
HAL Id: hal-00687225
https://hal.science/hal-00687225

Submitted on 12 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cloud-like Management of Grid Sites 2.0 Design Report
Henar Muñoz Frutos, Juan Caceres, Jose Lopez, Eduardo Huedo, Rubén

Montero, Evangelos Floros, Ioannis Konstantinou

To cite this version:
Henar Muñoz Frutos, Juan Caceres, Jose Lopez, Eduardo Huedo, Rubén Montero, et al.. Cloud-like
Management of Grid Sites 2.0 Design Report. 2011. �hal-00687225�

https://hal.science/hal-00687225
https://hal.archives-ouvertes.fr

Enhancing Grid Infrastructures with

Virtualization and Cloud Technologies

Cloud-like Management of

Grid Sites 2.0 Design Report

Deliverable D6.4 (V2.0)

15 December 2011

Abstract

This document reports about the design of the new developments for the compo-

nents involved in WP6. It involves getting interoperability by the usage of stan-

dards APIs like TCloud, OCCI or CDMI and the definition of services and virtual

machines by OVF format. In addition, new components have been incorporated

to WP6 work: the network manager provides networking configuration, isolation

by VLANs and firewall management, the storage manager allows for setting up

images and the inter-cloud connector works towards the instantiation of VMs on

different clouds, both private and public ones. Finally, some scalability policies

have been added in the service manager and the monitoring and accounting sys-

tems have been updated due to new users’ requirements.

StratusLab is co-funded by the

European Community’s Seventh

Framework Programme (Capacities)

Grant Agreement INFSO-RI-261552.

The information contained in this document represents the views of the

copyright holders as of the date such views are published.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED

BY THE COPYRIGHT HOLDERS “AS IS” AND ANY EXPRESS OR IM-

PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-

PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

THE MEMBERS OF THE STRATUSLAB COLLABORATION, INCLUD-

ING THE COPYRIGHT HOLDERS, OR THE EUROPEAN COMMISSION

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-

EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-

VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-

RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright c© 2011, Members of the StratusLab collaboration: Centre Na-

tional de la Recherche Scientifique, Universidad Complutense de Madrid,

Greek Research and Technology Network S.A., SixSq Sàrl, Telefónica In-

vestigación y Desarrollo SA, and The Provost Fellows and Scholars of the

College of the Holy and Undivided Trinity of Queen Elizabeth Near Dublin.

This work is licensed under a Creative Commons

Attribution 3.0 Unported License

http://creativecommons.org/licenses/by/3.0/

2 of 38

http://creativecommons.org/licenses/by/3.0/

Contributors

Name Partner Sections

Muñoz Frutos,

Henar

TID 2, 3, 4, 7, 8, 9

Caceres Expósito,

Juan Antonio

TID 3

Lopez Lopez, Jose

Manuel

TID 1, 2, 4, 7

Huedo, Eduardo UCM 2, 3, 5, 6, 7, 8

Montero, Rubén S. UCM 2, 3, 5, 6, 7, 8

Floros, Vangelis GRNET 7

Konstantinou,

Ioannis

GRNET 7

Document History

Version Date Comment

0.1 03 Oct. 2011 Document structure

0.2 10 Oct. 2011 Update Cloud APIs

0.3 11 Oct. 2011 Monitoring chapter and update in scalability

0.4 14 Oct. 2011 Networking, Storage, Federation

0.5 31 Oct. 2011 Introduction, Executive Summary and

Conclusions.

0.6 21 Nov. 2011 Revision

0.7 24 Nov. 2011 New version to satisfy revision comments

0.8 15 Dec. 2011 Final English and grammar corrections

2.0 15 Dec. 2011 Final Edition

3 of 38

Contents

List of Figures 6

List of Tables 7

1 Executive Summary 8

2 Introduction 10

2.1 StratusLab Architecture 10

2.2 Technical work in WP6 11

3 Interoperability 13

3.1 Cloud-like Application Programming Interfaces 13

3.1.1 TCloud . 13

3.1.2 Open Cloud Computing Interface (OCCI) 14

3.1.3 Cloud Data Management Interface (CDMI) 14

3.1.4 jclouds . 14

3.2 Virtual Appliance (Service) Language Definition 15

3.2.1 Open Virtualization Format 15

3.2.2 OVF extensions required for the grid site specification. . . 15

4 Service Scalability 17

4.1 Scalability policies. 17

5 Network Manager 19

5.1 Network Configuration. 19

5.2 Network Isolation . 19

5.3 Firewall Management . 19

4 of 38

6 Storage Manager 21

6.1 Storage Management in OpenNebula 21

7 Monitoring and Accounting 23

7.1 Monitoring . 23

7.1.1 Monitoring probes. 24

7.1.2 Architecture. 24

7.2 Accounting . 26

7.2.1 Grid infrastructure accounting 26

7.2.2 Cloud infrastructure accounting with OpenNebula. 27

7.2.3 Accounting stakeholders 27

7.2.4 Integration of Cloud and Grid accounting information . . . 28

8 Inter-Cloud Connector 30

8.1 Multi-Cloud Scenarios . 30

8.1.1 Cloud Bursting . 30

8.1.2 Cloud Federation . 30

8.1.3 Cloud Brokering. 31

8.2 Technology . 31

8.2.1 Cloud Bursting with OpenNebula. 31

8.2.2 Cloud Federation with OpenNebula 32

8.2.3 Inter Cloud Broker with Claudia 32

9 Summary 33

References 37

5 of 38

List of Figures

2.1 StratusLab Architecture . 11

7.1 Monitoring Systems . 25

6 of 38

List of Tables

2.1 Topics and Components . 12

3.1 Cloud-like APIs in StratusLab 14

7 of 38

1 Executive Summary

The Joint Research Activity (JRA), carried out in WP6, develops advanced features

for the innovative automatic deployment and dynamic provision of grid services as

well as scalable cloud-like management of grid site resources. The work on this

work package involves the implementation of innovative functionalities in Stratus-

Lab.

D4.4 Reference Architecture for StratusLab Toolkit 2.0 described the Stratus-

Lab architecture for Y2, as an updated version containing new components com-

ing from new users’ requirements and new topics. Thus, the present document,

D6.4, includes components or functionalities, identified in D4.4, which need de-

velopments and updates: i) interoperability, ii) service manager, iii) networking

manager, iv) storage manager, v) monitoring and accounting and vi) inter-cloud

connector.

Interoperability is an important key in the adoption of Cloud services. On one

hand, Cloud APIs are required for the distribution of IaaS Cloud and its access

outside the infrastructure. Due to it, StratusLab has been centered on standard

APIs like TCloud, OCCI, CDMI for the service manager, virtual machine manager,

storage and monitoring interfaces. On the other hand, the Open Virtualization

Format (OVF) is adopted in StratusLab for defining the service and virtual machine

details.

