G. Alsmeyer, A. Iksanov, and U. Rösler, On Distributional Properties of Perpetuities, Journal of Theoretical Probability, vol.117, issue.3, pp.666-682, 2009.
DOI : 10.1007/s10959-008-0156-8

Y. Bakhtin and T. Hurth, Invariant densities for dynamical systems with random switching, Nonlinearity, vol.25, issue.10, pp.2937-2952, 2012.
DOI : 10.1088/0951-7715/25/10/2937

J. Bardet, A. Christen, A. Guillin, A. Malrieu, and P. Zitt, Total variation estimates for the TCP process, Electronic Journal of Probability, vol.18, issue.0, 2012.
DOI : 10.1214/EJP.v18-1720

URL : https://hal.archives-ouvertes.fr/hal-00655462

J. Bardet, H. Guérin, and F. Malrieu, Long time behavior of diffusions with Markov switching , ALEA Lat, Am. J. Probab. Math. Stat, vol.7, pp.151-170, 2010.

M. Benaïm, S. Le-borgne, F. Malrieu, and P. Zitt, On the stability of planar randomly switched systems Qualitative properties of certain piecewise deterministic markov processes, 2012.

O. Boxma, H. Kaspi, O. Kella, and D. Perry, On/Off Storage Systems with State-Dependent Inpout, Outpout and Switching Rates, Probab. Engrg. Inform. Sci, vol.19, issue.1, pp.1-14, 2005.
DOI : 10.1017/s0269964805050011

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. Buckwar and M. G. Riedler, An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution, Journal of Mathematical Biology, vol.2, issue.3, pp.1051-1093, 2011.
DOI : 10.1007/s00285-010-0395-z

P. Caputo, P. Dai-pra, and G. Posta, Convex entropy decay via the Bochner-Bakry-Émery approach , Ann. Inst. Henri Poincaré Probab, Stat, vol.45, issue.3, pp.734-753, 2009.

D. Chafaï, F. Malrieu, and K. Paroux, On the long time behavior of the TCP window size process, Stochastic Process, Appl, vol.120, issue.8, pp.1518-1534, 2010.

O. L. Costa, Stationary distributions for piecewise-deterministic Markov processes, Journal of Applied Probability, vol.46, issue.01, pp.60-73, 1990.
DOI : 10.1080/17442508308833256

O. L. Costa and F. Dufour, Ergodic properties and ergodic decompositions of continuoustime Markov processes MR-2274799 [13] , Stability and ergodicity of piecewise deterministic Markov processes, J. Appl. Probab. SIAM J. Control Optim, vol.43, issue.47 2, pp.767-781, 2006.

M. H. Davis, Piecewise-deterministic Markov processes, With discussion. MR [15] , Markov models and optimization, Monographs on Statistics and Applied Probability, pp.353-388, 1984.
DOI : 10.1007/978-1-4899-4483-2_2

B. De-saporta and J. Yao, Tail of a linear diffusion with Markov switching, The Annals of Applied Probability, vol.15, issue.1B, pp.992-1018, 2005.
DOI : 10.1214/105051604000000828

URL : https://hal.archives-ouvertes.fr/hal-00111278

P. Diaconis and D. Freedman, Iterated random functions, SIAM Rev, pp.45-76, 1999.
DOI : 10.1137/s0036144598338446

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Dufour and O. L. Costa, Stability of Piecewise-Deterministic Markov Processes, SIAM Journal on Control and Optimization, vol.37, issue.5, pp.1483-1502, 1999.
DOI : 10.1137/S0363012997330890

URL : https://hal.archives-ouvertes.fr/hal-00268162

V. Dumas, F. Guillemin, and P. Robert, A Markovian analysis of additive-increase multiplicative-decrease algorithms, Advances in Applied Probability, vol.34, issue.1, pp.85-111, 2002.
DOI : 10.1239/aap/1019160951

J. Fontbona, H. Guérin, and F. Malrieu, Quantitative estimates for the long time behavior of an ergodic variant of the telegraph process, Adv. in Appl. Probab, vol.44, issue.4, pp.977-994, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00763424

C. M. Goldie and R. Grübel, Perpetuities with thin tails, Advances in Applied Probability, vol.1, issue.02, pp.463-480, 1996.
DOI : 10.2307/1426858

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. Graham, . Ph, and . Robert, Interacting multi-class transmissions in large stochastic networks Self-adaptive congestion control for multiclass intermittent connections in a communication network, Ann. Appl. Probab. Queueing Syst, vol.1923, issue.69, pp.2334-2361, 2009.

X. Guyon, S. Iovleff, and J. Yao, Linear diffusion with stationary switching regime, ESAIM Probab, Stat, vol.8, pp.25-35, 2004.
DOI : 10.1051/ps:2003017

URL : http://hal.archives-ouvertes.fr/docs/00/27/20/33/PDF/Guyon-Iovleff-Yao-2002.pdf

P. Hitczenko and J. Weso?owski, Perpetuities with thin tails revisited, The Annals of Applied Probability, vol.19, issue.6, pp.2080-2101, 2009.
DOI : 10.1214/09-AAP603

URL : http://arxiv.org/abs/0912.1694

H. Kesten, Random difference equations and Renewal theory for products of random matrices, Acta Mathematica, vol.131, issue.0, pp.207-248, 1973.
DOI : 10.1007/BF02392040

E. Kussell and S. Leibler, Phenotypic Diversity, Population Growth, and Information in Fluctuating Environments, Science, vol.309, issue.5743, pp.2075-2078, 2005.
DOI : 10.1126/science.1114383

C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophysical Journal, vol.35, issue.1, pp.193-213, 1981.
DOI : 10.1016/S0006-3495(81)84782-0

K. Pakdaman, M. Thieullen, and G. Wainrib, Fluid limit theorems for stochastic hybrid systems with application to neuron models, Advances in Applied Probability, vol.46, issue.03, pp.761-794, 2010.
DOI : 10.1073/pnas.0236032100

URL : https://hal.archives-ouvertes.fr/hal-00555398

S. T. Rachev, Probability metrics and the stability of stochastic models, Probability and Mathematical Statistics: Applied Probability and Statistics, p.1105086, 1991.

O. Radulescu, A. Muller, and A. Crudu, Théorèmes limites pour des processus de Markov à sauts. Synthèse des résultats et applications en biologie moléculaire, Technique et Science Informatiques, vol.26, pp.3-4, 2007.
DOI : 10.3166/tsi.26.443-469

L. Saloff-coste, Lectures on finite Markov chains, Lecture Notes in Math, vol.302, issue.S??rieI, pp.301-413, 1996.
DOI : 10.1103/PhysRevLett.58.86

W. Vervaat, On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables, Adv. in Appl. Probab, vol.11, issue.4, pp.750-783, 1979.

C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics, vol.58, p.1964483, 2003.
DOI : 10.1090/gsm/058

G. Wainrib, M. Thieullen, and K. Pakdaman, Erratum to: Intrinsic variability of latency to first-spike, Biological Cybernetics, vol.105, issue.3-4, pp.43-56, 2010.
DOI : 10.1007/s00422-011-0462-6