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ABSTRACT 2. TVAR MODEL AND PARAMETERS

An audio signal can be represented by a Time-Varying Auto- ESTIMATION

Regressive (TVAR) model, whose parameters can be esfi-1 TVAR model

mated by a particle filter. Since the original parameters are .

unavailable for real signals, an evaluation of the estimationgr?]ee?it%u;?f’o(ﬁg\?v;\/AR process of ordep is modeled at
may be traditionally performed through indirect criteria such :
as the SNR of the signal denoised by a Kalman filter based p

on the TVAR estimated model or through a statistical analy- X = zlahtxt—i +0q 6, (2
sis based on the observation. We propose a new evaluation i=

method based on the statistical characterization of the output h . hit : . V0.1 _
of the inverse TVAR estimated model. The proposed criteri% ereq is a white gaussian nois@ ~ .#(0,1)), & =

. - . - 2 .
are much more suitable and coherent when correlated to th&it - @pt) iS the vector of TVAR coefficients and% Is
direct criterion (cepstral distance), which is related to the tN€ variance of the TVAR innovation sequence, all depend-

ing ont.
The signaly, is assumed to be corrupted by an additive

1 INTRODUCTION \t/)vylte gaussian noise, so the observation at timé is given

Non-stationary signals, like audio signals, may be repre- Yt = % + Onc I, 3)
sented through Time-Varying Auto-Regressive (TVAR) PrO-\hereny is a white gaussian noige; ~ .4 (0,1)) andog? is
cesses, where the AR coefﬂm_ents evo_lve continuously The time varying variance of the 0bservatio7n noise "
time. The current tendency is to estimate such modelS ™ 1,5\ ariances of observation and innovation noise are de-
through Monte Carlo methods: the pnnuple of these algoﬁned by their corresponding logarithm®. @, = logo?2 and
rithms is to explore the space of solutions thanks to a popu- logo? &

= nt.

lation of particles, each of th ding t didatéh : ,
anon o particles, each otthem corresponding fo a canciaa The orderp is assumed to be fixed and known. The

model 2]. o
el unknown parameters are then the TVAR coefficients, the

When the original model of the signal is known, the per-=""" > . )
formances of these algorithms can be easily evaluated bgarlances of the excitation and the observation noise. Each

estimated TVAR parameters.

comparing the true and the estimated model. However, fo the three components of the unknown parameter vector

natural signals, the original model is rarely available. Con-> rd:er(al\t/igﬁ(’oq?/% z)rlzcsc‘auszpoviﬁgzrtlocz\gﬂt\)/g Sgﬁ?\;d(;”gyt?t:‘ i?]rizgl
sequently, the quality of the TVAR estimation is t_rad|t|o_nally tate and by the distribijtion of its state transition. Those dis-
evaluated through the reduction of the observation noise otf— y '

tained by a Kalman filter using the estimated modg! | ributions are defined by:

The estimated model is also validated by statistical tests _ . ALY
on the series; defined by: P(ala-1) = ‘/V(at’at’l’Aa)z' ()
Pt ) = A (Gt ,:0%); (5)
o= POE S M), ) ) = A ). 6

WhereYl,_...,YN are the ra_ndom variables associated to th%hereﬂ(x; m; P) denotes a gaussian density with argument

observationsys,...,;. This method has the drawback of x meanm, and covarianc®.

being computationaly complex. An estimate of the parameter veciis given by a con-
ventional particle filter method.

After a brief presentation of the TVAR model and its esti-

mation by particle filtering in Section 2, the classical criteria2.2 Particle filter

for model validation will be presented in Section 3. We will o - e

propose a new method for the evaluation of the TVAR estij’he_prlnm(pi))le of the particle filtering is tq generate a satlof

mation in Section 4. In Section 5, the proposed method wilParticlesd;_, , each of them representing a stéige of the

be evaluated and compared to the classical one. system which is likely to occur.
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According to the SIS particle filter algorithm2]| However, in another experiment, we notice that the crite-
the particles evolve according to the stage of predicfion of the SNR improvement is not relevant to measure the
tion, p(6&|6-1) = p(a|a—1)p(@ @y ;) P(Gh |, ,), and quality of the TVAR estimation. Figuréshows 400 samples
the weights are updated according to the observation (stagd the test signal generated by a second-order TVAR process.
of correction: Wt(l) _ p(y’[|9[(l)))- However, the particle fil- The corresponding TVAR parameters, depicted in Figlre
ter as described presents a major drawback. The increaf@low a first-order Markov process as defined in seciidh
of the scattering of the weights has ominous effects on th@&/th fixed parameterfa, = Aq, = 10" for the TVAR coef-
quality of the estimation and induces a long-term divergencécients and? = §2 = 10~ for the log-variance.
of the filter: this phenomenon is known as "degeneration”
of the weights. In order to avoid this phenomenon, a new . ‘ ‘ __TVAR signal
stage called re-sampling has been introduced. It consists in
duplicating the particles of strong weight and eliminating the
particles of weak weight.