The service manager, Claudia, is the framework that manages a service (virtual

machine, network and storage as a whole) and optimizes its resource utilization by

dynamically scaling up/down services through elasticity rules. In this version of

the document, new scalability policies are included–the percentage of nodes to be

scaled and lazy scaling down.

The networking functionality that is going to be added in year 2 involves net-

work configuration, allowing a easier coexistence with DHCP servers; network

isolation, by means of VLANs; and firewall management, allowing filtering of vir-

tual machine traffic based on simple rules, e.g. TCP ports.

Regarding storage, WP6 is working on an Image Manager, which allows Open-

Nebula administrators and users to set up images to be used in VMs easily, and

describes its integration with the StratusLab Marketplace (for system images) and

with the Persistent Disk Service (for data).

In order to evaluate the VM execution status, the monitoring mechanisms con-

stantly check the performance of the system. Monitoring systems evaluate hosts,

8 of 38

virtual machines and services with respect to hardware, software and Key Perfor-

mance Indicators metrics. In addition the accounting systems exist for keeping

track of the amount of computing resources consumed per user over a period of

time.

Finally in year 2, StratusLab is starting to consider inter-cloud scenarios. In

particular, Stratuslab is considering three scenarios: cloud bursting (to a public

Cloud), federation (among two equal partners clouds, or StratusLab sites) and bro-

kering (by the existence of a broker). New developments are required for each

scenario in OpenNebula drivers or in Claudia modules.

9 of 38

2 Introduction

The Joint Research Activity (JRA) activity, carried out in WP6, develops advanced

features on innovative automatic deployment and dynamic provision of grid ser-

vices as well as scalable cloud-like management of grid site resources. More

specifically, the objectives to be accomplished can be expressed as [19]: i) the

extension of currently available service-level open-source elasticity frameworks

on top of cloud infrastructures, ii) the invention of new techniques for the efficient

management of virtualized resources of grid services and iii) the inclusion of novel

resource provisioning models based on cloud-like interfaces.

The present document is a continuation to the work done in D6.1, Cloud-like

Management of Grid Sites 1.0 Design Report [20], where an updated StratusLab

reference architecture was defined for year 1.

2.1 StratusLab Architecture
The document D4.4 Reference Architecture for StratusLab Toolkit 2.0 [21] docu-

mented the new updated version of the architecture for StratusLab. Figure 2.1 rep-

resents the this new version. It identifies two main blocks: “Image Management”

and “IaaS Cloud” and the main interactions users have with the system. The IaaS

Cloud contains the virtual machine manager, the service manager (see Chapter 4)

and the monitoring and accounting manager (see Chapter 7), components that were

already explained in D6.1[20]. New for v2.0 are the storage manager (see Chapter

6), network manager (see Chapter 5) and a control dashboard. The dashboard is

an upgrade of the web monitor service, with the important addition of accounting/-

billing functionality. The network manager provides added features such that users

can more dynamically create and configure deployment specific virtual networks,

in order to provide finer control and isolation of their system deployed in the cloud.

The storage manager includes the persistent disk manager and the OpenNebula im-

age manager. Another important new component is the “Inter-Cloud Connector”

(see Chapter 8), which is responsible for interfacing a given cloud site with an-

other. Due to this, new topics are established in D6.4 with respect to D6.1: storage,

networking and inter-cloud.

10 of 38

IaaS Cloud

Physical Computing Resources

KVM ...

VM Manager

iSCSI ...

Persistent Disk ManagerNetwork Services

XML-RPC → OCCI Proprietary REST → CDMI

Service Manager

TCloud

Image Management

Proprietary REST

Marketplace

Image Storage (Cloud, Web, Grid)

Physical Storage ResourcesPhysical Network Resources

Users

Network

isolation
...

D
a

ta
 c

o
ll
e

c
ti

o
n

 s
e

rv
ic

e

Monitoring & Accounting

(dashboard)

Proprietary REST

In
te

r-
c
lo

u
d

 C
o

n
n

e
c

to
r

Persistent Store

Figure 2.1: StratusLab Architecture

2.2 Technical work in WP6
D4.4 explained the StratusLab architecture updated for Y2 including information

about the different components. This document, D6.4, provides information about

these new topics in StratusLab, mainly materialized as components. Table 2.1

presents the topics for WP6, which includes gaps identified in WP4, requirements

from customers and other topics included in StratusLab Y2 work plan.

11 of 38

Table 2.1: Topics and Components

Topic Description Artefact Work in

StratusLab

Interoperability
Cloud-like APIs

TCloud extended

OCCI used

jclouds developed

CDMI possibly taken

from VENUS-C

(Network API) possibly taken

from Mantychore

(Accounting API) possibly taken

from VENUS-C

Language definition OVF extended

Scalability Scaling actions

SLA-powered services

Claudia scaling policies extended

Networking

Network configuration OpenNebula

Contextualization

extended

Network isolation OpenNebula Network

Manager drivers

developed

Firewall management OpenNebula Network

Manager drivers

developed

Storage
Persistent disk Persistent Disk Service developed in

WP5

Image and volume

management

OpenNebula Image

Manager drivers

developed

Monitoring &

Accounting

Cloud monitoring Solution based on Ganglia

or collectd

extended

Cloud accounting OpenNebula Accounting

Module

developed

Federation

Cloud Bursting OpenNebula Cloud

drivers / OpenNebula

Image Manager driver /

OpenVPN

used / developed /

used

Cloud Federation OpenNebula Cloud

drivers / OpenNebula

Image Manager driver /

OpenVPN

used / developed /

used

Cloud Brokering Claudia Placement

Module

developed

12 of 38

3 Interoperability

Interoperability is an important topic for StratusLab, allowing users to access dif-

ferent sites uniformly and to reuse running virtual images. StratusLab is focused on

the use of standards for its software implementations so that they can be interoper-

able with other providers, avoiding undesirable vendor lock-in. StratusLab works

on the introduction of standard APIs for the Cloud services and the identification

of a language for defining the service and virtual machines.

3.1 Cloud-like Application Programming Interfaces
StratusLab tries to provide grid users with a homogeneous computing environment

that simplifies application management and hides the infrastructure’s complexity.

The integration of grid and cloud technologies will bring grid application devel-

opers a more dynamic and flexible computing environment. In this framework,

StratusLab has to complement existing grid services by exposing cloud-like APIs

to users of the grid infrastructure. This will allow existing users to experiment with

these new APIs and to develop new ways to use grid resources.

In this direction, StratusLab works towards the use of cloud-like Application

Programming Interfaces (APIs) for managing cloud computing capabilities includ-

ing computation, networking, storage and so on. That is, service providers (e.g.

grid administrators) can use programmatic APIs to access to the shared resources

in order to manage them. Thus, the service providers request resources from the

infrastructure providers or IT vendors to deploy the services and virtual machines.

Concretely, StratusLab is working on the APIs shown in Table 3.1. The fol-

lowing sections will analyze these APIs.

