Large time asymptotics for the fluctuation SPDE in the Kuramoto synchronization model

Abstract : We investigate the long-time asymptotics of the fluctuation SPDE in the Kuramoto synchronization model. We mainly establish the linear behavior for large time and weak disorder of the quenched limit fluctuations of the empirical measure of the oscillators around its McKean-Vlasov limit. This is carried out through a precise spectral analysis of the unbounded evolution operator, using arguments of perturbations of self-adjoint operators and analytic semigroups. We state in particular a Jordan decomposition of the evolution operator which is the key point in order to show that the fluctuations of the disordered Kuramoto model are not self-averaging.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00686682
Contributeur : Eric Luçon <>
Soumis le : mercredi 11 avril 2012 - 03:17:47
Dernière modification le : vendredi 6 janvier 2017 - 08:46:42

Identifiants

Collections

Citation

Eric Lucon. Large time asymptotics for the fluctuation SPDE in the Kuramoto synchronization model. Journal of Functional Analysis, Elsevier, 2014, 266 (11), pp.6372-6417. 〈10.1016/j.jfa.2014.03.008〉. 〈hal-00686682〉

Partager

Métriques

Consultations de la notice

96