
HAL Id: hal-00687630
https://hal.science/hal-00687630

Submitted on 13 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic optimization of a chain sliding mode
controller for the mobile robot maneuvering

Alexander Terekhov, Jean-Baptiste Mouret, Christophe Grand

To cite this version:
Alexander Terekhov, Jean-Baptiste Mouret, Christophe Grand. Stochastic optimization of a chain slid-
ing mode controller for the mobile robot maneuvering. International Conference on Intelligent Robots
and Systems (IROS), 2011, San Francisco, United States. pp.4360-4365, �10.1109/IROS.2011.6094956�.
�hal-00687630�

https://hal.science/hal-00687630
https://hal.archives-ouvertes.fr


Stochastic optimization of a chain sliding mode controller for the

mobile robot maneuvering

Alexander V. Terekhov, Jean-Baptiste Mouret, Christophe Grand

Abstract— In this study we present a chain sliding mode
controller for the control of a four wheeled autonomous mobile
robot performing aggressive turning maneuver to 90 degrees on
a loose surface. The controller consists of a set of local sliding
mode controllers and the hyperplanes of switching between
them. The parameters of the sliding mode controllers and
the hyperplanes are obtained using methods of multiobjective
stochastic optimization applied to a model of the robot. The
obtained controller is used to drive the mobile robot. The results
show that is capable to control the robot during aggressive
maneuver. In particular, the steering radius obtained with the
controller was two times smaller then the minimal steering
radius admitted by the robot.

I. INTRODUCTION

As the results of DARPA Grand Challenge clearly show,

visual systems for unmanned vehicles make significant steps

forward [1], hence increasing the average speed of au-

tonomous vehicles. However, the path tracking algorithms

do not evolve significantly. It may be argued that further

increases of the vehicle speed will be delayed by the in-

ability of the path-tracking algorithms to cope with the task,

especially during the drift.

With significant progress in the quality of the sensors and

perception algorithms the necessity comes to develop the

controllers of the vehicle, capable to operate at high move-

ment speeds. Most of the current day controllers are essen-

tially based on the virtual vehicle algorithm [2]. In particular,

the vehicle is usually modeled as a non-holonomic system,

thus excluding the possibility of the drift and inevitably

limiting its maneuverability. Some efforts has been made

to enhance the performance of the virtual target algorithm

using a sliding mode controller [3] by taking the slippage

into account.

The general goal of the developing the new controllers

would be to achieve the performance comparable to pro-

fessional drivers. One of the promising approach is based

on recording the actions of human drivers and their fusion

with virtual vehicle-like algorithms. Impressive results were

recently reported for autonomous aggressive parking [4].

However, this approach is only limited to the autonomous

cars. In case of different vehicle mechanics (for example,

independently control motor wheels) the experience of the

rally racers cannot be directly exploited.

This work was supported by DGA, grant REI 2008.34.0018
The authors are with Institut des Systèmes Intelligents et de Robotique,

UPMC-CNRS, 4 Place Jussieu, 75005 Paris, France.
A.V. Terekhov: avterekhov@gmail.com
J.-B. Mouret: mouret@isir.umpc.fr
C. Grand: christophe.grand@isir.upmc.fr

Another way to approach the problem would be to use

the classical scheme, used, for example for the ballistic

rockets control. Namely, to split the control problem into

the combination of finding the optimal trajectory (using

dynamical model of the vehicle) and its stabilization it with a

presumably linear feedback system. Recently, we made few

steps in this direction for a four-wheels mobile robot per-

forming highly aggressive turning maneuver on loose surface

[5], [6]. We discovered that the use of stochastic optimization

can be very helpful in designing the optimal trajectory and

feedforward control inputs, but the problem of the feedback

stabilization may be difficult. The difficulties come from the

fact that during the aggressive turning maneuver there is

significant lateral component in the vehicle’s motion, while

the vehicle is locally non-controllable in this direction. It

means that from the local view point, the lateral movement

of the vehicle is ballistic, i.e. it is more like the flight of

a bullet, for which only initial speed and direction can be

controlled. It follows that if the stabilization is at all possible

it would probably require the feedback law, which would

be non-linear or time-dependent, or both. Our attempts to

use multilayer perceptron to approximate this law resulted

in control laws, which are hardly feasible to be implemented

in a real robot [6]

In the current paper we consider the problem of the control

of a four-wheeled mobile robot performing aggressive 90

degrees turn maneuver on a loose surface. We aim at finding

the controller, which would demonstrate the performance,

comparable to professional rally drivers. Based on our past

experience [5], [6] we search for a way to find the con-

troller that would combine optimal maneuver execution in

feedforward manner with feedback mechanisms, stabilizing

the execution.

