizationp and polarization forn#, ¢ of partially coherent light.” By consequence, #fforts

of interpreting such a simple and elegant formdtaroinvolve cumbersome calculi and lead to
very complicated expressions of the gain in terinb® physical parameters of the device and of
the incident light (e.g. (1), pp.103-110).

The Mueller calculus, in its standard matrix foroses also 4x4, base dependent,
collections of numbers for characterizing the desimedia. Nevertheless, in the last time, a
semi-vectorial language (7-10) was developed ingéeeral frame of Mueller calculus, which
highlights some characteristic vectorial quantitieshe structure of the Mueller matrices: the
retardance, the diattenuation and the polarizaectovs. In this language, the Mueller matrices
are written in a partitioned form, containing twectors (generally specified in terms of their



components) plus a 3x3 matrix. This way, Muellelcas has very much gained in physical
expressivity and efficiency. Particularly, it caxpeess the gain of an orthogonal dichroic device
in a compact form in terms of the diattenuationteee— equal in this case to the polarizance
vector (see Appendix). A mathematical discomfoill sésides in the hybrid nature of this
language.

In this paper, we will analyze the problem of tlangin a vectorial pure operatorial Pauli
algebraic approach to the interaction of light wttle polarization devices. Firstly, this approach
is mathematically self-consistent: pure operataia coordinate-free. Secondly, it is intimately
connected with the geometrical intuitive handlirfgtiee interaction light-devices/media on the
Poincaré sphere, because the Pauli operatorskn@ih, are the basic rotors on the sphere.

As we have shown in detail in (11) and (12), thppraach leads straightforwardly, in the
most direct manner and only in few lines of calsuio the whole group of three quantities which
characterize the action of the system on the sthtptical polarization (SOP): the gag the
Poincaré unit vectos, of the polarization state and the degree of prddionp, of the emergent
light. All the relevant quantities,, po, g appear in block in the expression of the polaibrat
density operator of the output state. It is a uaigupression which contains all the information
about the interaction which occurred.

A remarkable aspect of this method, which will lpparent in the analysis of the action of
the dichroic devices on partially polarized ligktthat the results have a high degree of symmetry.
This symmetry, as well as the compactness of theltss is due to the fact that our approach is
parameterized in a manner well adapted to the syrnesef both the polarization states space
and of the devices.

The main aims of this paper are:

1. To prove the feasibility of the vectorial pungeoatorial Pauli algebraic approach for an
already classical problem in polarization theorythe calculation of the gain of a polarization
device.

2. To introduce a symmetrical descriptienwhich is straightforward and quite natural in
this approach— of the polarized light and of the polarization @eg. In the operatorial Pauli
algebraic framework, this symmetric descriptiorthie direct manifestation of the fact that the
state of optical polarization and the dichroic desi are similarly represented by Hermitian
operators.

Pointing out this symmetry, a simple and exprestwm of the generalized Malus’ law
will be obtained.

For the sake of clarity we restrict our analysisydn the dichroic devices. The extension
to any linear deterministic (13) device is straighward on the basis of the polar decomposition
(14) of the device operators: The gain of the devwscdetermined exclusively by the Hermitian
component of the device, in other words by its nhesluThe unitary factor of the device operator
contributes only to the alteration of the statepofarization. For a general linear deterministic
operator all the analysis and its results apptiie¢dHermitian factor of the operator and are ucédfd
by the unitary factor.

The layout of the paper is the following. In Sectibwe briefly review some basic results of
the vectorial and pure operatorial Pauli algebagglications in polarization optics (11, 12) thait w
be of use in the present work. In Section 3, sigufiom the expression of the gain, we show that on
can define for the dichroic device a similar gusirdis the degree of polarization for the light.sThi
guantity, which we denominate degree of dichroigrthe device, represents the natural symmetric
partner of the light degree of polarization in tieepressions which characterize the interaction
polarized light — dichroic device/media. In Sectiyrthis symmetry is emphasized by obtaining the



most compact and insightful form of the generalig&alus’ law, completely specifying the manner
in which the characteristic quantities of the édupiolarizer and of the partially polarized liglouple
to give the output observables of their interaction