The TVAR parameters vector is then estimated by a

~ N
Monte Carlo method& ~ 3 9t<')w§'>. An estimatexX of the

i=1
original signalx is performed by a Kalman filter based on the °
estimated TVAR parameter§][

3. VALIDATION OF THE TVAR ESTIMATION:
DIRECT AND INDIRECT CRITERIA

This part presents classical criteria used to assess the quality
of the TVAR estimation: 15

e a direct criterion relying on the comparison between the

original and estimated parameters. For audio signals,thiﬁ. 1 Ti i fth heti d-ord
can be performed through the cepstral distance. Tl\gpljlr?e o Ilme variations of the synthetic second-order
e indirect criteria based either on the SNR improvement or signa

on statistical tests carried out on the observation.

1 I I I 1 I I
[ 50 100 150 200 250 300 350 400
Time step

0. 1

3.1 Cepstral distance measurement pal  TYAR CoRtenta) TVAR coafent a2

08

For signals with known TVAR model (synthetic TVAR sig- * °
nals for example), the quality of the TVAR estimation ob- ° N
tained by the particle filtering can be evaluated by the com_,
parison between the trajectories of the original and the est
mated TVAR coefficients.

02

The AR coefficients are related to the cepstrum by the -

. 1, -o.
I‘e|atI0n B] 0 50 100 150 200 250 300 350 400 0O 50 100 150 200 250 300 350 400
Time step Time step

c(i) = —a(i) —

@-Damali-n. @O

n=1 Excitation variance

M1

One can compare the true and the estimated models by tl
cepstral distance, which is the euclidian distance between tt |
cepstra,
4 p . ~ .
d = Z(Ct(l) —G(0))% ®

The cepstral distance, as shown here, allows to aggregate t o« w0 w7 5 s % w'% & w0 @@ m w0 w0
. . — . A Time stey Time step
evaluation of all TVAR estimated coefficients in a single and

perce_ptually signi_ficant criterion. It will be taken as refer- Figure 2: Time variations of the TVAR parameters for the
ence in the following. signal in Figurel

3.2 SNRcriteria The variations of the SNR improvement according to the
When the estimated TVAR parameters are used to denoiseput SNR are shown in Figui@ They were obtained by a
the observed signglby a Kalman filtering, a classical mea- single run of the algorithm for each value of the input SNR,
sure of performance of the particle filter algorithm is the Sig-using 500 particles. The use of a single run is allowed by
nal to Noise Ratio improvement (SNR improvement®,  the small variance of the results when using 500 patrticles, as
the difference between the SNRs after and before denoishown in [L].

ing. Referring to the experimental results of Vermadk [ The SNR improvement decreases as the input SNR in-
the SNR improvement increases as the number of particlesreases, whereas the cepstral distance decreases, indicating a
N, increases up to 100. better model estimation. One could suggest to take simply

©2007 EURASIP 799 EUSIPCO, Poznan 2007
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Figure 4:Diagram of the proposed method.

whereN = sample sizeK = number of autocorrelation lags
andf; denotes thé" autocorrelation coefficient of the time
series. For a white signai® is asymptotically Chi-Square
Figure 3: SNR improvement, output SNR and cepstral disdistributed.
tance. Normality
The Bowman-Shenton test evaluates the hypothesis that

the time series has a normal distribution. The test is based

the SNR output as a measure of the quality but its growtlon the skewnesg = % and kurtosigp = % —3of the
Ho

20 . ; ; ; ; ; ;
-10 -5 0 5 10 15 20 25 30 35 40
SNR input (dB)

does not match the decrease of the cepstral distance: the lat- ) . o o
ter stops decreasing from input SNR = 20 dB while the outputime series, withy; the i central moment of the random
SNR goes on increasing. variable associated with the time series around its mean

Another drawback of the SNR criterion is its dependencel he statistic value associated to this test is given by:
on the denoising phase: what is evaluated is not the quality of 8
the TVAR estimation but the quality of the denoising using 3=+ ¥ (12)
this estimation.

At last, such a criterion implies that the original sigral For a true gaussian distribution, the statisf® should be
is available, which is not realistic for a natural signal. closer to 0.