A. Motivation

The ideal controller would follow the optimal trajectory

from any point of the state space. For such controller any

disturbance would be just a shift of the initial conditions,

while the movement would always remain optimal. However,

such controllers are possible to build only for the simple

systems, which can be solved analytically. This is definitely

not the case for the vehicle maneuver control, where the

wheel-road interaction can be described by a fast changing

significantly non-linear function of the vehicle state. One

might think of finding the solutions computationally for

all possible initial conditions and putting them in place on

demand. However, it is hardly feasible because of the high



dimension of the state space and the sensitivity of the wheel-

road interaction model.

Still for some classes of the optimal control problem

finding the optimal control law for every point of the state

space seems feasible. Thus, for example, it is known that

under some conditions the solution of the problem of the

movement time minimization has a bang-bang structure,

meaning that it switches between the maximum and mini-

mum admissible values of the control inputs. The switching

occurs when the state of the controlled object crosses a

specific hypersurface in the state space. For such systems the

problem of the synthesis of the optimal controller is limited

to finding the switching hypersurfaces. The latter is still not

so simple because they may be significantly curved. The form

of the optimal switching hypersurface is determined by the

particular dynamics of the controlled object. For the general

optimal control problems the situation is even worse because

the control inputs may take intermediate values.

Thus, the problem of the optimal control synthesis seems

hardly solvable. However, for our specific purpose it is not

necessary to know the optimal solutions for every point of

the state space. It may be sufficient to have them only inside

a domain of the state space surrounding the trajectory of

the maneuver and possible deviations from its execution.

In this case the switching surfaces may be approximated

by hyperplanes and the change of the control inputs may

be approximated by the piecewise linear functions. It must

be noted that the piecewise approximation of the optimal

control inputs was shown to be able to fit the actions of the

professional rally racers [7]. Moreover, the hyperplane-based

approximations of the switching hypersurfaces are vastly

used in the sliding mode control.

B. Chain sliding mode controller

The chain sliding mode controller is a set of sliding mode

controllers involved one after another. The idea is to have

different sliding mode controllers in different parts of the

state space and to switch between them when the object’s

state crosses a switching hyperplane.

Let ξ be the vector of the observations, appended with a

unit value:

ξ =

(

1
y

)

,

where y is the vector of the observations.

As the local controllers we use the second order sliding

mode controllers, whose advantages are described in [8].

Every local controller is given by the switching surface,

which can be defined by a vector η of the same dimension

as ξ. The rate of change of the control input u is given by

formula:

u̇ = k sign (η, ξ) , (1)

where k is a constant value, limiting the rate of change of

the control values; the brackets denote the scalar product.

Unlike classically used sliding mode controllers, the for-

mula (1) has integration. As a consequence the control

value u is a piecewise linear function, instead of piecewise

Sliding line #2

Sliding line #3

Switchihg line #1

Switching line #2

Sliding line #1

Fig. 1. Schematic representation of the chain sliding mode controller. The
trajectory of the object state is denoted with the dotted line. The initial
position is shown with the black dot.

constant. Moreover, the sliding surface is shifted from the

origin, since the first element of ξ always equals one. Of

course, in addition to (1) the values u must be bounded be

their maximum and minimum admissible values: umin ≤

u ≤ umax.

The formula (1) defines a local controller. The global

controller is defined by a set of local controllers, which are

interchanged when the point ξ crosses controller-switching

hyperplanes, which we call “switching hyperplane”. The

switching hyperplanes can also be defined by its normal

vector σ. The switching happens when the value

s = (σ, ξ) (2)

changes its sign.