2. Action of an orthogonal dichroic device on partlly polarized light
The orthogonal dichroic devices (homogeneous paparizers) (15) are represented in

polarization optics by Hermitian operators, whicavé the following general Pauli algebraic
expression:

2" U -y
H,(o,n)=¢€"e? =ep(aocosh§+n Edrsmhzj, ) (2
where:
mrne
e’ =e 2, 3)
gl =gh™2 (4)

are the isotropic and the relative amplitude trattamces of the device, respectively, whdé
and €72 are its two amplitude eigentransmittances, majat @inor, respectively, (6) p. 36. In
the following we shall label byr,, =e”* and rm=e2’72the major and minor intensity

transmittances, respectively. In the most widespiaese of dichroic device, namely in the case
of diattenuators, the two coefficiengsands, are both negative and the eigentransmittances are
lower than unity. Other types of dichroic devicewd been reported in the literature, (1) p.111,
(16), consisting of active elements (with opticgdlymped crystals), which act as diamplifiers or
as squeeze devices (amplifier on one channel,ugtenon the other). In the case of diamplifiers
both transmittance coefficiengg and, are positive, while in the case of squeeze dewooesof

the coefficients is positive, while the other iggagve. The major eigenstate will be defined as
the state of maximum transmittance, irrespectivéneffact that the device is a diattenuator or a
diamplifier. That is, in out notationg, >7,.

In equation (2)s denotes a vector operator whose components artiribe Pauli scalar
operatorsg; (i = 1, 2, 3). Together withg, the “two-dimensional unit operator”, they defitte
Pauli basis, in which any “2 x 2 operator” (linegrerator defined on a space of two dimensions
over the field of complex numbe€) can be expanded. The vectors the Poincaré unit vector
of the device (1). For a Hermitian operator it iseal vector. In a Poincaré sphere representation
(1), the unit vecton points towards the major eigenstate of the dichdsuice. In the Pauli
algebraic formalism, the state of optical polaiatis described by means of its density operator
(corresponding in the matrix representation todblgerency, or polarization matrix).

For the most general case, of partially polarizght] the density operator of the SOP has
the Pauli algebraic form:

J ='§(ao+ ps() 5)

wherel is the light intensityp is the degree of polarization amsds a real unit vector. The
productps is called the Poincaré vector of the polarizastate and it gives the representation of
the SOPs in the Poincaré states space. In theotasenpletely polarized lighp(= 1), the top of



this vector lies on the Poincaré sphere (of radju&}, while in the case of partially polarized

light it lies in the Poincaré ball}, on the sphere of radips 5.

In the following we will take the intensity of theput polarization state equal to unity,
case in which the intensity of the output polaitatstate gives directly the value of the gain of
the interaction with the dichroic device. The dgnsperators of the input and output SOPs may
be written in this case:

)= (On* s ), (6)

J :%(ao+ P.S, [5), (7)

where g labels the intensity gain, and the indicésand o stand for the input and output
polarization states, respectively.

The action of the Hermitian operator, equation (®yresponding to the dichroic device
on the density operator of the input state, equg#9, is given by (1, 9):

Jo =Ha (0. Ji Hy (0.17) (8)
By using equations (2) and (6) in equation (8) ohtins for the density operator of the
output SOP the following expression:

J :%ezp(gocosh% +n D;sinh%)(ao+ P S; E&s)(aocosh% +n Edssinh%)

=%e2p{ao(coshr7 + p; s; (hsinhr) + [ p. s, +nsinhy +2p. (n 5 )nsinh? %} Bs}, 9)

which, by comparison to equation (7), gives diredihe expressions of the fundamental
quantities for the interaction of the light withetldichroic device, namely the gagnand the
Poincaré vector of the output polarization stpte, , whose modulus is equal with the degree of
polarization:

) e 1+ p,; cosa o2 1- p, cosa

g =e*(coshy + p;s; [hsinhy ; , (10)
: 27
05, = P s; +nsinhy +2p; (n 3, Jnsinh 2 _ pis +nsinhg +np; cosa (coshy -1)
oo coshy + p; (n 3, )sinhz coshy + p; cosa sinhy ’
(11)

where we have denoted hythe angle between the Poincaré unit vectors oirnttident light and
of the devices andn, respectively (figure 1).