As can be seen in the table, StratusLab is evaluating solutions coming from

other collaborating projects. For networking, the Mantychore project [13] is de-

veloping a system to provide network infrastructure resources as a service. For

accounting, the VENUS-C project [26] will provide a solution based on OGF’s

Usage Records [25]. Also, VENUS-C is developing a storage service supporting

CDMI.

3.1.1 TCloud

TCloud [24] is a RESTful API, submitted by Telefónica to the DMTF for consid-

eration, which constitutes an extension of some of the main standardization ini-

13 of 38

Table 3.1: Cloud-like APIs in StratusLab

TCloud OCCI CDMI jclouds Others

Service Manager X

VM Manager X X

Network Manager X Mantychore

Storage Manager X X X

Monitoring &

Accounting

X VENUS-C

tiatives in Cloud management, such as the Open Virtualization Format (OVF) and

vCloud [27]. This API provides operations for services and VM self-provisioning

operations, resource self-management and monitoring extensions.

The TCloud API includes an extension for monitoring which can be used to-

gether with other TCloud capabilities. It incorporates the operations admitted by

cloud resources for monitoring actions. Each operation is described using the

same notation as TCloud API [24] core operations. URIs are abbreviated using

the <item-uri> form, where item may be an organization, a Virtual Data Center, a

service, a service instance, and anything which can be measure.

The implementation of TCloud used in StratusLab is already provided by Clau-

dia, the StratusLab Service Manager, to be the access point for service providers.

3.1.2 Open Cloud Computing Interface (OCCI)

OCCI [15] is the OGF standard for infrastructure management interfaces in the

context of cloud computing. StratusLab will support this standard, which is already

supported in OpenNebula, and will ensure its interoperability with other imple-

mentations. Therefore, it will be possible to manage StratusLab compute, storage

and network resources with the OCCI standard interface provided by OpenNebula

using a RESTful service.

3.1.3 Cloud Data Management Interface (CDMI)

CDMI [18], released by SNIA (Storage Networking Industry Association), defines

the functional interface that applications will use to create, retrieve, update and

delete data elements from the Cloud. Therefore, this could be another interface for

accessing the Persistent Disk Service [21]. In fact, there is a ongoing collaboration

with VENUS-C [26] to incorporate its CDMI implementation inside StratusLab.

3.1.4 jclouds

jclouds [12] is an open source library to access cloud providers and cloud soft-

ware stacks using Java and Clojure. With the API it is possible to use portable

abstractions or cloud-specific features.

14 of 38

For example, the jclouds Compute API is a portable means of managing nodes

in clouds. It can manage nodes as a set and address resources in any cloud without

needing separate connections. It also has a Template feature which allows users

to search for configurations that match parameters such as CPU count or operating

system. Finally, it contains utilities to execute scripts as part of the bootstrap pro-

cess of the nodes. A binding of the jclouds Compute API will be developed around

OpenNebula, using the Java OCA (OpenNebula Cloud API).

In addition, the jclouds BlobStore API is a portable means of managing key-

value storage providers such as Amazon S3. It offers both asynchronous and syn-

chronous APIs, as well as Map-based access to data. A binding of this API could

be developed around the Persistent Disk Service.

3.2 Virtual Appliance (Service) Language Definition
As StratusLab works with different sites with a variety of services, it is required that

virtual machines are portable between sites. Thus, StratusLab needs to guarantee

interoperability in service and virtual machine definitions between sites running

the StratusLab distribution initially, and eventually to develop solutions for letting

users and sites utilize other cloud services beyond the StratusLab frontier, including

public and commercial clouds.

In order to get services and VM portability among sites, StratusLab works on

the definition of the virtual appliance in a standard way. As a result of D6.1 [20],

the Open Virtualization Format (OVF) was selected.

StratusLab defines virtual appliances, or services, by using OVF. This OVF

format is going to be the data model used by the TCloud API for the access to the

Service Manager. In addition, the use of OVF also for the definition of the VMs

for the OCCI API, to access the VM Manager, in the OCCI requests’ payload, is

also being analyzed.

3.2.1 Open Virtualization Format

The Open Virtualization Format (OVF) objective [7] is to specify a portable pack-

aging mechanism to foster the adoption of Virtual Appliances (VApp) (i.e. pre-

configured software stacks comprising one or more virtual machines to provide

self-contained services) as a new software release and management model (e.g.

through the development of virtual appliance lifecycle management tools) in a ven-

dor and platform neutral way (i.e., not oriented to any virtual machine technology

in particular). OVF is optimized for distribution and automation, enabling stream-

lined installations of VApps.

3.2.2 OVF extensions required for the grid site specification

OVF many of the StratusLab requirements, but still there are some pending issues

which are not covered, as shown in D6.3 [22]. OVF can be extended easily when

needed; our extensions include:

Custom automatic elasticity Service providers specify rules and actions to au-

15 of 38

tomatically govern the scaling up and down of the service. The scalability

rules are part of the OVF file and specify when the service can scale up and

down and under which conditions.

Performance monitoring (KPI) Service providers define key performance indi-

cators that are monitored by the cloud infrastructure, e.g. to trigger the elas-

ticity actions. It involves including information about the KPI which drives

the scalability (e.g. a service KPI or hardware KPI) in the OVF description.

Number of replicas to be deployed The maximum and minimum number of repli-

cas to be scaled up and down.

Self-configuration Virtual machines composing the service are dynamically con-

figured, e.g. IP addresses. It allows specifying information about software

configuration in the OVF that will be used later for contextualization.

16 of 38

4 Service Scalability

Scalability can be defined as “the ability of a particular system to fit a problem

as the scope of that problem increases (number of elements or objects, growing

volumes of work and/or being susceptible to enlargement)” [3]. The framework

used in StratusLab that provides scalability mechanism is Claudia. It provides a

wider range of scalability mechanisms and a broader set of actions that can be

undertaken (addition, removal, reconfig, federation...) on top of several cloud in-

frastructure providers. It also brings flexibility allowing combinations of several

metrics.

The Claudia platform [23] is an advanced service management toolkit that al-

lows service providers to dynamically control the service provisioning and scal-

ability in an IaaS Cloud. Claudia manages services as a whole, controlling the

configuration of multiple VM components, virtual networks and storage support

by optimizing the use of them and by dynamically scaling up/down services apply-

ing elasticity rules, SLAs and business rules.

Claudia is responsible for the instantiation of service applications (controlling

the service lifecycle) and dynamically asking for virtualized resources to a virtual

machine manager like OpenNebula, trying to avoid over/under provisioning and

over-costs based on SLAs and scalability rules.

4.1 Scalability policies
Claudia provides a means for users to specify their application behavior in terms of

adding or removing more of the same software or hardware resources [3] by means

of elasticity rules [4]. The elasticity rules follow the Event-Condition-Action ap-

proach, where automated actions to resize a specific service component (e.g. in-

crease/decrease allocated memory) or the deployment/undeployment of specific

service instances are triggered when certain conditions relating to these monitor-

ing events (KPIs) hold.