The whole control scheme is illustrated in Fig. 1. Initially

the robot is controlled by the controller, defined by the vector

η1 and the coefficient k1. When the point ξ crosses the

hyperplane (line in the figure), defined by the vector σ1, the

scalar product (σ1, ξ) changes its sign. As soon as it happens

the control vector η1 and value k1 are substituted by the new

control vector η2 and the new control value k2, which are

used until the hyperplane, defined by σ2, is crossed. The

switching of the controllers is usually accompanied by the

jump of the control parameters, resulting from the fact that

the sliding mode controllers are not aligned at the switching

point.

In this paper we use the methods of stochastic optimization

in order to find a chain sliding mode controller to govern an

aggressive 90 degrees turning maneuver of a four-wheeled

mobile robot on a loose surface. We build a relatively

simple dynamical model of the robot for tuning the controller

and analyze its robustness based on a more complicated

dynamical model. In supplementary materials we present a

video of preliminary results of the robot control.



Fig. 2. Mobile robot “fastBot 2”, for which the controller is designed.

II. MATHEMATICAL MODEL

A. Short robot description

The controller is designed for the manually designed four

wheeled mobile robot “fastBot 2”, shown in Fig. 2. The

description of the previous version of the platform can be

found in [9].

Shortly, the robot represents a four-wheeled mobile plat-

form, whose approximate mass geometrical characteristics

are given in table I. The axles of the robot are equipped

with differentials. The front axle admits Ackerman steering

of the wheels. The breaking system is installed on the rear

axle. When the breaks are on the axle rotation is excluded,

while the differential admits the rotation of the wheels can

rotate in opposite directions.

The propulsion of the robot is performed by the brushless

motor, whose torque is transmitted to the front axle through

a gear set. The motor is controlled by a servo amplifier, using

the output of the encoder, installed on the motor shaft. The

servo amplifier works in velocity tracking mode. The steering

and the breaks are controlled by servomotors, working in

position tracking mode.

B. Mathematical model

The schematic representation of the simplified model of

the robot is given in Fig. 3. The position of the robot is

defined by the location of its center of mass x, y and the

heading angle ϕ between the x axis and the longitude axis

of the robot. The motion of the robot satisfies the equations:

ẋ = Vm cosϕ− Vl sinϕ,
ẏ = Vm sinϕ+ Vl cosϕ,
ϕ̇ = ω,

Jω̇ = T,

MV̇m = Fm +MωVl,

MV̇l = Fl −MωVm,

(3)

where ω is the angular velocity of the robot’s trunk, Vm and

Vl are the projections of the linear velocity of the robot’s

center of mass on the medial (longitude) and lateral axes

respectively, Fm, Fl and T are the total medial and lateral

Fig. 3. Schematic representation of the robot.

forces and the total torsion torque, defined as the following:

Fm = Fm1 cosα1 − Fl1 sinα1 + Fm2 cosα2−

Fl2 sinα2 + Fm3 + Fm4,
Fl = Fl1 cosα1 + Fm1 sinα1 + Fl2 cosα2+

Fm2 sinα2 + Fl3 + Fl4,
T = L(−Fm1 cosα1 + Fl1 sinα1 + Fm2 cosα2−

Fl2 sinα2 − Fm3 + Fm4)+
d(Fl1 cosα1 + Fm1 sinα1 + Fl2 cosα2+
Fm2 sinα2 − Fl3 − Fl4),

Fli, Fmi are lateral and medial projections of the tangential

forces of wheel-road interaction for each wheel reference

frame (see Fig. 3), α1, α2 are the steering angles of the left

and right wheels, respectively.

For the forces Fmi and Fli we use the brush model, which

is relatively simple computationally, but at the same time

captures the main features of the wheel-road interaction. The

details of the brush model can be found in [10]. Roughly, the

medial and lateral tangential forces are defined as nonlinear

function of the lateral and medial projections of the slippage

velocity, Vsmi and Vsli, that is the velocity of the contact

point of the wheel (in case of no sliding this velocity is

zero):

Fmi =µFnif(Vsmi/Vi),

Fli =µFnif(Vsli/Vi),
(4)

where Vi is absolute value of the velocity of the axle of i-th
wheel, Fni is the normal force at the i-th wheel contact point

and µ is the coefficient of Coulomb friction. The function f
depends on the tangential stiffness of the tire cp.

