Quantitative ergodicity for some switched dynamical systems

Michel Benaïm, Stéphane Le Borgne, Florent Malrieu, Pierre-André Zitt

To cite this version:
Michel Benaïm, Stéphane Le Borgne, Florent Malrieu, Pierre-André Zitt. Quantitative ergodicity for some switched dynamical systems. Electronic Communications in Probability, Institute of Mathematical Statistics (IMS), 2012, 17 (56), pp.1-14. <10.1214/ECP.v17-1932>. <hal-00686272v4>

HAL Id: hal-00686272
https://hal.archives-ouvertes.fr/hal-00686272v4
Submitted on 5 Dec 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Quantitative ergodicity for some switched dynamical systems

Michel Benaïm* Stéphane Le Borgne† Florent Malrieu† Pierre-André Zitt‡

Abstract

We provide quantitative bounds for the long time behavior of a class of Piecewise Deterministic Markov Processes with state space $\mathbb{R}^d \times E$ where E is a finite set. The continuous component evolves according to a smooth vector field that switches at the jump times of the discrete coordinate. The jump rates may depend on the whole position of the process. Under regularity assumptions on the jump rates and stability conditions for the vector fields we provide explicit exponential upper bounds for the convergence to equilibrium in terms of Wasserstein distances. As an example, we obtain convergence results for a stochastic version of the Morris–Lecar model of neurobiology.

Keywords: Coupling; Ergodicity; Linear Ordinary Differential Equations; Piecewise Deterministic Markov Processes; Switched dynamical systems; Wasserstein distance.

AMS 2010 Subject Classification: 60J75; 60J25; 93E15; 34D23.

1 Introduction and main results

Piecewise deterministic Markov processes (PDMPs in short) are intensively used in many applied areas (molecular biology [31], storage modelling [7], Internet traffic [19, 22, 23], neuronal activity [29, 8], populations growth models [27]...). Roughly speaking, a Markov process is a PDMP if its randomness is only given by the jump mechanism: in particular, it admits no diffusive dynamics. This huge class of processes has been introduced by Davis (see [14, 15]) in a general framework. Several works [11, 18, 12] deal with their long time behavior (existence of an invariant probability measure, Harris recurrence, exponential ergodicity...). In particular, it is shown in [13] that the behavior of a general PDMP can be related to the one of the discrete time Markov chain made of the positions at the jump times of the process and of an additional independent Poisson process. Nevertheless, this general approach does not seem to provide quantitative bounds for the convergence to equilibrium. Recent papers have tried to establish such estimates for some specific PDMPs (see [10, 20, 3]) or continuous time Markov chains (see [9]).
In the present paper, we investigate the long time behavior of an interesting subclass of PDMPs that plays a role in molecular biology (see [28] [31] [8] [35]). We consider a PDMP on $\mathbb{R}^d \times E$ where E is a finite set. The first coordinate moves continuously on \mathbb{R}^d according to a smooth vector field that depends on the second coordinate whereas the second coordinate jumps with a rate that may depend on the first one. This class of Markov processes is reminiscent of the so-called iterated random functions in the discrete time setting (see [17] for a good review of this topic).

Let E be a finite set, $(a(\cdot, i, j))_{i,j \in E}$ be n^d nonnegative continuous functions on \mathbb{R}^d, and, for any $i \in E$, $F^i : \mathbb{R}^d \mapsto \mathbb{R}^d$ be a smooth vector field such that the ordinary differential equation

$$\begin{cases} x'_t = F^i(x_t), & t > 0; \\ x_0 = x, \end{cases}$$

has a unique and global solution $t \mapsto \phi^i_t(x)$ on $[0, \infty)$ for any initial condition $x \in \mathbb{R}^d$. Let us consider the Markov process $(Z_t)_{t \geq 0} = ((X_t, I_t))_{t \geq 0}$ on $\mathbb{R}^d \times E$ defined by its extended generator L as follows:

$$L f(x, i) = \langle F^i(x), \nabla_x f(x, i) \rangle + \sum_{j \in E} a(x, i, j)(f(x, j) - f(x, i)) \quad (1.1)$$

for any smooth function $f : \mathbb{R}^d \times E \to \mathbb{R}$ (see [15] for full details on the domain of L).

