An Axiomatic Approach to Proportionality between Matrices

Abstract : Given a matrix p ≥ 0 what does it mean to say that a matrix f (of the same dimension), whose row and column sums must fall between specific limits, is "proportional to" p? This paper gives an axiomatic solution to this question in two distinct contexts. First, for any real "allocation" matrix f. Second, for any integer constrained "apportionment" matrix f. In the case of f real the solution turns out to coincide with what has been variously called biproportional scaling and diagonal equivalence and has been much used in econometrics and statistics. In the case of f integer the problem arises in the simultaneous apportionment of seats to regions and to parties and also in the rounding of tables of census data.
Type de document :
Article dans une revue
Mathematics of Operations Research, INFORMS, 1989, 14 (4), pp.700-719
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00686748
Contributeur : Gabrielle Demange <>
Soumis le : mercredi 11 avril 2012 - 10:43:05
Dernière modification le : jeudi 10 mai 2018 - 02:07:22
Document(s) archivé(s) le : jeudi 12 juillet 2012 - 09:56:58

Fichier

Balinski-DemangeMOR.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00686748, version 1

Collections

Citation

Michel Balinski, Gabrielle Demange. An Axiomatic Approach to Proportionality between Matrices. Mathematics of Operations Research, INFORMS, 1989, 14 (4), pp.700-719. 〈hal-00686748〉

Partager

Métriques

Consultations de la notice

341

Téléchargements de fichiers

308