To determine the normal forces in (4) we used the method

described in [11]. The resultant normal forces for every

wheel is given by the equations:

Fn1 =
M

4dL
(dLg − hLal − hdam)

Fn2 =
M

4dL
(dLg + hLal − hdam)

Fn3 =
M

4dL
(dLg − hLal + hdam)

Fn4 =
M

4dL
(dLg + hLal + hdam)

(5)

where h is the height of the center of mass of the robot,

am and al are projections of the robot’s acceleration on the

corresponding axes.



The equation (5) describes weight redistribution caused

by the acceleration of the center of mass of the robot in

case when the pitch and roll angles of the robot are close to

zero. However, to compute the medial and lateral acceleration

one must provide the total medial and lateral tangential

forces, which, according to the brush model, depend on the

normal forces themselves. In order to solve this problem

we made an assumption that the weight redistribution (5)

does not happen instantly but with a characteristic time τ ,

which roughly correspond to the characteristic time of the

suspension system of the robot. We appended the dynamic

equations of the robot (3) with the following:

τ ȧl = Fl/M − al,

τ ȧm = Fm/M − am.
(6)

To determine the velocities in (4) we need to have the

angular velocities of the wheels, ωi. We represent of the

individual wheels velocities as a superposition of the axle

angular velocities ωf , ωr and the difference between the left

and write wheel velocities at each axles δωf , δωr allowed

by the differential:

ω1 = ωf + δωf , ω2 = ωf − δωf ,
ω3 = ωb + δωb, ω4 = ωb − δωb.

(7)

We assume that the servo amplified tracks velocity ideally

the desired angular velocity of the front wheels and thus ωf

becomes a control input. The angular velocity of the rear

axle ωr is assumed to appear from the interaction with the

ground reaction forces and the breaking toque Tb:

Jwω̇r + νwωr = −
rw
2

(Fm3 + Fm4) + Tb, (8)

where Jw is the moment of inertia of the wheel and νw is the

friction in the axle. For the breaking torque we used dynamic

friction model instead of the Coulomb friction model, which

would be more appropriate in this case. We preferred the first

one because for the given set of parameters the performance

of two models is nearly the same, while the first one suits

better the numeric simulation.

Tb =

{

−νbωr breaks on,

0 breaks off.
(9)

The coefficient of the breaks friction νb was chosen

sufficiently high, but not threatening the stability of the

system.

Finally, we assume that the distribution of the wheels

forces within the same axle is determined by the ground

interaction forces:

Jwδω̇f + νwδωf = −rw (Fm1 − Fm2)
Jwδω̇r + νwδωr = −rw (Fm3 − Fm4)

(10)

For sake of simplicity we ignore the dynamics of the

steering system, assuming that it the servomotor tracks

ideally the desired steering angle, denoted as α. The steering

angles of each of the wheels were computed from Ackerman

formulas:

α1 = arctan
sinα

1− d
2L

sinα
,

α2 = arctan
sinα

1 + d
2L

sinα
.

(11)

On the whole the state of the system is 11-dimensional.

The system admits 3 control inputs: the desired angular

velocity of the front wheels ωf , the desired steering angle α
and the state of the breaking system b.

The parameters of the model used in the simulations are

presented in Tab. I. These parameters correspond approxi-

mately to those of the mobile robot “fastBot 2” shown in

Fig. 2.

TABLE I

PARAMETERS OF THE MODEL USED IN SIMULATION.

M 7.5 kg J 0.1 kg m2

L 0.20m d 0.175m

h 0.06m τ 0.05 s

µ 0.6 cp 10
5 N/m2

νw 0.01N m/s νb 0.1N m/s

Jw 0.0003 kg m2 r 0.075m

III. ESTIMATION OF THE CONTROLLER

PARAMETERS

We search for the optimal parameters of the presented

chain sliding mode controller to drive the robot making 90

degrees turn. We assume that the desired path is composed

of two orthogonal straight lines. The robot is located 6 m in

front of the turn, directed towards it and has initial velocity

of 3 m/s. The robot is then let to move for 4 seconds,

during which the steering angle, the front axle velocity and

the breaks command are controlled. The range of steering

angle change is fixed to ±25 degrees, the linear velocities of

the wheels are allowed to vary between 0.1 and 3 m/s, the

command to breaks was between 0 and 1. The breaks were

off if it was below 0.5 and they were on otherwise.