3.3 Conventional statistical approach for model ade- 4. PROPOSED APPROACH

uac . o
quacy ) ) Assuming that a signadis produced by a TVAR system ex-
LetYi,...Yn be the random variables associated to the obsetited by a stationary gaussian white noise, the estimation is

vationsyy, ..yt. If the model is correct, the sequence good if there exists a stationary gaussian white noise that can
producex by exciting the estimated TVAR model. The pro-
U = p(Yt < ¥tly1t-1) ©) posed method is then based on the evaluation of the statistical

. L . . . roperties of the estimated excitatié,), that can generates
is a realization of an independent random variable uniformlype AR signalx(n). Indeedé(t), which is defined by
distributed on[0, 1]. By letting the time serieg = @~ 1(u), '

whereg is the standard normal cumulative distribution func- 1 p
tion, the TVAR model is correct if; is i.i.d according to &t) = — <x(t) - Zléi’tx(t_i)>’ (13)
A(0,1) [1]. Og £

According to 1], the computing of they requires in- _ _ _
tegration over the model parameters. The latter is approx/ust be stationary, white and gaussian. Note that
mated by a Monte Carlo estimation using the particle filter(&it; -, &p;) is the vector of estimated TVAR coefficients and

Therefore, an estimate of is given by: Jg_corresponds to the estimated variance of the TVAR inno-
vation sequence.
1 N . Since the original signadis not available for natural sig-
G2 = Zp(Yt < yt|9£':t),y1;t,1), (10)  nals under noisy observation, we replace it by the estimated
N £ signalXk, given by the Kalman filter. With this approximation,

) an estimation for the excitation may be defined as follows:
where6"” is the i-th particle at time.

R 1/, P .
The statistical tests employed here aim at testing the nor- &t) = Ga (X(t) - _Zlaiix(t - ')> : (14)
mality and the whiteness of the time seriesind are briefly =
described below: According to (4), the principle of the method can be then
Whiteness _ _ _ _ illustrated with a diagram (see Figudp
We measure the correlation byvéhiteness indegiven Besides the normality and whiteness that are classically
by the Ljung-Box test. This index is defined by: evaluated, we have introduced the assessment of the esti-
K o2 mated excitation stationarity. Indeed, the stationarity crite-
LB _ i rion is all the more crucial since the original TVAR signal is
Gk =N(N+2) £ (N—i)’ A hon stationary.

©2007 EURASIP 800 EUSIPCO, Poznan 2007
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Stationarity . ~*—‘ Cepstral ‘distance ‘
The method we choose to detect non stationarity is based 0.5] il
on the stationarity index used ir5][ which is the Kol-
mogorov distance between the time frequency representa- o9r @
tions (TFR) of the signal at different times. The latter is given osl
by: \
0.8F \‘
p +o00 .
Sl(n):/ / INIL(n: 7, f) —Nlo(m; 7, f)|d fdT. (15) ol %
=0.f | N ]
Nly(n; T, f) andNIx(n; T, f) represent a normalization ofre- | TTTteeel .
spectively subimagds(n; 7, f) andl,(n; T, f): | ‘ -

0.6

- 20 40 60 80 100 120 140
N Ik(n; T, f) — 5 -+oc!|k(n’ T7.f )| , ( 6) Number of particles N
fT:Osz—OO “k(n’ T f)|d fdr : # Nor‘mality index )
h - - - Normality index (Exc)
where the two subimageés(n; 7; f) andl4(n; T; f) with equal 095y — Cepstal distance
durationp are extracted from the global TFR on both sides \
of instantn: o9 | (®)
l1(n;7,f) =TFRN—p+T1, f); a7 ogs kel ]
lo(mt,f)=TFR(n+T1, ). @ T
0.8F i .
The parametep delimits the considered analysis du-
ration at each instant and allows the selectivity/sensivity 075
control of the Sls: highep lead to smoother Sls. As used in
[4], we fixedp to 20. o7 ‘ ‘ ‘ ‘ ‘ !
20 40 60 80 100 120 140
Number of particles N
We propose to measure the stationarity of the estimated 5 ‘
excitationé by the variance of its stationarity index. To eval- o e
uate the normality and the whitenessepive use the respec- 0.05M| s —— Cepstral distance
tive criteria presented in secti@3. o
0.9F 1 :
5. EXPERIMENTAL RESULTS (©
The experiments aim at validating our approach and compare 0.85
it to the one presented in subsecti®3. Thus, we propose
to study the correlation between the cepstral distance and the 0.8r
statistical criteria performed on both residual time sevias
defined in subsectioB.3and the estimated excitatién 0.75¢
The test signal is a s%/nthetic TVAR signal of order 2 (see
Figure 1), with Ay = 10~“I, for the TVAR coefficients and 07— 20 0 a0 100 120 140
&¢ = 62 = 1073 for the log-variance (see Figu®. From Number of particles N