Definition 1.1. In the sequel, η_i (resp. μ_i) stands for the law of $Z_t = (X_t, I_t)$ (resp of X_t) if $(Z_t)_{t \geq 0}$ is driven by (1.1) with initial distribution η_0.

A simple case occurs when $a(x, i, j)$ can be written as $\lambda(x, i)P(i, j)$ for $(\lambda(\cdot, i))_{i \in E}$ a set of nonnegative continuous functions, and P an irreducible stochastic matrix, in which case:

$$L f(x, i) = \langle F^i(x), \nabla_x f(x, i) \rangle + \lambda(x, i) \sum_{j \in E} P(i, j)(f(x, j) - f(x, i)). \quad (1.2)$$

Let us describe the dynamics of this process in this simple case, the general case being similar. Assume that $(X_0, I_0) = (x, i) \in \mathbb{R}^d \times E$. Before the first jump time T_1 of I, the first component X is driven by the vector field F^x and then $X_t = \phi_t^x(x)$. The time T_1 can be defined by:

$$T_1 = \inf \left\{ t > 0 : \int_0^t \lambda(X_s, i) \, ds \geq E_1 \right\},$$

where E_1 is an exponential random variable with parameter 1. Since the paths of X are deterministic between the jump times of I, the randomness of T_1 comes from the one of E_1 and

$$T_1 = \inf \left\{ t > 0 : \int_0^t \lambda(\phi_s^x(x), i) \, ds \geq E_1 \right\}.$$

Remark 1.2. Notice that $\mathbb{P}_{(x, i)}(T_1 = +\infty) > 0$ if and only if

$$\int_0^{+\infty} \lambda(\phi_s^x(x), i) \, ds < +\infty.$$

If we assume that $\tilde{\lambda} := \inf_{(x, i)} \lambda(x, i) > 0$ then the process I jumps infinitely often.

At time T_1, the second coordinate I performs a jump with the law $P(i, \cdot)$ and the vector field that drives the evolution of X is switched...
In general, I is not a Markov process on its own since its jump rates depend on X. In this paper, we will study both the simple — Markovian — case and the general case.

The main goal of the present work is to provide quantitative bounds for the long time behavior of ergodic processes driven by (1.2) thanks to the construction of explicit couplings. We need to introduce a distance on the set of probability measures to quantify this convergence.

Definition 1.4. Let \mathcal{P}_p be the set of probability measures on $\mathbb{R}^d \times E$ such that the first marginal has a finite p^{th} moment. If $\eta \in \mathcal{P}_p$ and Z is a random variable on $\mathbb{R}^d \times E$ with distribution η, we denote by X and I the two coordinates of Z in \mathbb{R}^d and E respectively and by μ and ν their distributions.

Let us now define the distance W_p on \mathcal{P}_p as follows: for $\eta, \tilde{\eta} \in \mathcal{P}_p$,

$$W_p(\eta, \tilde{\eta}) = \inf_{\Pi} \left(\left(E \left[|X - \tilde{X}|^p \right] \right)^{1/p} + P(I \neq \tilde{I}) : (X, I) \sim \eta \; \text{and} \; (\tilde{X}, \tilde{I}) \sim \tilde{\eta} \right).$$

The distance W_p is made of a mixture of the Wasserstein distance for the first component and the total variation distance for the second one. Recall that for every $p \geq 1$, the Wasserstein distance W_p between two laws μ and $\tilde{\mu}$ on \mathbb{R}^d with finite p^{th} moment is defined by

$$W_p(\mu, \tilde{\mu}) = \left(\inf_{\Pi} \int_{\mathbb{R}^d \times \mathbb{R}^d} |x - \tilde{x}|^p \Pi(dx, d\tilde{x}) \right)^{1/p}$$

(1.3)

where the infimum runs over all the probability measures Π on $\mathbb{R}^d \times \mathbb{R}^d$ with marginals μ and $\tilde{\mu}$ (such measures are called couplings of μ and $\tilde{\mu}$). It is well known that for any $p \geq 1$, the convergence in W_p Wasserstein distance is equivalent to weak convergence together with convergence of all moments up to order p. However, two probability measures can be both very close in the W_p sense and singular. Choose for example $\mu = \delta_0$ and $\tilde{\mu} = \delta_\varepsilon$. In this case,

$$W_p(\mu, \tilde{\mu}) = \varepsilon \; \text{and} \; \|\mu - \tilde{\mu}\|_{TV} = 1.$$

See e.g. [30, 34] for further details and properties for Wasserstein distances.