A. Controller

The controller assigns the steering angle, front wheels

velocity and the breaks command based on the observations.

We assume that the following information is available to the

robot:

1) s – the distance to the turn (negative before the turn

and positive after);

2) V – the magnitude of the velocity of the robot’s center

of mass;

3) ω – the angular velocity of the robot’s trunk;

4) δ – the signed distance from the trajectory to the

robot’s center of mass (positive when deviates left);

5) ψ – the signed angle between the heading direction of

the robot and the tangent to the trajectory (positive for

left turn).



The corresponding appended vector of the observations is

ξ = (1, s, V, ω, δ, ψ)
T
.

The controller with N local controllers is defined by the

set of the sliding mode vectors ηi with the corresponding

coefficients ki and by the switching surfaces vectors σj ,

i = 1, . . . , N , j = 1, . . . , N − 1. The dimension of each

of the vectors ηi and σj is equal to 6. On the whole, the

controller is parametrized by 7N − 3 scalar values. This

number corresponds to the controller of a single value, i.e.

the steering angle or the front wheels velocity, or the breaks

command.

In order to simplify the search of the control parameters

we assumed that before and after maneuver the robot was

controlled by an algorithm, resembling the virtual vehicle

controller. In other words, the first and the last sliding

mode vectors for the steering angle ηα and the front wheels

velocity ηV were set to predefined values:

ηα
1
= (0, 0, 0, 0.5, 0.5, 1)

T

and

ηV
1

= (3, 0,−1, 0, 0, 0)
T
.

The corresponding control laws are the following:

α̇ = −kα
1
sign

(

1

2
ω +

1

2
δ + ψ

)

,

V̇F = −kV
1
sign (V − 3) .

The breaks were set to “off”:

ηb
1
= (−1, 0, 0, 0, 0, 0)

T
.

The first controller is the classical path-tracking feedback

with the exception that it uses integrated values. The second

controller stabilizes the velocity of 3 m/s, the third one brings

the breaks command to “off”.

In the current paper we restricted the number of the

local controllers to 3 per the control value, which results

in 33 unspecified parameters. In addition to that we ran

optimization for 5 local controllers per control value but

we discovered that the number of controllers along the

trajectory never exceeded 3 for each value. It means that

the hypersurfaces of the controllers switching were such that

they were never crossed by the state of the robot.

B. Stochastic optimization

We search for the controller parameters that allow the

robot to perform the maneuver as fast as possible with

the minimal deviation from the desired path. Instead of

arbitrarily aggregating these two objectives into a single

function to optimize, we rely on a stochastic multiobjective

optimization algorithm that search for the set of Pareto-

optimal trade-offs, that is solutions that cannot be improved

with respect to one objective without decreasing their score

with respect to the other one.

Numerous algorithms have been proposed in the literature

to optimize several objectives in this fashion [12]; most of

them rely on the concept of Pareto dominance, defined as

follows: a solution p∗ is said to dominate another solution

p, if two following conditions are satisfied: (i) the solution

p∗ is not worse than p with respect to all objectives, (ii) the

solution p∗ is strictly better than p with respect to at least one

objective. Typical algorithms starts with a set of M random

points, called a population, and evaluate the objectives for

each point; these points are then sorted according to Pareto

dominance; the best points are kept and they are perturbed

(e.g. by adding a Gaussian noise) to generate new points

that will replace the worst ones; the objective are evaluated

for each new point and the sorting/perturbation cycle starts

again.

We here used the algorithm NSGA-II [13]—which follows

the previously described algorithm outline—implemented

in the Sferes v2 framework [14]. We performed 10,000

iterations with a population size of 300.

