Controllability of two coupled wave equations on a compact manifold

Abstract : We consider the exact controllability problem on a compact manifold $\Omega$ for two coupled wave equations, with a control function acting on one of them only. Action on the second wave equation is obtained through a coupling term. First, when the two waves propagate with the same speed, we introduce the time $\T_0$ for which all geodesics traveling in $\Omega$ go through the control region $\omega$, then through the coupling region $\O$, and finally come back in $\omega$. We prove that the system is controllable if and only if both $\omega$ and $\O$ satisfy the Geometric Control Condition and the control time is larger than $\T_0$. Second, we prove that the associated HUM control operator is a pseudodifferential operator and we exhibit its principal symbol. Finally, if the two waves propagate with different speeds, we give sharp sufficient controllability conditions on the functional spaces, the geometry of the sets $\omega$ and $\O$, and the minimal time.
Type de document :
Article dans une revue
Archive for Rational Mechanics and Analysis, Springer Verlag, 2014, 211 (1), pp.113-187. 〈10.1007/s00205-013-0670-4〉
Liste complète des métadonnées

Littérature citée [38 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00686967
Contributeur : Matthieu Léautaud <>
Soumis le : jeudi 19 juillet 2012 - 14:26:33
Dernière modification le : jeudi 7 février 2019 - 17:51:45
Document(s) archivé(s) le : vendredi 16 décembre 2016 - 01:21:07

Fichier

DLRL_coupled_wave_compact.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Belhassen Dehman, Jérôme Le Rousseau, Matthieu Léautaud. Controllability of two coupled wave equations on a compact manifold. Archive for Rational Mechanics and Analysis, Springer Verlag, 2014, 211 (1), pp.113-187. 〈10.1007/s00205-013-0670-4〉. 〈hal-00686967v2〉

Partager

Métriques

Consultations de la notice

595

Téléchargements de fichiers

282