Estimates for the Wasserstein distances do not require (nor provide) any information about the support of the invariant measure (which is the set of the recurrent points). This may be difficult to determine and if the initial distribution of X is not supported by this set, the law of X_t and the invariant measure may be singular. To illustrate this fact, one can consider the following trivial example:

$$(x, i) \in \mathbb{R}^2 \times \{0, 1\}, \quad \lambda(x, i) = 1, \quad F^1(x) = -(x - ia) \; \text{with} \; a = (1, 0).$$

The process (X, I) is ergodic and the first marginal μ of its invariant measure is supported by the segment $\{pa : \rho \in [0, 1]\}$ (it is shown in [7] that μ is a Beta distribution). Despite its extreme simplicity, this process does not in general converge in total variation: if $Z_0 = (0, 1)$, the law of X_t is singular with the invariant measure for any $t \geq 0$, so $\|L(X_t) - \mu\|_{TV}$ is always equal to 1. On the contrary, $W_p(L(X_t), \mu)$ goes to 0 exponentially fast (see below).

We are able to get explicit rates of convergence in two situations. Firstly, if the jump rates of I do not depend on X, then the vector fields $(F^i)_{i \in E}$ will be assumed to satisfy an averaged exponential stability. Secondly, if the jump rates of I are assumed to be Lipschitz functions of X, then the vector fields $(F^i)_{i \in E}$ will be assumed to satisfy a uniform exponential stability.
Remark 1.5. These conditions are not necessary to ensure the ergodicity of Z. In [2], it is shown that, for constant jump rates and under Hörmander-like conditions on the vectors fields $(F_i)_{i \in E}$, the invariant probability measure is unique and absolutely continuous with respect to the Lebesgue measure on \mathbb{R}^d. In a similar setting, exponential rates of convergence to equilibrium are obtained in [5]. But these estimates rely on compactness arguments and are not explicit.

1.1 Constant jump rates

If the jump rates of I do not depend on X, then $(I_t)_{t \geq 0}$ is a Markov process on the finite space E and $(X_t)_{0 \leq t \leq T}$ is a deterministic function of $(I_s)_{0 \leq s \leq t}$. Many results are available both in the discrete time setting (see [26, 33, 21, 25, 1]) and in the continuous time setting (see [24, 16, 4]). Moreover, if Assumption 1.8 (see below) does not hold, [5] provides a simple example of surprising phase transition for a switching of two exponentially stable flows that can be explosive (when the jump rates are sufficiently large).

Assumption 1.6. Assume that the jump rates $(a(\cdot, i, j))_{i \in E}$ do not depend on x and that I is an irreducible Markov process on E. Let us denote by ν its invariant probability measure.

Remark 1.7. If $a(\cdot, i, j)$ does not depend on x, we can always write $a(i, j) = \lambda(i)P(i, j)$ with $P(\cdot, \cdot)$ a Markov transition matrix.

Assumption 1.8. Assume that for any $i \in E$, there exists $\alpha(i) \in \mathbb{R}$ such that,

$$\langle x - \bar{x}, F_i(x) - F_i(\bar{x}) \rangle \leq -\alpha(i)|x - \bar{x}|^2, \quad x, \bar{x} \in \mathbb{R}^d,$$

and that

$$\sum_{i \in E} \alpha(i)\nu(i) > 0$$

where ν is defined in Assumption 1.6.

Firstly, one can establish that the process X is bounded in some L^p space.

Lemma 1.9. Under Assumptions 1.6 and 1.8, there exists $\kappa > 0$ such that, for any $q < \kappa$, the function $t \mapsto \mathbb{E}(|X_t|^q)$ is bounded as soon as $\mathbb{E}(|X_0|^q)$ is finite. More precisely, there exists $M(q, m)$ such that

$$\sup_{t \geq 0} \mathbb{E}(|X_t|^q) \leq M(q, m),$$

as soon as $\mathbb{E}(|X_0|^q) \leq m$.

Let us now turn to the long time behavior estimate.