C. Disturbances

In absence of external disturbances and for the fixed

reference trajectory the optimal control can be learned in

purely feedforward manner. In order to avoid this sort of

over-learning of the control parameters we introduce model

disturbances to the system. In addition to the clean simula-

tion we ran the controller under disturbed conditions. The

following changes of the simulation parameters were used

as disturbance:

1) Vmax = 9m/s,
2) Vmax = 11m/s,
3) µ = 0.55,

4) µ = 0.65,

5) J = 2.5 kg ·m2 and M = 30 kg,

6) J = 3.5 kg ·m2 and M = 50 kg,

The accuracy and the average speed of the robot were

computed as the worst case over all disturbances, i.e, the

maximum deviation from the path and the lowest average

speed were taken as the performance characteristics of the

given controller.

D. Optimization results

The outcome of the optimization algorithm is an approx-

imation of the Pareto front for the two objective functions:

average speed of maneuver and its accuracy (the worst

cases over 6 disturbances). In this case all solutions were

approximately the same, so we selected the one with the

best accuracy.

The trajectory of the selected solution is given in Fig. 4.

It can be seen that the controller is able to track the desired

trajectory with rather high precision (the maximum deviation

is below 6 cm). In the simulations the maneuver is performed

with significant understeering: the robot nearly stops close

to the turn apex, while slipping slightly in lateral direction.

The the velocity and the breaks control inputs are shown in

Fig. 5. It can be seen that the robots decelerate and breaks at

the same time, while approaching the turn apex. Short before

the turn it starts accelerating, but keeps the breaks “on”. At

the same time instance it starts steering (see Fig. 6).



1.5 2 2.5 3 3.5 4 4.5

0

0.5

1

1.5

2

2.5

x (m)

y
 (

m
) Model

Robot

Fig. 4. The trajectories of the model and the robot, controlled by the same
algorithm. In both cases the dashed line denotes the reference trajectory.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

S
p

e
e

d
, 

m
/s

Time, s

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

S
p

e
e

d
, 

m
/s

Time, s

 

Speed command

Model

Robot

Fig. 5. The velocity and breaks commands of the same controller executed
on the model and on the robot. The turn apex occurs at 2.5 sec in both cases.

The steering angle controller has 3 clearly marked phases:

the first and the last one coinciding with regular path-tracking

algorithm and the middle one, responsible for the steering

during maneuver.

In [6] for the same task we developed a controller com-

bining feedforward control inputs with the feedback based

on a multilayer perceptron. The resultant control signals

were rather ragged and unlikely to work on a real robot.

In contrast, the controller presented here, produced signals

resembling a lot the feedforward controller we used in

our previous study. Moreover, the control commands are

qualitatively similar to those reported for professional rally

racers [7].

0 0.5 1 1.5 2 2.5 3 3.5 4
−30

−20

−10

0

10

20

30

S
te

e
ri
n
g
 a

n
g
le

, 
d
e
g
re

e
s

Time, s

 

Model

Fig. 6. The steering outputs of the same controller executed on the model
and on the robot. The turn apex occurs at 2.5 sec in both cases.

E. Preliminary experiments with robot

The same controller was executed on the real robot. The

tests were performed in the university campus on the stone

floor. In order to make the contact more slippy we attached

plastic tape on the wheels of the robot. A representative

example of the robot movement is given in Supplementary

Materials.

The obtained trajectory is shown in Fig. 4. Clearly, in the

real robot the controller demonstrates much worse perfor-

mance than in simulations. Moreover, as it can be seen from

Fig. 5 and Fig. 6, the same controller produced significantly

different commands when applied to the model and to the

real robot. In reality the real robot decelerated significantly

less when approaching the turn than it did in the model. It

might happen because in the real robot the initial speed was

slightly above 2 m/s instead of 3 m/s used in simulations.

For the slippery wheels the robot had higher speeds were

impossible to achieve.

Yet, few details must be noted, which make us enthusiastic

about the controller. First of all, the robot actually performed

the maneuver. Moreover, under no-slippage condition the

robot’s steering system admits only turns with the steering

radius of 1 m and above. In contrast, in the experiment

the robot turned with about 0.5 m steering radius benefiting

significantly from the slippage and the breaking system. Both

in the simulation and in the experiment the maneuver was

performed with significant understeering. The slippage angle

was about 35 degrees in the experiment and close to 70

degrees in the simulations.