By using it, it is possible to establish some scalability rules indicating when

Claudia should scale up or scale down. More information and examples about

scalability rules for grid services were defined in D6.3 [22]. In relation to it, in

StratusLab scalability policies have been defined to specify the number of nodes to

be scaled, the chosen node to be removed and so on.

Taking into account the number of nodes to be scaled, we can have three dif-

17 of 38

ferent policies:

• 1-scale: This is the policy by default. It involves scaling up or down a node.

• n-scale: Scaling a number n of nodes. This is specified by the property in

the ProductSection SCALE UP NUM NODES and

SCALE DOWN NUM NODES for scaling up and down.

• %-scale: Scaling a percentage of the currently deployed nodes. This is spec-

ified by the property in the ProductSection SCALE UP PERCENTAGE and

SCALE DOWN PERCENTAGE for scaling up and down.

In case a VM has to be undeployed, it is possible to configure the service for

choosing the policy by the property SCALE DOWN POLICY in the ProductSec-

tion. It can be “random”, “lastly” or “balancer”.

• random: A VM randomly chosen to be undeployed.

• lastly: The last VM deployed is undeployed.

• balancer: The load balancer decides which VM is to be undeployed, tak-

ing into account the node’s activity. In the gLite service deployment and

scalability, the Compute Element provides a service with a set of operations

including the request for the node to be undeployed.

Finally, it is possible to create a “Lazy scale down”, indicating that Claudia

should wait a concrete time for starting with scaling down. This is specified by the

property in the ProductSection SCALE DOWN LAZY TIME.

18 of 38

5 Network Manager

StratusLab is planning to collaborate with the Mantychore project [13] to provide

network services. However, this document is focused on the network management

capabilities of OpenNebula, as the StratusLab Virtual Machine Manager.

5.1 Network Configuration
Network interfaces are configured using the contextualization capabilities provided

by OpenNebula. However, DHCP is used on most data centres and, despite Open-

Nebula trying to replace all DHCP functionality, system administrators want a sin-

gle point of administration, mainly to avoid inconsistencies. Currently, in Stratus-

Lab sites using DHCP, the default DHCP server is configured to assign statically IP

addresses corresponding to predictable MAC addresses, and OpenNebula is con-

figured to assign IP and MAC addresses matching the DHCP configuration. This

procedure should be revised to avoid inconsistencies between OpenNebula and the

DHPC server, and to reduce the configuration effort.

5.2 Network Isolation
When a new VM is launched, OpenNebula will connect its network interfaces (de-

fined in the NIC section of the VM template) to the bridge specified in the Virtual

Network definition. This will allow the VM to have access to different public or

private networks. Although this is a powerful setup, it should be complemented

with mechanisms to restrict network access only to the expected VMs, to avoid

situations in which an OpenNebula user interacts with another user’s VM. This

functionality will be provided through the OpenNebula Network Manager and its

drivers.

For example, OpenNebula will provide support for host-managed VLANs to

restrict network access through VLAN tagging. This mechanism is compliant with

the IEEE 802.1Q standard [11], but it requires support from the hardware switches.

Also, OpenNebula will allow administrators to restrict network access with Open

vSwitch [16], a production quality, multilayer virtual switch.

5.3 Firewall Management
OpenNebula will provide support for enabling simple firewalling rules to allow a

regular user to filter TCP, UDP or ICMP traffic. Also, it will be possible to restrict

19 of 38

network access through ebtables [8] rules. The ebtables program is a filtering tool

for a Linux-based bridging firewall. It enables transparent filtering of network traf-

fic passing through a Linux bridge. No special hardware configuration is required.

20 of 38

6 Storage Manager

There are several components to manage storage in StratusLab. The StratusLab

Marketplace has been developed in WP2 to store metadata about system images

for StratusLab sites. On the other hand, the StratusLab Persistent Disk Service has

been developed in WP5 to persistently store user data and system images. This

document focuses on the OpenNebula Image Manager, which allows OpenNebula

administrators and users to set up images to be used in VMs easily, and describes its

integration with the StratusLab Marketplace and with the Persistent Disk Service.

6.1 Storage Management in OpenNebula
OpenNebula manages three different types of images:

• System images contain a working operating system.

• CD-ROM images are read-only data.

• Datablock images are storage for data, which can be accessed and modified

from different VM.

These images can be created from an existing file, but for datablock images it is

possible to specify a size and file system type and let OpenNebula create an empty

image. An system image has to be created from a contextualized VM by extracting

its disk. Once a VM is deployed, it is possible save the changes made to any disk

as a new image.

The Image Manager is in charge of storing and managing registered images.

For example, when a new image is registered, its file is copied or downloaded to

the front-end. The way the Image Manager accomplishes these tasks is through a

driver that knows how to perform the following actions:

• cp: copy a image into the repository.

• mkfs: creates a new empty image initialized with a file system.

• mv: put a new version of an image into the repository.

• rm: deletes an image from the repository.

21 of 38

All these actions have an associated script that knows how to perform the ac-

tion. By default, OpenNebula comes with a set of scripts that know how to store

the images in the file system. However, this pluggable architecture allows the in-

tegration of any storage backend. Therefore, the Image Manager will be further

integrated with the StratusLab Marketplace and the Persistent Disk Service as well

as with external image catalogs, as will be shown in Section 8.2.1.

Another important characteristic of the OpenNebula Image Manager is its in-

teraction with disks of running VMs. This requires both the extension of some

functionality of the VM manager to generate snapshots and to hot-plug volumes to

a running VM, and the integration of these features with the Image Manager. In

this way, a VM disk could be stored back to the image repository once the VM is

shutdown, or a snapshot of the disk can be made without stopping the VM, storing

it to be used in other VMs or to back up the current one.

22 of 38

7 Monitoring and Accounting

In order to evaluate the VM execution status, the monitoring mechanisms con-

stantly check the performance of the system. Monitoring systems evaluate hosts,

virtual machines and services with respect to hardware, software and Key Perfor-

mance Indicators metrics. In addition the accounting systems exist for keeping

track of the amount of computing resources consumed per user over a period of

time.

Monitoring and accounting are components that interact with the rest of com-

ponents in StratusLab. It is possible to obtain metrics from physical hosts, storage

and networking, virtual hardware information from virtual machines and metrics

for services like KPIs. This means that any component in StratusLab can report

monitoring information, by the usage of probes, to the collector service. This mon-

itoring information can be taken from the customer to other components to check

about the resource status. For instance, Claudia can use monitoring information for

the service optimization, so that, it can scale up or down VMs according to users’

policies. The accounting component can take this information for the service us-

age. This information also can be used for resource scheduling and os on.

On the other hand, accounting information is going to be consumed by different

components for different objectives: to check the user’s resource consumption for

billing, to check if the user can deploy more services, and so on.