All the information about the action of the didardevice on the partially polarized incident
light is given directly and compactly, in block, bguation (9), or equivalently by equations (1@) an
(11). The expression (10) of the gain constittliedargesgeneralization of the Malus’ lawalid for
partially polarized light passed through any cacalndichroic device. Equation (11) provides the
state of polarization of the emergent light. ijuste remarkable that in the final results, equmsti(i0)
and (11), the information concerning the gain & tlevice,g, and that concerning the SOP of the
outgoing light,p,s,, are completely separated: both the gain anddlagization state of the emerging

light are expressed exclusively on the basis ofltfagacteristics of the devige §, n) or (1, 772, n) and
of that of the incident lighty, s).
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Figure 1. The Poincaré unit vectors of the dichdavice and of the incident light. Notations

In the following we will be concerned with some esjg of the gain given by a dichroic
device for, generally, partially polarized inciddight and, on this basis, we will give a physigall
expressive form of the generalized Malus’ law.

3. The gain, transmittance and degree of dichroisraf the dichroic device

Equation (10) is the general expression of the gaien by any dichroic device for any SOP of the
incident light in function of the primary parametaf the devicen| 71, 772) and of the incident light
SOP §, p). Let us analyze now some essential aspects @irtbem of the gain. In equation (10) it
is apparent that the gain depends on the prinifgdsity transmittances of the device, on the @egr
of polarization of the incident light and on theglenbetween the Poincaré unit vector of the device
and of the incident light. We shall analyze in théerms the conditions in which the gain takes its
maximum and minimum values.

The only quantity which can take positive as welhagative values in the expression (10) of
the gain is the scalar produts. Corresponding to its extreme values 1, soméivelaaximum
and minimum values of the gain are obtained wherPthincaré unit vector of the dichroic device is
aligned parallel,n 11 s, and antiparalleln 1. s, respectively, with the Poincaré unit vector a# th

incident light:
gy =e€*”(coshy + p. sinhz), (12)

g, =e* (coshy — p, sinhn). (13)

They are easily interpretable: The gain reachescamum when the major eigenstate of
the density operator of the incident light is trartsed with the major intensity transmittance of
the device and the minor eigenstate with the miramsimittance. When, on the contrary, the
major eigenstate of the density operator of thédamt light passes through the device with a
minimum intensity transmittance and it is the mimdgenstate that benefits of the maximum
transmittance, the gain is minimum. These (relatesdreme values of the gain, equations (12),
(13), depend on the dichroic device, but also endibgree of polarization of the incident light.



Physically, both conditions i+ s and n:. s mean that thelichroic device is matched
with the polarization state of the incident lighence its major eigenstate has the same (gsgnerall
elliptical) form as the SOP of the incident lighthe former condition requires that the major
eigenstate of the device coincides with the SORhefincident light, the latter that the minor
eigenstate of the device coincides with this S®R.Wworth mentioning that the condition: : s also
requires that the handedness of the correspondiagzation forms (of the incident light and of the
major eigenstate of the device) is the same. Orotier hand, for the condition:. s, the same
polarization forms must have the major axes orthaband opposite handedness.

When the angle. betweem ands is continuously varied, the gain changes betwgen
andgn, according to equation (10). dain contrasbbtained at the variation of the anglean be
defined:

— gM B gm (14)
gM + gm
and, with equations (12) and (13), its value is gilsg:
y=p tanhy. (15)

In the expression (15) of the gain contrast, tieédient light and the device are similarly
represented by two parameteps,— the degree of polarization of the incident light and
tanhyy , respectively. Let us exploit further this #amty for getting a precise physical
interpretation of the device parametanhy; .

On the one hand, whetanhy = , lle. when the dichroic device becomes an ideal (i.
total) polarizer, the gain contrast takes the valuine degree of polarization of the incident tigh

y=n;- (16)

Thus thedegree of polarizatioof a beam of light could be measured by meanstofah
polarizer matched with its SOP (having its uniqueseggate identical with the major eigenstate
of the density operator of the incident light), redynas the gain contrast in such a measurement.
This would come to a direct separation of the coteptepolarized and unpolarized components
of the light.