To be sure that the observed performance achieved due to

the proper controller we tried to find the parameters manually

on the real robot starting from the scratch, however we did

not succeed. Overall, we believe that the proposed control

scheme might be used for the robot control.

IV. CONCLUSION

In this paper we presented the chain sliding mode con-

troller, consisting of local sliding mode controllers and the

hyperplanes of switching between them. We applied the

controllers of this structure to the problem of aggressive

maneuver execution by a four-wheeled mobile robot. The

maneuver consisted in 90 degrees turn at velocity about



3 m/s. The parameters of the controller were determined

using the methods of stochastic multiobjective optimization.

The obtained controller produced reasonable commands in

the simulations and when working on the real robot.

REFERENCES

[1] S. Thrun et al., “Stanley: The robot that won the darpa grand
challenge: Research articles,” J. Robot. Syst., vol. 23, no. 9, pp. 661–
692, 2006.

[2] M. Bibuli, G. Bruzzone, M. Caccia, and L. Lapierre, “Path-following
algorithms and experiments for an unmanned surface vehicle,” J. Field

Robot., vol. 26, no. 8, pp. 669–688, 2009.
[3] E. Lucet, C. Grand, D. Salle, and P. Bidaud, “Dynamic yaw and

velocity control of the 6wd skid-steering mobile robot roburoc6 using
sliding mode technique,” in Intelligent Robots and Systems, 2009.

IROS 2009. IEEE/RSJ International Conference on, pp. 4220–4225,
May 2008.

[4] Z. Kolter, C. Plagemann, D. T. Jackson, A. Ng, and S. Thrun, “A
probabilistic approach to mixed open-loop and closed-loop control,
with application to extreme autonomous driving,” in Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), (Anchorage, Alaska,
USA), 2010.

[5] A. V. Terekov, J.-B. Mouret, and C. Grand, “Stochastic multi-objective
optimization for aggressive maneuver trajectory planning on loose sur-
face,” in Proc. of the IFAC conference on Intelligent and Autonomous

Vehicles, (Lecce, Italy), 2010.
[6] A. V. Terekov, J.-B. Mouret, and C. Grand, “Stochastic optimization of

a neural network-based controller for aggressive maneuvers on loose
surfaces,” in Proc. of the IEEE Int. Conf. on Intelligent Robots and

Systems (IROS), (Taipei, Taiwan), 2010.
[7] E. Velenis, P. Tsiotras, and J. Lu, “Aggressive maneuvers on loose

surfaces: Data analysis and input parametrization,” in 15th IEEE

Mediterranean Control Conference, June 26-29, Athens, Greece, 2007.
[8] G. Bartolini, A. Ferrara, E. Usai, and V. I. Utkin, “On multi-input

chattering-free second-order sliding mode control,” Automatic Control,

IEEE Transactions on, vol. 45, no. 9, pp. 1711–1717, 2000.
[9] E. Lucet, C. Grand, A. Terekhov, and P. Bidaud, “Experimental study

of a fast mobile robot performing a drift maneuver,” in Proceedings of

Clawar’10: 12th Int. Conf. on Climbing and Walking Robots, (Nagoya,
Japon), 2010.

[10] H. Pacejka, Tyre and Vehicle Dynamics. SAE International, Elsevier,
2 ed., 2005.

[11] E. Velenis, P. Tsiotras, and J. Lu, “Modeling aggressive maneuvers
on loose surfaces: The cases of trail-braking and pendulum-turn,” in
European Control Conference, Kos, Greece, July 2-5, 2007.

[12] K. Deb, Multi-objectives optimization using evolutionnary algorithms.
Wiley, 2001.

[13] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan, “A Fast Elitist
Non-Dominated Sorting Genetic Algorithm for Multi-Objective Opti-
mization: NSGA-II,” in Proceedings of the Parallel Problem Solving

from Nature VI Conference, pp. 849–858, Springer. Lecture Notes in
Computer Science No. 1917, 2000.

[14] J.-B. Mouret and S. Doncieux, “Sferes v2: Evolvin’ in the multi-core
world,” in IEEE Congress on Evolutionary Computation, 2010 (CEC

2010), 2010.