7.1 Monitoring
Every distributed system needs to incorporate monitoring mechanisms in order be

able to constantly check the performance of the system. This is especially true in

service clouds that are governed by Service Level Agreements (SLAs) and so the

system needs to be able to constantly check that the performance adheres to the

agreed terms. Monitoring data can also be used in a variety of ways, concretely

for service optimization to scale up or down VMs according to users’ policies,

accounting for the service usage, resource scheduling and os on.

Different types of monitoring information are required:

Physical Infrastructure At this level, we must be able to monitor the usage of

the physical bare-metal infrastructure, that is, the machines that are the VMs

containers.

Virtual Hardware monitoring data CPU, memory, disk or network input/output

23 of 38

from the different deployed Virtual Machines should be collected.

Key Performance Indicator Performance estimation of the deployed service and

verification of the service’s status. Typical service KPIs like response time

and availability should be measured, as well as, concrete service KPIs which

depend on the application.

Software metrics Characterize the installed software.

7.1.1 Monitoring probes

There are several monitoring probes frameworks in the market that provide the

monitoring functionalities.

Nagios [2] is an open source network monitoring system used to monitor ser-

vices and hosts. With Nagios, the user is able to define monitoring parameters

together with a set of thresholds. Nagios is designed more to check the service

features and to compare with some established thresholds for providing alarms; it

is less focused on collecting monitoring data.

A package, which is focused more on collecting monitoring data, can be Gan-

glia. Ganglia [14] is a distributed monitoring system for high-performance com-

puting systems such as clusters and Grids. In Ganglia each node monitors itself and

propagates the information to either all other nodes or to a subset of the nodes, if a

hierarchical design is used. The system uses common technologies such as XML

for data representation, XDR for data transport and the Round Robin Database tool

(RRDtool) [17] for data storage. This information could be used to feed OpenNeb-

ula with monitoring information about physical and virtual machines, instead of

the current SSH probes. Ganglia meets the requirements for physical infrastruc-

ture monitoring for the purposes of StratusLab. Ganglia is currently in use on over

500 clusters around the world and can scale to handle clusters with more than 2000

nodes.

Another monitoring probe framework is collectd. It is simple solution, since

it is only collects data and does not work with thresholds and alarms. It can be

combined with Nagios to provide the alarms functionality. It seems to be a good

candidate for measuring KPIs or platform metrics. In fact, it is flexible, since it

collects data by using a set of plugins and its results can be provided to RRD or

other output formats. In order to measure application servers and java applications,

we can look at the Java Management eXtension (JMX). It is used to monitor appli-

cations that have MBeans (Managed Bean) interfaces. The MBeans constitute the

probe and are executed in the virtual machine where the application is hosted. The

information provided by MBeans can be integrated with collectd via a plugin or as

part of jcollectd. There are MBeans for Tomcat, JBoss and Glassfier among others.

7.1.2 Architecture

The monitoring system needs to be as flexible as possible, due to the large variety

of metrics to measure, for example, infrastructure, product metrics, applications

24 of 38

Figure 7.1: Monitoring Systems

metrics, and KPIs. The idea is not to extend a current monitoring framework or

use a concrete probe system, but to design a new framework which can use all

different monitoring systems required (e.g. collectd, mBeanCmd, etc.).

Probes provided by software providers can be included to monitor their appli-

cations. The metrics collected can be collected at the monitoring system layer, that

is, collected at collectd or ganglia layer, but they are going to be aggregated at the

virtual appliance layer.

A service must take into consideration the set of virtual machines which con-

stitute it, the networks and the storage support. This aggregated information should

consider all this parameters and the aggregation rules will depend on the service

features.

Scalability is another major issue. The monitoring framework needs to be able

to scale to large numbers of monitored nodes. This implies that a centralized col-

lectd system should be avoided.

Finally, all historic monitoring data should be stored in a database accessible

by an API or dashboard. From the previous analysis, we can draft a version of the

monitoring framework; the design is in Figure 7.1.

Probes The software, installed in the virtual or physical machine, that is able to

capture metrics. Metrics coming from probes installed in the virtual machine

include infrastructure metrics as well as service metrics. These probes can be

software like collectd, mBeanCmd, Ganglia, etc. In StratusLab, new probes

or ones from third parties like collectd or Ganglia are going to be extended

to send information to the collector service.

25 of 38

Collector Service Responsible for collecting all the metrics obtained from probes.

Besides monitoring systems, another StratusLab services (e.g. accounting)

can obtain the metrics’ values from this collector service. The collector ser-

vice is a new service in StratusLab to be developed in year 2.

Data Collector and Aggregator Responsible for obtaining the monitored values

from the Collector Service, filtering them according to some policies, aggre-

gating the information following the data model and storing it in the moni-

toring database. An initial prototype will be adapted to gather the monitoring

information from the collector service.

Monitoring Database Stores all the metrics provided by the Data Collector and

Aggregator. These metrics are organized according to the data model in the

CMDB; that is, the Monitoring Database will include also aggregated infor-

mation at service layer. The monitoring database can be based on MySQL

or PostgreSQL.

API/Dashboard Allows any user or component access to monitoring information.

The monitoring API is TCloud (see Section 3.1), and its implementation

will be based on the tcloud-server with an ad hoc driver for accessing the

monitoring systems.

7.2 Accounting
Accounting is a fundamental aspect of the provisioning of computing resources,

regardless of the type of infrastructure (cloud, grid, etc.). In a nutshell, an account-

ing system is responsible to keeping track of the amount of computing resources

consumed per user over a period of time. This information can be used for various

purposes including resource billing and the enforcement of fair share policies from

the resource provider.

7.2.1 Grid infrastructure accounting

Grid sites already implement their own services for keeping various accounting

information. Currently APEL [1] and DGAS [6] are the two accounting solutions

supported by the EMI software platform and can be enabled in an EGI grid site.

These accounting tools collect information related to resource consumption from

grid users. The focus of accounting record-keeping is solely placed on informa-

tion regarding grid jobs. Currently there is no support for grid data management

resource accounting.

The accounting information in grids are currently used primarily for enforcing

Operational Level Agreements (a variation of SLAs) to grid sites that in turn en-

sure a certain quality of service offered by a grid infrastructure. Other than that,

they help create a more complete picture about resource requirements per user or

VO and are used for future planning and negotiations with resource centers. From

26 of 38

the technical point of view accounting data can also be important for building self-

configuration capabilities in the grid middleware. Activities like the Grid Obser-

vatory [10] are working on the systematic collection of grid usage data with the

purpose of building ontology for grid domain knowledge.

7.2.2 Cloud infrastructure accounting with OpenNebula

StratusLab relies on OpenNebula for the provision of core cloud services. Thus

OpenNebula’s accounting facilities play a fundamental role in the accounting ser-

vices of the StratusLab cloud architecture. OpenNebula will provide an accounting

module to track the information of resource utilization that will be stored in prede-

fined intervals of time.