On the other hand, whem = 1, i.e. for completely polarized incident lighhe gain
contrast is:

y =tanhy . @an

The quantityanhy is the most relevant parameter of the dichdeweice, the most
suitable measure of its anisotropy. It varies fl@nor an isotropic device, to 1, for a device of
highest anisotropy. We will call it theegree of dichroisrof the device and will label it byy.

As well as the degree of polarization of a beam giftlicould be measured, as the gain
contrast, by means of a dichroic device matchethenSOP of the incident light, the degree of
dichroism of a dichroic device could be measuresl,aagain contrast too, by means of a
completely polarized beam of light whose SOP is hedcon the state of the device. In
conclusion, the expressions (15) of the gain cehtmraay be written in a symmetrical form with
respect to the device and to the incident light as:

_9v “9m _
y=—"—"="PiPq}| (18)
gM +gm i Md
There is some confusion, some overlapping, in literature concerning the term
transmittance and gain, e.g. reference (17). WeMgelthat things would be well clarified by




attributing the terngain (g) to the interaction light — device (it dependstio& device as well as on
the incident SOP), and the tetransmittance(z) solely to the device (it depends exclusively loa t
device structure).

Well known, the dichroic device is one of the bimtgl blocks in any decomposition of
polarization elements (1, 10, 17-19) and the gdirary polarization element is determined
exclusively by the characteristics of this buildisigck. Thus, the previous results are applicable
in the analysis of any deterministic (13) polari@atdevice.

Equation (18) gives us a first insight into thetféltat the gain of a dichroic device is
determined by two completely similar quantities,alésng the partially polarized light and the
partial polarizers. The full mathematical expressid this dependence, as well as its structure,
will be explored in the following section.

4. The generalized Malus’ law

As we have already mentioned, equation (10) givegyeneralized form of the Malus’ law for any
dichroic device and any SOP of the incident ligtar a linear ideal polarizer){ =0, 17, — —)
acting on totally linearly polarized lighti(= 1), the familiar squared-cosine Malus’ law isaited:

_ a
g =cos’ > (19)

For a total elliptic polarizer acting on totalljigical polarized light, Malus’ law keeps the
same form, but withr the angle between the Poincaré vectors of theipataand of the incident
light, n ands respectively (figure 1). This result, of a certggnerality, was first established in
reference (2) by a calculus of spherical trigonayetonsidered tedious even by its authors (20).

Having in mind the symmetry between the descrigtiohthe incident light SOP and of
the device, introduced in the previous section,cae lead the expression (10) of the gain to a
very symmetric form:

g =e?n 1+ p, cosa A 1- p, cosa
2
:TM ;Tm +pn s, Im ~Inm
g =71+ pgnlp;s) (20)

Equation (20) is a compact and expressive fornailawing that the variation of the gain
Is completely determined, up to an isotropic fagteiby the scalar product of two vectonss ,
the Poincaré vector of the incident light, aieh , which can be denominated as Poincaré vector
of the dichroic device. One can notice, in additiorwhat was already apparent from equation
(18), that the symmetry between the quantities whiescribe the polarization state of the light,
on the one hand, and the dichroic device, one ther dvand, does not only manifest in the gain
contrast, equation (18), but is present in the eqgression of the gain. This symmetry has its
roots in the fact that the SOPs and the dichroidcesvare similarly represented in the Pauli
algebra by Hermitian operators.

Forunpolarized incident lighthe gain given by the dichroic device reduces to:

Ty 7 =
gup:%:r_ (21)

Well known, the intensity of an unpolarized beatight incident on a dichroic device is



transmitted in a ratio given by the mean intensapsmittance of the device (the arithmetic mean
of its principal intensity transmittances). Halftbke incident light is transmitted with a gai,
half with the gair,, and the results amecoherently superposed the output.