Theorem 1.10. Assume that Assumptions 1.6 and 1.8 hold. Let $p < q < \kappa$ and denote by s the conjugate of q: $q^{-1} + s^{-1} = 1$. Assume that μ_0 and $\hat{\mu}_0$ admit a finite q^{th} moment smaller than m. Then,

$$\mathbb{W}_p(\eta_t, \tilde{\eta}_t) \leq 2^{p+1}M(q, m)^{p/q}C_2(p) \exp \left(-\frac{\theta_p}{1 + s\theta_p/\rho} t \right),$$

where ρ and θ_p are positive constants depending only on the Markov chain I.

The constants ρ, θ_p and $C_2(p)$ are given below in Equations (2.1), (2.2) and (2.3).

Corollary 1.11. Under the hypotheses of Theorem 1.10, the process Z admits a unique invariant measure η_∞ and

$$\mathbb{W}_p(\eta_t, \eta_\infty) \leq 2^{p+1}M(q, m)^{p/q}C_2(p) \exp \left(-\frac{\theta_p}{1 + s\theta_p/\rho} t \right).$$
1.2 Non constant jump rates

Let us now turn to the case when the jump rates of I depend on X. We will assume that the $a(x, i, j)$ are smooth in the x variable and that each vector field F^i has a unique stable point.

Assumption 1.12. There exist $a > 0$ and $\kappa > 0$ such that, for any $x, \tilde{x} \in \mathbb{R}^d$ and $i, j \in E$,

$$a(x, i, j) \geq a \quad \text{and} \quad \sum_{j \in E} \left| a(x, i, j) - a(\tilde{x}, i, j) \right| \leq \kappa |x - \tilde{x}|.$$

The lower bound condition insures that the second — discrete — coordinate of Z changes often enough (so that the second coordinates of two independent copies of Z coincide sufficiently often). This is a rather strong condition that can be relaxed in certain situations. If for example $a(x, i, j) = \lambda(x, i) P_{ij}$ as in (1.2), Lipschitz continuous λ bounded from below and an aperiodic P are sufficient to get a similar rate of convergence.

Assumption 1.13. Assume that there exists $\alpha > 0$ such that,

$$\langle x - \tilde{x}, F^i(x) - F^i(\tilde{x}) \rangle \leq -\alpha |x - \tilde{x}|^2, \quad x, \tilde{x} \in \mathbb{R}^d, \quad i \in E. \quad (1.4)$$

Assumption 1.13 ensures that, for any $i \in E$,

$$|\phi^i_t(x) - \phi^i_t(\tilde{x})| \leq e^{-\alpha t} |x - \tilde{x}|, \quad x, \tilde{x} \in \mathbb{R}^d.$$

As a consequence, the vector fields F^i has exactly one critical point $\sigma(i) \in \mathbb{R}^d$. Moreover it is exponentially stable since, for any $x \in \mathbb{R}^d$,

$$|\phi^i_t(x) - \sigma(i)| \leq e^{-\alpha t} |x - \sigma(i)|.$$

In particular, X cannot escape from a sufficiently large ball (this implies that the (continuous) functions $a(\cdot, i, j)$ are also bounded from above along the trajectories of X). More precisely, the following estimate holds.

Lemma 1.14. Under Assumptions 1.12 and 1.13 the process Z cannot escape from the compact set $\bar{B}(0, r) \times E$ where $\bar{B}(0, r)$ is the (closed) ball centered in $0 \in \mathbb{R}^d$ with radius r given by

$$r = \max_{i \in E} |F^i(0)| \frac{1}{\alpha}. \quad (1.5)$$

Moreover, if $|X_0| > r$ then

$$\left(|X_1|^2 - r^2 \right)^+ \leq e^{-\alpha t} \left(|X_0|^2 - r^2 \right)^+.$$

In particular the support of any invariant measure is included in $\bar{B}(0, r)$.

