Partitioning Harary graphs into connected subgraphs containing prescribed vertices

Abstract : A graph G is arbitrarily partitionable (AP for short) if for every partition (tau_1, ..., tau_p) of |V(G)| there exists a partition (V_1, ..., V_p) of V(G) such that each V_i induces a connected subgraph of G with order tau_i. If, additionally, each of k of these subgraphs contains an arbitrary vertex of G prescribed beforehand, then G is arbitrarily partitionable under k prescriptions (AP+k for short). It is known that AP+k-graphs on n vertices are (k+1)-connected, and have thus at least n(k+1)/2 edges. We show that there exist AP+k-graphs on n vertices and n(k+1)/2 edges for every k >= 1 and n >= k.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2014, Vol. 16 no. 3 (in progress)
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00687607
Contributeur : Julien Bensmail <>
Soumis le : vendredi 13 avril 2012 - 15:59:14
Dernière modification le : mercredi 6 septembre 2017 - 14:06:06
Document(s) archivé(s) le : mercredi 14 décembre 2016 - 21:59:54

Fichier

bbs2012.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00687607, version 1

Collections

Citation

Olivier Baudon, Julien Bensmail, Eric Sopena. Partitioning Harary graphs into connected subgraphs containing prescribed vertices. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2014, Vol. 16 no. 3 (in progress). <hal-00687607v1>

Partager

Métriques

Consultations de
la notice

52

Téléchargements du document

119