Fortotally polarized lightthe gain given by a dichroic device may be put ssswely in
the forms:

gtp :Z_-(1+ pdsi m)

_; 1+s[n ir 1-s[n

! mo2
where, as we have already mentioneds the angle between the Poincaré unit vectorhef
incident light's SOP and of the devicg,andn, respectively (figure 1). In the (very particular)
case of linearly polarized light and a linear @rpolarizer,a/2 represents the angle, in the real
physical space, between the azimuth of the inci®&®P and that of the polarizer. In the more
general case of an elliptical polarization statéhef incident light and an elliptical polarizergth
connection between the angle on the Poincaré s@metehe real physical angle (for example,
between the major axes of the corresponding ellijpsdess straightforward.

The last form of the gain, equation (22), givegoad physical insight in what concerns
the transfer of completely polarized light througldichroic device. The light isc§herently
decomposed on the principal directions of the dichdevice (in the eigenstates of the device),
transmitted with the corresponding principal inignsransmittances of the devicgy andzy,,
and ¢oherently recomposed at the exit. The additivity of theengities of these components in
the output is due to the fact that they are ortna$jg polarized.

For getting a good physical insight in the geneeale ofpartially polarized light we may
use the decomposition corresponding to the soecglielarized-unpolarized dichotomy”, (6) p. 11.
The SOP of the patrtially polarized incident lightdecomposed into a completely polarized state
and an unpolarized one. This decomposition is wiqu

Ji(hp) =T A= p) i + 1 Pidigp- (23)

By using equations (20-22) it is straightforwaodverify the additivity (weighted by,
and 1 —p; respectively) of the gains for these components:

g=(1-pi)aup * PG - 24

Making use now of equations (21) and (22) thisodggosition of the gain may be put in
the insightful form:

g=(-p)r+ pi(rM co§%+rm sin %) (25)

Maybe this is the most expressive form of the gaimed Malus’ law. The partially
polarized incident light is (mentally) decomposedaherently into an unpolarized component
and a completely polarized one. The gain giverheydichroic device (e.g. a partial polarizer) for
the unpolarized component is the mean intensitgstrattance of the devic&. The totally
polarized component, in its turn, is coherently aleposed in two orthogonally polarized
components along the eigenstates of the deviceseTlast components are transmitted through
the device with its intensity transmittanceg, and r,, and all the components are added in
intensity at the output.

In the following we shall present some graphichistrations of the generalized Malus’
law. We will refer to the most widespread case iohibic devices, namely that of diattenuators.
The graphs represent the gain as a function oatiggea between the Poincaré unit vectors of

=Ty c052%+rm sinzg, (22)




the incident light SOPs , and of the devica). We have to note that the variationsomeans a

change of the structure (characteristics) of thehrdic device or of the polarization of the
incident light: fora = 0, the device is matched paralleli( s ) and fora =z antiparallel 6. s)
with the incident light SOP. Only in the case ofelar polarizers acting on linearly partially
polarized light the variation af has a straightforward correspondent in the regséiohl space.

In figure 2 the variation of the gain with the amglis illustrated for the action of a partial
polarizer on partially polarized incident light. & fiirst term of equation (25), corresponding to the
unpolarized component of the incident light, doesdepend on the angte For a given degree
of polarization of the incident light, this termp#nds solely on the mean intensity transmittance
of the device,r, and constitutes an invariable contribution to titt@l gain. In figure 2 the term
is represented by the dashed line. The second térequation (25), corresponding to the
completely polarized component of the incidenttijgh represented in figure 2 by the part of the
graph situated above the dashed line. It is a bigrieontribution with respect to the anglelts
extreme values, equal ppry and p; o, are obtained when the SOP is aligned with theonmad
minor axes of the dichroic device i 0 andr, respectively).
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Figure 2. Variation of the gain with the angléor partially polarized incident light, whegm and
T are constant. The dashed line represents the lootidm of the unpolarized component
pi=0.7,7y = 0.8,7,, = 0.2

The variation of the gain with the angleemerges entirely from the completely polarized
component of the incident light, which is thus swirce of the gain contrastThe unpolarized
component of the incident light limits the gain tast to a valugy;. There are two reasons for
which the gain contrast, is, in general, lower than unity: the partialgr@tation of the lightp; <
1, and the imperfection of the polarizpg,< 1. They manifest apparently in figure 2: thetfin
the constant gain term (dashed line) corresponttirthe unpolarized component, the second in
the fact that the gain does not decrease all thetavthe dashed line (for = 7).