Let us now state our main result which establishes the quantitative exponential ergodicity of the process Z under Assumptions 1.12 and 1.13

Theorem 1.15. Assume that Assumptions 1.12 and 1.13 hold and that the supports of μ_0 and $\tilde{\mu}_0$ are included in the ball $\bar{B}(0, r)$ where r is given by (1.5). Then there exist positive constants c and γ such that

$$\mathcal{W}_1(\eta_t, \tilde{\eta}_t) \leq (1 + 2r)(1 + ct) \exp \left(-\frac{\alpha t}{1 + \alpha / \gamma} \right)$$

where α is derived from (1.4).
The constants obtained in the proof are the following
\[
\gamma = \frac{(\alpha + b) - \sqrt{(\alpha + b)^2 - 4bp\alpha}}{2} \quad \text{and} \quad c = \frac{\alpha}{\alpha + \gamma} \frac{e^{p\alpha b}}{\sqrt{(\alpha + b)^2 - 4bp\alpha}},
\]
with \(p = e^{-2\kappa/\alpha} \) and \(e = \exp(1) \) and where \(b \) depends on the coalescence time of two independent processes defined on \(E \) as the second coordinates of independent copies of \(Z \). To obtain this result we couple two paths of our process and compare their distance to a real-valued process that can pass instantly (less and less often) from small to large values \((2r+1)\). This may seem rough, but in the general case, nothing much better can be done: if one of the flows is very strongly attractive, two paths may indeed very rapidly diverge. For particular examples, or under additional assumptions on the flows, it must be possible to get better rates.

Corollary 1.16. Under the hypotheses of Theorem 1.15, the process \(Z \) admits a unique invariant measure \(\eta_\infty \) and
\[
\mathcal{W}_1(\eta_t, \eta_\infty) \leq (1 + 2r)(1 + ct) \exp \left(-\frac{\alpha}{1 + \alpha/\gamma} t \right).
\]

Section 2 is dedicated to the proof of Theorem 1.10. Theorem 1.15 is established in Section 3. As an example of the applicability of this result, we show in Section 4 that the stochastic version of the Morris–Lecar model introduced in [35] satisfies our assumptions, so that explicit bounds may be obtained for its convergence to equilibrium.

2 Constant jump rates

The aim of this section is to prove Theorem 1.10. Assumption 1.6 ensures that \((I_t)_{t \geq 0}\) is an irreducible Markov process on the finite space \(E \). Its generator \(A \) is the matrix defined by \(A(i,i) = -\lambda(i) \) and \(A(i,j) = \lambda(i)P(i,j) \) for \(i \neq j \). Let us denote by \(\nu_\infty \) its unique invariant probability measure. The study of the long time behavior of \(I \) is classical: since \(I \) takes its values in a finite set, it is quite simple to construct a coalescent coupling of two processes starting from different points.

Lemma 2.1 ([32]). If Assumption 1.6 holds then there exists \(\rho > 0 \) such that for any \(i,j \in E \),
\[
P(T > t | I_0 = i, \tilde{I}_0 = j) \leq e^{-\rho t}
\]
where \((I_t)_{t \geq 0}\) and \((\tilde{I}_t)_{t \geq 0}\) are two independent Markov processes with infinitesimal generator \(A \) starting respectively at \(i \) and \(j \) and \(T = \inf \{ t \geq 0 : I_t = \tilde{I}_t \} \) is the first intersection time.

Remark 2.2. If \(E = \{1,2\} \), then the first intersection time is distributed as an exponential random variable with parameter \(\lambda(1) + \lambda(2) \) and Equation (2.1) holds with \(\rho = \lambda(1) + \lambda(2) \).

The proof of Theorem 1.10 is made of two steps. Firstly we couple two processes starting respectively from \((x,i)\) and \((\tilde{x},i)\) to get a simple estimate as time goes to infinity. Then we use this estimate and Lemma 2.1 to manage the general case.
2.1 Moments estimates
In this section we prove Lemma [1.9] and get an L^p estimate for $|X_t|$. For any $p \geq 2$ and $\varepsilon > 0$,

$$\frac{d}{dt}|X_t|^p = p|X_t|^{p-2}\langle X_t, F^I_t(X_t) \rangle$$
$$= p|X_t|^{p-2}\langle X_t, F^I_t(X_t) - F^I_t(0) \rangle + p|X_t|^{p-2}\langle X_t, F^I_t(0) \rangle$$
$$\leq -(p\alpha(I_t) - \varepsilon)|X_t|^p + C(p, \varepsilon).$$

Thanks to Gronwall’s Lemma, we get that

$$E(|X_t|^p) \leq C(p, \varepsilon)\int_0^t E\left(e^{-\int_s^t (p\alpha(u) - \varepsilon) \, du}\right) ds + E(|X_0|^p)E\left(e^{-\int_0^t (p\alpha(u) - \varepsilon) \, du}\right).$$

Remark 2.3. A similar estimate can be obtained for $p \in [1, 2)$ using a regularization of the application $x \mapsto |x|^p$.

