Sparsity-based optimization of two lifting-based wavelet transforms for semi-regular mesh compression

Abstract : This paper describes how to optimize two popular wavelet transforms for semi-regular meshes, using a lifting scheme. The objective is to adapt multiresolution analysis to the input mesh to improve its subsequent coding. Considering either the Butterfly- or the Loop-based lifting schemes, our algorithm finds at each resolution level an optimal prediction operator P such that it minimizes the L1 norm of the wavelet coefficients. The update operator U is then recomputed in order to take into account the modifications to P. Experimental results show that our algorithm improves on state-of-the-art wavelet coders.
Type de document :
Article dans une revue
Elsevier Computers and Graphics, 2012, 36 (4), pp.272-282. <10.1016/j.cag.2012.02.004>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00687445
Contributeur : Frédéric Payan <>
Soumis le : vendredi 13 avril 2012 - 10:57:53
Dernière modification le : vendredi 13 avril 2012 - 11:01:11
Document(s) archivé(s) le : samedi 14 juillet 2012 - 02:22:37

Fichier

2012_Payan_CAG.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Aymen Kammoun, Frédéric Payan, Marc Antonini. Sparsity-based optimization of two lifting-based wavelet transforms for semi-regular mesh compression. Elsevier Computers and Graphics, 2012, 36 (4), pp.272-282. <10.1016/j.cag.2012.02.004>. <hal-00687445>

Partager

Métriques

Consultations de
la notice

235

Téléchargements du document

154