In addition, OpenNebula will provide historical monitoring information through

a statistics module that will keep a predefined number of samples containing statis-

tics for Hosts and Virtual Machines. These samples are built from the information

that is retrieved from each resource by the OpenNebula Information Manager.

7.2.3 Accounting stakeholders

We can identify four different entities:

Grid user The end user of the grid infrastructure. A grid user submits jobs to a

Workload Management System comprised of a central resource scheduler

(WMS) and a set of distributed Computing Elements that act as local sched-

ulers for dispatching job requests to a set of Worker Node machines. A grid

user also exploits the storage management capabilities of the grid material-

ized primarily by a set of Storage Elements and an LFC service that keeps

track of files and their replicas in the SEs. A grid user belongs to one or more

Virtual Organizations.

VO manager The representative of a community of grid users (the Virtual Orga-

nization) that collaborate in the context of a certain domain to solve similar

problems. A VO requires a number of computing resources to achieve this

goal. The VO manager typical will negotiated with a number of resource

centers in order to support the VO by allocating a percentage of their re-

sources and make them available for the VO grid users.

Grid site manager Manages a grid site by providing the necessary technical sup-

port but also being the main contact point for interaction with the central

grid authorities (e.g. EGI.eu) and the VO managers. A grid site may choose

to support a number of different VOs based on their locality, their scientific

domain and the overall utilization of the site’s resources.

Cloud provider Manages a set of physical resources and provides IaaS capabili-

ties to a set of users. These users may reside within the same administrative

domain (private clouds) or can be third parties having remote access to the

virtualized resources (public clouds).

27 of 38

From the point of view of the cloud, the grid site manager is end user of the

cloud resources and the entity for which accounting information need to be kept.

Cloud usage quotas and resource usage restrictions are enforced on the grid site

level. Therefore these restrictions are transparent to grid users. For what concerns

VO requirements for cloud resources, this can be negotiated between the cloud

provider and the VO manager but the final allocation should be done through a site

manager. Accounting information will be available per VO but usage quota will

not be applied on a VO level.

7.2.4 Integration of Cloud and Grid accounting information

Clouds and grids reside in two distinctive layers of the StratusLab architecture. In

principle the hosting of grid services is independent of the underlying infrastructure

regardless if this is a set of physical machines or virtualized resources within a

public or private cloud environment. Thus a reasonable approach is to consider

grid services as a platform sitting on top of an IaaS cloud, providing specialized

abstractions of computing resources and respective access protocols. For example

the computing unit of a grid service is a job that encapsulates requirements and

restrictions alongside with an application and its data dependencies.

In essence the only difference when running grid sites on clouds is that the

latter enforce a certain business model. This business model has to be made visible

on the grid service layer, or generally speaking on the platform service layer. On

the other hand grids rely on a resource delegation mechanism; the grid site manager

allocates a subset of resources from a physical cluster which can be used by any

members of a given VO. For the grid resource provider to be able to cope with

the cloud business model, the provider should be able to correlate grid resource

usage data with cloud resource usage data. This is in essence the requirement that

accounting integration between the two layers has to satisfy.

During the first year of the project, we extensively experimented with the de-

ployment and provision of grid services running on top of our IaaS cloud distribu-

tion. One of the goals has been to identify the level of integration required in order

to facilitate resource accounting between the two layers. Our conclusion is that for

the time being we should aim for a modest level of integration based on the support

of common information exchange standards.

Based on the interaction we had with other DCI projects and in particular dur-

ing the EGI Cloud Computing Workshop [9], most opinions currently converge

that the accounting problem is still open and that a good candidate standard in or-

der to pursue interoperability is OGF’s Usage Record (UR) [25]. OGF UR defines

a common file interchange format for the collection, recording and transfer of ac-

counting information among grid sites. The standard is targeted for infrastructures

that offer job processing capabilities thus the job is the core entity for which in-

formation are kept. If we consider that the lifecycle of a VM resembles that of a

job execution it is possible to reuse the same standard for keeping and exchanging

cloud computing accounting records. This approach appears to be the best choice

at the moment and will enable cloud resource providers to exchange information

28 of 38

data with large scale grid infrastructures like EGI. Still this is not an optimal so-

lution and we expect that either the standard will involve in the coming months in

order to incorporate explicitly cloud accounting data or to stimulate the formation

of a new standard for such purpose.

29 of 38

8 Inter-Cloud Connector

In a Multi-Cloud scenario, multiple external and internal cloud computing services

are deployed and managed to match business needs. In StratusLab this is imple-

mented by the Inter-cloud Connector. The Inter-cloud Connector allows instantia-

tion of VMs on public clouds (like Amazon EC2 or Flexiscale) as well as partner

clouds (like other StratusLab sites) [21]. The component will abstract the external

clouds’ APIs by providing a common interface to them that can be plugged into the

VM Manager component allowing a hybrid cloud approach (where the VM man-

ager decides to outsource computation to another cloud) or the Service Manager

component with a cloud brokering approach (when the VM is deployed in different

cloud providers according to users’ policies).

8.1 Multi-Cloud Scenarios
Stratuslab is considering three scenarios with multiple clouds: cloud bursting to a

public Cloud, federation among two equal partners clouds, such as different Stra-

tusLab sites, and brokering.

8.1.1 Cloud Bursting

Cloud bursting consists of combining local resources from a Private Cloud with

remote resources from a Public Cloud, thus creating a Hybrid Cloud. The Public

Cloud provider is usually a commercial Cloud service, such as Amazon EC2 or

ElasticHosts.

OpenNebula supports Hybrid Cloud deployments fully transparent to infras-

tructure users, being the infrastructure administrator who takes decisions about

the scale out of the infrastructure according to infrastructure or business policies.

Therefore, there is no modification in the operation of OpenNebula to integrate

Cloud services. A Cloud service is managed as any other host, but it may provide

“infinite” capacity for the execution of VMs.

8.1.2 Cloud Federation

Cloud federation is very similar to Cloud bursting, but in this case the remote

Cloud provider is a partner infrastructure, such as another StratusLab site running a

different OpenNebula instance. Therefore, the exchange of resources can be made

in both ways.

30 of 38

8.1.3 Cloud Brokering

Cloud service brokering is a form of cloud service intermediation, in which a com-

pany or other entity adds value to one or more cloud services on behalf of one or

more consumers of that service [5]. The broker role does many of the same things

that a traditional IT services provider does in a service aggregator role, but also

addresses additional complexities, particularly relevant to cloud computing and to

achieving specific IT outcomes. The brokering service can provide a set of func-

tionalities:

• Integration brokerage – integration of different cloud providers

• Governance – policy compliance of cloud service consumption

• Community management – manage the provisioning of services and con-

sumers among the different cloud providers

This scenario can be implemented by the Inter Cloud Broker provided by Claudia.

8.2 Technology

8.2.1 Cloud Bursting with OpenNebula

OpenNebula currently provides support for building Hybrid Clouds with Amazon

EC2, ElasticHosts and RedHat Deltacloud. OpenNebula leverages its Deltacloud

adaptor to access any major Public Cloud, such as GoGrid, Rackspace, Terremark

or RimuHosting, and Private Clouds running OpenNebula or RHEV-M.