The right hand side depends only on $E(|X_0|^p)$ and $(I_s)_{0 \leq s \leq t}$. Thus, it is sufficient to investigate the behavior of $e(p, t)$ defined for any $t \geq 0$ by

$$e(p, t) = \max_{i \in E} E_i \left(\exp \left(-\int_0^t p\alpha(I_u) \, du\right)\right).$$

This study has been already performed in [4]. Let us state the precise result. We denote by A_p the matrix $A - pB$ where A is the infinitesimal generator of I and B is the diagonal matrix with diagonal $(\alpha(1), \ldots, \alpha(n))$ and associate to A_p the quantity

$$\theta_p := \max_{\gamma \in \text{Spec}(A_p)} \Re \gamma.$$ \hspace{1cm} (2.2)

The long time behavior of $e(p, t)$ is characterised by θ_p as follows. For any $p > 0$, there exist $0 < C_1(p) < 1 < C_2(p) < +\infty$ such that, for any $t > 0$,

$$C_1(p)e^{-\theta_p t} \leq e(p, t) \leq C_2(p)e^{-\theta_p t}. \hspace{1cm} (2.3)$$

Moreover the following dichotomy holds:

- if $\alpha \geq 0$, then $\theta_p > 0$ for all $p > 0$,
- if $\alpha < 0$, there is $\kappa \in \{0, \min\{A_{ii}/\alpha(i) : \alpha(i) < 0\}\}$ such that $\theta_p > 0$ for $p < \kappa$ and $\theta_p < 0$ for $p > \kappa$.

See [4] for further details.

If $p < \kappa$, then $t \mapsto E(|X_t|^p)$ is bounded as soon as $E(|X_0|^p)$ is finite. This concludes the proof of Lemma [1.9].

2.2 Convergence rate
Let us now get the upper bound for the Wasserstein distance W_p for some $p < \kappa$. Assume firstly that the initial law are two Dirac masses at (x, i) and (\bar{x}, i). It is easy to construct a good coupling of the two processes (X, I) and (\bar{X}, \bar{I}): since the jump rates of I do not depend on X, one can choose I and \bar{I} equal! As a consequence, for any $p \geq 2$,

$$\frac{d}{dt}|X_t - \bar{X}_t|^p = p|X_t - \bar{X}_t|^{p-2}\langle X_t - \bar{X}_t, F^I_t(X_t) - F^\bar{I}_t(\bar{X}_t) \rangle$$
$$\leq -p\alpha(I_t)|X_t - \bar{X}_t|^p.$$
As a consequence,
\[
E\left(|X_t - \tilde{X}_t|^p\right) \leq E_t\left(\exp\left(-p \int_0^t \alpha(I_s) \, ds\right)\right)|x - \tilde{x}|^p \\
\leq e^{-\theta \rho t}|x - \tilde{x}|^p.
\]

Let us now turn to a general initial condition. Choose \((x, i)\) and \((\tilde{x}, j)\) in \(\mathbb{R}^d \times E\) and consider the following coupling: the two processes evolve independently until the intersection time \(T\) of the second coordinates. Then, \(I\) and \(I\) are chosen to be equal for ever:
\[
P(I_t \neq \tilde{I}_t) = P(T > t) \leq e^{-\rho t}
\]
by (2.1). This term will turn to be negligible in \(W_p(\eta, \tilde{\eta})\). Now fix \(t > 0\) and \(\beta \in (0, 1)\) and decompose:
\[
E\left(|X_t - \tilde{X}_t|^p\right) = E\left(|X_t - \tilde{X}_t|^p \mathbb{I}_{\{T > \beta t\}}\right) + E\left(|X_t - \tilde{X}_t|^p \mathbb{I}_{\{T \leq \beta t\}}\right).
\]
Choose \(q \in (p, \kappa)\) and define \(r = q/p\) and \(s\) as the conjugate of \(r\). By Hölder’s inequality and Lemma 1.9 we get
\[
E\left(|X_t - \tilde{X}_t|^p \mathbb{I}_{\{T > \beta t\}}\right) \leq E\left(|X_t - \tilde{X}_t|^q\right)^{p/q} P(T \geq \beta t)^{1/s} \leq 2^p M(p, m)^{p/q} e^{-(\beta \rho/s)t}.
\]
Moreover,
\[
E\left(|X_t - \tilde{X}_t|^p \mathbb{I}_{\{T \leq \beta t\}}\right) = E\left(|X_t - \tilde{X}_t|^p E_{T \leq \beta t}\left(\exp\left(-p \int_0^T \alpha(I_s) \, ds\right)\right)\mathbb{I}_{\{T \leq \beta t\}}\right) \leq 2^p M(p, m) C_2(p) e^{-\theta \rho (1-\beta)t}.
\]
At last, one has to optimize over \(\beta \in (0, 1)\). With
\[
\beta = \frac{\theta \rho}{\theta \rho + \rho/s},
\]
one has
\[
E\left(|X_t - \tilde{X}_t|^p\right) \leq 2^{p+1} M(p, m)^{p/q} C_2(p) \exp\left(-\frac{\rho/s}{\theta \rho + \rho/s} \theta \rho t\right).
\]
This concludes the proof of Theorem 1.10.