In figure 3 the variation of the gain with the &ng is illustrated for the action of a
perfect polarizer on partially polarized incidemght. In the case of a perfect polarizer, the
unpolarized component of the incident light is hedinsmitted and half absorbed by the device.
From equation (25), the invariable contributiortlus component to the total gain is equal to (1 —
p)/2. It follows that the extreme values of the giinpartially polarized light incident on a total
polarizer are equal to (1py)/2 and (1 +p)/2, respectively. They are represented in figuiey3
the two dashed lines, which are symmetric with eespo a line situated at g== 0.5.
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In the limit case of completely polarized light ident on a total polarizer — even not a
linear polarizer — the elementary square cosinmfof the Malus’ law is obtained. In this case
the gain contrast is completely maximized.
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Figure 3. Variation of the gain with the angléor partially polarized incident light, when and
T are equal to 1. The dashed lines represent there&tvalues of the gain
pi=06,mm=1,7,=0

5. Conclusions

In this paper we have applied a vectorial pure apeial Pauli algebraic approach in analyzing
the gain given by a dichroic device for partialglgrized incident light.

The parameterization of the problem specific ie #pproach leads to simple, expressive
and symmetric results- e.g. the expression (20) of the gain, or the f(#5) of the generalized
Malus’ law. Our approach is parameterized in a reanvell adapted to the symmetries of both
the polarization states and of the devices. Onotie hand, this approach is performed in the
Hilbert space of the density operators of the podaion states and of the devices, which have an
identical geometric representation on the Poinsatgere. On the other hand, concerning the
devices, it addresses to their eigenstates andwabgess, which both reflect the symmetry of the
device.

An essential aspect of this parameterization & fdtt that the incident light and the
device are described by similar, complementary mpatars: the degree of polarizatiqn, and
the degree of dichroisnpg, respectively, and the corresponding Poincaréovegss andpy .

In these terms, the gain contrast is simply tloelpet of the degree of polarization of the
incident light and the degree of dichroism of tlewide, equation (18). The expression of the gain
takes a simple and symmetric form, equation (2®:gain is essentially determined by the scalar
product of the Poincaré vectors of the light andtled device. A remarkable aspect of the
complementarity light/device revealed by this apgtois that both the degree of polarization of
the incident light and the degree of dichroism ld tlevice are equal with the gain contrast in
suitable complementary arrangements, equationsafidb)17) respectively.

Finally, by using the polarized/unpolarized diary a simple and physically expressive
form of the Malus’ law, equation (25), is obtained.

In fact, this approach sets in the simplest andtnsnitable mathematical terms our
intuitive representation of the interaction polad4ight — dichroic devices.

These results could be applied straightforwandlyolarization metrology (21, 22).
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Appendix

One of the reviewers has signaled an important chspennected with our paper, namely that the
partitioned-matrix, semi-vectorialized form of tMueller calculus leads to a compact vectorial faim
the gain expression, similar to our Eqg. (20).

Because, to the best of our knowledge, the deducfithe gain equation (A4) in the frame of the
partitioned Muller matrix language (7-10) isn’'t fioulated in the literature, we present it here m fibrm
given by our reviewer:

The partitioned form of the Mueller matrix of a putichroic system is:
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1 D'
Mp = moo{ } (A1)

P mj

where

* Dis the “diattenuation vector” whose modulDss the diattenuation;

e P is the “polarizance vector” whose modulRss the polarizance (in the considered case of
orthogonal (or homogeneous) diattenuatBrs,D and

mp = (L- D?)Y?] +§[1—(1—D2)1’2]D><DT, (A2)

wherel is the 3x3 identity matrix;

* My, is the gain for unpolarized light.

Using the partitioned form of the Stokes vector:

s'=1(Lps)T, (A3)
wherep is the degree of polarizatios,is the normalized vectorial part of the Stokesteeandl is the
intensity of the incident light, then

g = Myo @+ Ds) =my, (1+ Dpcosa) , (A4)
where a is the angle between the vectorial part of thediect lights and the diattenuation vectbrof the
system.
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