However, each provider uses different formats to store images. Fortunately, as

described in Section 6, the OpenNebula Image Manager shows a pluggable archi-

tecture that allows the integration of any storage backend. In particular, it can be

integrated with external image catalogs, like Amazon S3, so it would be possible

to download, contextualize and integrate S3 images in a local image repository.

Finally, since VMs deployed on different clouds have to communicate through

the Internet, a suitable communication channel (usually a VPN) has to be estab-

lished between them. In the case of virtualizing a computing cluster, the virtual

cluster front-end should be deployed in the Private Cloud with Internet connec-

tivity to be able to communicate with those worker nodes deployed in the Public

Cloud. The worker nodes could communicate with the front-end through a private

local area network. Local worker nodes should be connected to this vLAN through

a virtual bridge configured in every physical host. External worker nodes should

be connected to the vLAN with an OpenVPN tunnel, which has to be established

between each remote node (OpenVPN clients) and the cluster front-end (Open-

VPN server). With this configuration, every worker node (either local or remote)

could communicate with the front-end and could use the common network services

transparently.

31 of 38

8.2.2 Cloud Federation with OpenNebula

The technology to perform Cloud Federation is very similar to the previous case.

For computing, it is possible to access other OpenNebula instances using the Delta-

cloud adaptor. For storage, there is no need to import or export images, but just to

share the same Markeplace service. For networking, the solution based on VPNs

is still suitable.

8.2.3 Inter Cloud Broker with Claudia

In Stratuslab, Claudia assumes the role of this brokering service. Claudia is a ser-

vice manager and can work on top of several Cloud providers. By an aggregated

API (TCloud), Claudia can invoke each provider in the same way. Then, the aggre-

gated API is in charge of translating from the TCloud API and model to the Cloud

provider API.

In order to work on this mode, a new module has to be added to Claudia. This is

placement decision module, which drives the placement. This module is based on a

set of business rules which defines the user’s policies. Depending of these rules, the

services and virtual machines will be deployed in a particular cloud infrastructure.

To sum up, a new model for Claudia called Placement is being developed inside

StratusLab in order to decide in which providers deployed the service. On the order

hand, more drivers to access to different Cloud providers are being developed, such

as the Flexiscale one.

32 of 38

9 Summary

This document is an update of the document D6.1 including more StratusLab com-

ponents and topics for year 2. The main contributions have been the inclusion of

more cloud-like APIs for networking, storage and monitoring component, some

information about networking and storage functionality, more work on monitoring

and accounting, and the inclusion of the inter-cloud scenarios.

Concretely, this document has analyzed the inclusion of a service manager

(called Claudia) inside the StratusLab architecture (on top of the OpenNebula) in

order to manage the overall service instead of isolated virtual machines. In addi-

tion to provide a higher abstraction level to the service provider, it allows service

providers to define the service’s behavior in terms of service scalability. This ser-

vice scalability is formalized in scalability rules and some scalability policies.

For the definition of this service behavior as well as the service, virtual ma-

chines and networks features, the document has analyzed the OVF standard. Fur-

thermore, the usage of standards API has been identified as an important point to

be included in StratusLab. Thus, TCloud and OCCI are the main choices for APIs

to access to the Service Manager and Virtual Machine Manager. Moreover, jclouds

has been included as a client library to access StratusLab due to customers’ re-

quirements. Considering storage, we are considering CDMI and OCCI, as well as

jclouds. Finally, TCloud is chosen for monitoring information.

Networking and Storage have been analyzed in this document as being impor-

tant functionalities identified in WP4. The networking functionality allows each

user (or group) to create, manage and remove sets of isolated LANs (VLAN). Ad-

ditionally it allows filtering of virtual machine traffic based on simple rules, e.g.

TCP ports. Regarding storage, WP6 is working on an Image Manager system to

set up images, which can be operating systems or data, to be used in Virtual Ma-

chines easily.

In order to evaluate the VM execution status, the monitoring mechanisms con-

stantly check the performance of the system. In this document we have identified

an architecture and some technologies for having metrics from different layers in-

cluding physical, hardware information, KPI and software metrics. In addition,

for keeping track of the amount of computing resources consumed per user over a

period of time, OpenNebula will provide its own accounting system.

Finally, StratusLab has started to address inter-cloud scenarios in year 2, in

order to make it possible the instantiation of VMs on public clouds (like Amazon

33 of 38

EC2 or Flexiscale) as well as partner clouds (other StratusLab sites) according to

some user’s policies.

The next steps for this work package will be the implementation of the func-

tionality described in this document. Thus, D6.5 Cloud-like Management of Grid

Sites 2.0 will include information about the software implementation in order to

achieve the functionality described in this document. In addition, D6.6 Second

Year Cloud-like Management of Grid Sites Research Report will describe all the

activities carried out for applying the functionality commented in this document to

concrete use cases.

34 of 38

Glossary

Appliance Virtual machine containing preconfigured software or services

Appliance Repository Repository of existing appliances

CDDLM Configuration Description, Deployment, and Lifecycle

Management

DHCP Dynamic Host Configuration Protocol

DMTF Distributed Management Task Force

Front-End OpenNebula server machine, which hosts the VM manager

Hybrid Cloud Cloud infrastructure that federates resources between

organizations

IaaS Infrastructure as a Service

IP Infrastructure Provider

Instance a deployed Virtual Machine

JRA Joint Research Activity

Machine Image Virtual machine file and metadata providing the source for Virtual

Images or Instances

NFS Network File System

Node Physical host on which VMs are instantiated

OASIS Organization for the Advancement of Structured Information

Standards

OCCI Open Cloud Computing Initiative

OGF Open Grid Forum

OVF Open Virtualization Format

Public Cloud Cloud infrastructure accessible to people outside of the provider’s

organization

Private Cloud Cloud infrastructure accessible only to the provider’s users

Regression Features previously working which breaks in a new release of the

software containing this feature

Service Manager/SM A toolkit to provides Service Providers to dynamically control the

Service provisioning and scalability

Service Provider/SP The provider who offers the application to be deploy in the Cloud

SMI Service Manager Interface

SSD Solution Deployment Descriptor

Virtual Machine / VM Running and virtualized operating system

VMI VM Manager Interface

VO Virtual Organization

35 of 38

VOMS Virtual Organization Membership Service

Web Monitor Web application providing basic monitoring of a single

StratusLab installation

Worker Node Grid node on which jobs are executed

36 of 38

References

[1] APEL. Accounting Processor for Event Logs. Online resource. http://goc.

grid.sinica.edu.tw/gocwiki/ApelHome.

[2] W. Barth. Nagios: System and network monitoring. No Starch Press San

Francisco, CA, USA, 2008.