3 Non constant jump rates

Let us now turn to the proof of Theorem 1.15. In this section we do not assume that the jump rates depend only on the discrete component. Thus, the coupling is more subtle since once \(I\) and \(I\) are equal, they can go apart with a positive rate. The main idea is the following. If \(I\) and \(I\) are equal, the distance between \(X\) and \(\tilde{X}\) decreases exponentially fast and then it should be more and more easier to make the processes \(I\) and \(I\) jump simultaneously (since the jump rates are Lipschitz functions of \(X\)). This idea has been used in a different framework in [10] [3].

This section is organized as follows. Firstly we prove Lemma 1.14 that ensures that the process \(X\) cannot escape from a sufficiently large ball. In particular, the support of the invariant law of \(X\) is included in this ball. Then we construct the coupling of two processes \(Z = (X, I)\) and \(Z = (\tilde{X}, \tilde{I})\) driven by the same infinitesimal generator 1.2 with different initial conditions. At last we compare the distance between \(Z\) and \(\tilde{Z}\) to an companion process that goes to 0 exponentially fast.
Choosing \(\varepsilon \) starting respectively from 3.1 The coupling

Proof of Lemma 1.14. As a consequence, if \(M = \max_{i \in E} |F_i(0)|^2 \). In other words,

\[
|X_t|^2 - |X_0|^2 = \int_s^t 2\langle F^i(X_u), X_u \rangle du \leq -2(\alpha - \varepsilon) \int_s^t |X_u| du + \frac{M}{2\varepsilon}(t - s).
\]

As a consequence,

\[
|X_t|^2 \leq \frac{M}{2\varepsilon(\alpha - \varepsilon)} (1 - e^{-(\alpha - \varepsilon)t}) + |X_0|^2 e^{-2(\alpha - \varepsilon)t}.
\]

Choosing \(\varepsilon = \alpha/2 \) ensures that

\[
\left(|X_t|^2 - \frac{M}{\alpha^2} \right)^+ \leq e^{-\alpha t} \left(|X_0|^2 - \frac{M}{\alpha^2} \right)^+.
\]

In particular, \(X \) cannot escape from the centered closed ball with radius \(r = \sqrt{M}/\alpha \).

3.1 The coupling

Let us construct a Markov process on \((\mathbb{R}^d \times E)^2 \) with marginals driven by (1.2) starting respectively from \((x, i)\) and \((\bar{x}, j)\). This is done via its infinitesimal generator \(\mathcal{L} \) which is defined as follows:

- if \(i \neq j \):
 \[
 \mathcal{L}f(x, i, \bar{x}, j) = \langle F^i(x), \nabla_x f(x, i, \bar{x}, j) \rangle + \langle F^i(\bar{x}), \nabla_x f(x, i, \bar{x}, j) \rangle + \sum_{i' \in E} a(x, i, i') (f(x, i', \bar{x}, j) - f(x, i, \bar{x}, j)) + \sum_{j' \in E} a(\bar{x}, j, j') (f(x, y, \bar{x}, j') - f(x, y, \bar{x}, j)).
 \]