Figurel, one can see that the time variations of the syntheti

TVAR signal are similar to those of a natural speech signal.
At a first stage, we investigated the quality of TVAR esti-

mation according to the particles’ numbér For each exper-

iment, the time serieg and the estimated excitati@were

computed and analyzed using the three statistical tests pre- o

sented in sectior3.3and4. Since the subsectigh2stressed At a second stage, the estimation of the TVAR parame-

the need of a new criterion especially for input SN0 ters th.rough particle filter was performed fo_r various values

dB, we fixed SNR to 30 dB. The TVAR estimation was per-Of the input SNR(—10 : 2 : 40dB) and for various values of

formed for different values dfl. the particles’ numbeN (10 : 10 : 150particles). This simu-
Figure5 compares the variations, over of the standard- lation was repeated 30 times for each pair (SNIR, Figure

ized statistical criteria and the cepstral distance for both tim& shows the correlation of the statistical criteria with the cep-

seriesv andé. These reported results were obtained by artral distance for both time serigsandé. Each experiment

averaging over 30 independent runs for each valus.os  is represented by a point of coordinate’, 1) whered? is

expected, the estimation quality is improved by the increasthe cepstral distance andefers to one of the three indices

of N: both statistical criteria and cepstral distance decrease é#hiteness / normality / stationarity) feror &.

the particles’ number increases up to 100. As a preliminary These reported results demonstrate that the statistical in-

conclusion, the whiteness, the normality and the stationaritdices related to the estimated excitatéoare well correlated

of @andv appear as good indicators of the TVAR estimationto the cepstral distance. The correlation degrees depends on

quality, since they follow the same evolution as the cepstrahe estimation quality . Indeed, for cepstral distances below

distance. 0.6, the whiteness, the normality and the stationarity are al-

T:igure 5: Cepstral distance compared to statistical criteria
(whiteness (a), normality (b) and stationarity (c)) for béth
andv, according to the particle’s number.
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Figure 6:Correlation between statistic criteria and cepstral distance for both the estimate exéiglipn(2), (3)), and the
residual time serieg ((4), (5), (6)).

most linearly related to the cepstral distance. Such significamfuantitative measure of the quality of the TVAR model es-

correlation is not observable for timation, which could be used for example to compare two
To support these results, we computed the correlation cGFVAR estimations. In addition, the great advantage of this

efficients between the cepstral distance and each criteriomethod is that it does not need any knowledge of the original

The obtained results, summarized in Tatleconfirm that model, neither of the original signal, contrary to the evalua-

the proposed approach is more coherent with the cepstral disen through SNR criteria.

tance than the conventional assessing method (time sgries

. : . . REFERENCES
Whiteness| Normality | Stationarity
é 0.93 0.6 0.95 [1] J. Vermaak, C. Andrieu, A. Doucet, SJ. GodsHarti-
Y 0.06 0.80 -0.7 cle Methods For Bayesian Modeling And Enhancement

Of Speech Signal$EEE Trans. Speech and Audio Proc,
Table 1:Correlation coefficients between the statistical crite- ~ Vol. 10 (3), pp. 173-185, 2002.
ria and the cepstral distance for both the estimated excitation?] M. Sanjeev, S. Maskell, N. Gordon, T. Claph Tutorial

éand the time serieg. On Particle Filters For Online Nonlinear/Non-Gaussian

. Bayesian TrackinglEEE Trans. Signal Processing, Vol.
The low complexity is another advantage of the proposed g (2), pp. 174-188, 2002.

method. Whereas the classical validation method based . .
v, requires the computation of a&mfc for each particle, our CIE] G. Faucon, R. Le Bouquin, A. AkbariMesures Objec-

: ; e : tives De La Rduction De BruitGRETSI, Juan les Pins
method requires a simple FIR filtering based on the estimated ’ '
VAR modbl. P 9 pp. 587590, 1993

[4] S. Larbi, M. JaidaneAudio Watermarking: A Way To
6. CONCLUSION Stationarize Audio Signgl$EEE Trans. Signal Process-
ing, Vol. 53 (2), pp. 816—823, 2005.
] H. Laurent, C. DoncarliStationarity index for abrupt
changes detection in the time-frequency plaHeEE
Signal Processing Letters, Vol. 5, no 2, pp. 43-45, 1998.

We have shown that the indirect criteria based on the SNRS
are not relevant for the evaluation of a TVAR estimation. We[
have proposed a new evaluation method based on the mea-
sure of the normality, the stationarity and the whiteness of
the estimated excitation. The latter is the output of the in-
verse estimated TVAR system.

With a lower complexity than the classical method based
on residual time serieg the proposed method leads to better
results: the whiteness, normality and stationarity indices are
strongly correlated to the cepstral distance between the true
and the estimated TVAR models.

Note that the proposed method does not aim at perform-
ing a binary validation (valid / not valid). It is thought as a
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