[3] J. Cáceres, L. M. Vaquero, L. Rodero-Merino, A. Polo, and J. J. Hierro. Ser-

vice Scalability over the Cloud. In B. Furht and A. Escalante, editors, Hand-

book of Cloud Computing, pages 357–377. Springer US, 2010.

[4] C. Chapman, W. Emmerich, F. G. Márquez, S. Clayman, and A. Galis. Soft-

ware architecture definition for on-demand cloud provisioning. In HPDC ’10:

Proceedings of the 19th ACM International Symposium on High Performance

Distributed Computing, pages 61–72, New York, NY, USA, 2010. ACM.

[5] D. M. Smith (Gartner Inc.). Hype Cycle for Cloud Computing, 2011.

[6] DGAS. Distributed Grid Accounting System. Online resource. http://www.

to.infn.it/dgas/index.html.

[7] DMTF. Open virtualization format specification. Specification

DSP0243 v1.0.0d. Technical report, Distributed Management

Task Force, Sep 2008. https://www.coin-or.org/OS/publications/

optimizationServicesFramework2008.pdf.

[8] ebtables: Linux Ethernet Bridge Firewalling. Online resource. http://

ebtables.sourceforge.net.

[9] EGI. EGI User Virtualization Workshop. Online resource. http://go.egi.eu/

uvw1.

[10] Grid Observatory. Online resource. http://www.grid-observatory.org.

[11] IEEE 802.1: 802.1Q - Virtual LANs. Online resource. http://www.ieee802.

org/1/pages/802.1Q.html.

[12] jclouds. Online resource, 2011. http://www.jclouds.org.

37 of 38

http://goc.grid.sinica.edu.tw/gocwiki/ApelHome
http://goc.grid.sinica.edu.tw/gocwiki/ApelHome
http://www.to.infn.it/dgas/index.html
http://www.to.infn.it/dgas/index.html
https://www.coin-or.org/OS/publications/optimizationServicesFramework2008.pdf
https://www.coin-or.org/OS/publications/optimizationServicesFramework2008.pdf
http://ebtables.sourceforge.net
http://ebtables.sourceforge.net
http://go.egi.eu/uvw1
http://go.egi.eu/uvw1
http://www.grid-observatory.org
http://www.ieee802.org/1/pages/802.1Q.html
http://www.ieee802.org/1/pages/802.1Q.html
http://www.jclouds.org

[13] Mantychore Project. Online resource, 2011. http://www.mantychore.eu.

[14] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia distributed moni-

toring system: design, implementation, and experience. Parallel Computing,

30(7):817–840, 2004.

[15] OCCI-WG. Open Cloud Computing Interface - Infrastructure. Technical

report, Open Grid Forum, 2011. http://ogf.org/documents/GFD.184.pdf.

[16] Open vSwitch: An Open Virtual Switch. Online resource. http://

openvswitch.org.

[17] RRDtool. Online resource. http://www.rrdtool.com/.

[18] SNIA. Cloud Data Management Interface (CDMI). Technical report, SNIA,

2011. http://www.snia.org/cdmi.

[19] Stratuslab Consortium. Stratuslab Description of Work, 2009.

[20] Stratuslab Consortium. Deliverable 6.1 Cloud-like Management of Grid Sites

1.0 Design Report. Online resource, 2010. http://stratuslab.eu/lib/exe/

fetch.php/documents:stratuslab-d6.1-v1.0.pdf.

[21] Stratuslab Consortium. Deliverable 4.4 Reference Architecture for Stratus-

Lab Toolkit 2.0. Online resource, 2011. http://stratuslab.eu/lib/exe/fetch.

php?media=documents:stratuslab-d4.4-v1.0.pdf.

[22] Stratuslab Consortium. Deliverable 6.3 First Year Cloud-like Management of

Grid Sites Research Report. Online resource, 2011. http://stratuslab.eu/lib/

exe/fetch.php/documents:stratuslab-d6.3-v1.0.pdf.

[23] Telefónica I+D. Claudia Project. Online resource, 2010. http://claudia.

morfeo-project.org/wiki/index.php/Main Page.

[24] Telefónica I+D. TCloud API Specification, Version 0.9.0. Online resource,

2010. http://www.tid.es/files/doc/apis/TCloud API Spec v0.9.pdf.

[25] UR-WG. Usage Record - Format Recommendation. Technical report, Open

Grid Forum, 2006. http://www.ogf.org/documents/GFD.98.pdf.

[26] VENUS-C Project. Online resource, 2011. http://www.venus-c.eu.

[27] VMware. vCloud API Programming Guide, Version 0.8.0. Online re-

source, 2009. http://communities.vmware.com/static/vcloudapi/vCloud

API Programming Guide v0.8.pdf.

38 of 38

http://www.mantychore.eu
http://ogf.org/documents/GFD.184.pdf
http://openvswitch.org
http://openvswitch.org
http://www.rrdtool.com/
http://www.snia.org/cdmi
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d6.1-v1.0.pdf
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d6.1-v1.0.pdf
http://stratuslab.eu/lib/exe/fetch.php?media=documents:stratuslab-d4.4-v1.0.pdf
http://stratuslab.eu/lib/exe/fetch.php?media=documents:stratuslab-d4.4-v1.0.pdf
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d6.3-v1.0.pdf
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d6.3-v1.0.pdf
http://claudia.morfeo-project.org/wiki/index.php/Main_Page
http://claudia.morfeo-project.org/wiki/index.php/Main_Page
http://www.tid.es/files/doc/apis/TCloud_API_Spec_v0.9.pdf
http://www.ogf.org/documents/GFD.98.pdf
http://www.venus-c.eu
http://communities.vmware.com/static/vcloudapi/vCloud_API_Programming_Guide_v0.8.pdf
http://communities.vmware.com/static/vcloudapi/vCloud_API_Programming_Guide_v0.8.pdf

	List of Figures
	List of Tables
	Executive Summary
	Introduction
	StratusLab Architecture
	Technical work in WP6

	Interoperability
	Cloud-like Application Programming Interfaces
	TCloud
	Open Cloud Computing Interface (OCCI)
	Cloud Data Management Interface (CDMI)
	jclouds

	Virtual Appliance (Service) Language Definition
	Open Virtualization Format
	OVF extensions required for the grid site specification

	Service Scalability
	Scalability policies

	Network Manager
	Network Configuration
	Network Isolation
	Firewall Management

	Storage Manager
	Storage Management in OpenNebula

	Monitoring and Accounting
	Monitoring
	Monitoring probes
	Architecture

	Accounting
	Grid infrastructure accounting
	Cloud infrastructure accounting with OpenNebula
	Accounting stakeholders
	Integration of Cloud and Grid accounting information

	Inter-Cloud Connector
	Multi-Cloud Scenarios
	Cloud Bursting
	Cloud Federation
	Cloud Brokering

	Technology
	Cloud Bursting with OpenNebula
	Cloud Federation with OpenNebula
	Inter Cloud Broker with Claudia

	Summary
	References