- if \(i = j \):
 \[
 \mathcal{L}f(x, i, \bar{x}, j) = \langle F^i(x), \nabla_x f(x, i, \bar{x}, i) \rangle + \langle F^i(\bar{x}), \nabla_x f(x, i, \bar{x}, i) \rangle + \sum_{i' \in E} (a(x, i, i') \wedge a(\bar{x}, i, i')) (f(x, i', \bar{x}, i) - f(x, i, \bar{x}, i)) + \sum_{i' \in E} (a(x, i, i') - a(\bar{x}, i, i'))^+ (f(x, i', \bar{x}, i) - f(x, i, \bar{x}, i)) + \sum_{i' \in E} (a(x, i, i') - a(\bar{x}, i, i'))^- (f(x, i, \bar{x}, i') - f(x, i, \bar{x}, i)),
 \]

where \((\cdot)^+\) and \((\cdot)^-\) stand respectively for the positive and negative parts. Notice that if \(f \) depends only on \((x, i)\) or \((\bar{x}, j)\), then \(\mathcal{L}f = Af \). Let us explain how this coupling works. When \(I \) and \(\bar{I} \) are different, the two processes \((X, I)\) and \((\bar{X}, \bar{I})\) evolve independently. If \(I = \bar{I} \) then two jump processes are in competition: a single jump vs two simultaneous jumps. The rate of arrival of a single jump equals to \(\sum_{i' \in E} \max(a(x, i, i') - a(\bar{x}, i, i')) \). It is bounded above by \(\kappa |x - \bar{x}| \). The rate of arrival of a simultaneous jump is given by \(\sum_{i' \in E} \max(a(x, i, i') \wedge a(\bar{x}, i, i')) \).

Assume firstly that \(X_0 \) and \(\bar{X}_0 \) belong to the ball \(B(0, r) \) where \(r \) is given by (1.3). Let us define, for any \(t \geq 0 \),

\[
\Delta_t = |X_t - \bar{X}_t| + 1_{\{I_t \neq \bar{I}_t\}}.
\]
Theorem 3.1. The companion process

At the next coalescent time with an exponential rate which is greater than \(\alpha\). If a single jump occurs, then \(\Delta\) is increased by 1 and it can continuously increase (since the continuous parts are driven by two different vector fields). Nevertheless \(\Delta\) is bounded above by \(D + 1\) with \(D = 2r\).

The process \((\Delta_t)_{t\geq 0}\) is not Markovian. Nevertheless, as long as \(I = \tilde{I}\), \(\Delta\) decreases with an exponential rate which is greater than \(\alpha\). If a single jump occurs, then \(\Delta\) is increased by 1 and it can continuously increase (since the continuous parts are driven by two different vector fields). Nevertheless \(\Delta\) is bounded above by \(D + 1\) with \(D = 2r\).

The next coalescent time \(T\) is such that, for any \(E \in (0, 1)\), then \(T_\varepsilon\) is equal to the minimum of the jump times of the two independent processes which are both stochastically smaller than a random variable of law \(\mathcal{E}(2\varepsilon\alpha)\) and \(T_\varepsilon\) is stochastically smaller than \(\mathcal{E}(2\alpha)\). Then \(E(\Delta_t) \leq E(U_t)\) where the Markov process \((U_t)_{t\geq 0}\) on \([0, D] \cup \{D + 1\}\) is driven by the infinitesimal generator

\[
G f(x) = \begin{cases}
-\alpha x f'(x) + \kappa x (f(D + 1) - f(x)) & \text{if } x \in [0, D], \\
\beta f(D) - f(D + 1) & \text{if } x = D + 1.
\end{cases}
\]

3.2 The companion process

Theorem 3.1. For any \(t \geq 0\),

\[
E(U_t|U_0 = D) \leq \left(D + (D + 1) \left(\frac{pab}{\sqrt{\alpha + b)^2 - 4pab}}\right) \frac{\alpha t}{\alpha + \gamma} \right) \exp \left(-\frac{1}{1 + \alpha/\gamma} \alpha t\right) \quad (3.1)
\]

where

\[
p = e^{-D\kappa/\alpha} \quad \text{and} \quad \gamma = \frac{(\alpha + b) - \sqrt{(\alpha + b)^2 - 4pab}}{2} = \frac{(\alpha + b) - \sqrt{(\alpha - b)^2 + 4(1 - p)ab}}{2}.
\]

Remark 3.2. If \(\alpha\) goes to \(\infty\), then \(\gamma\) goes to \(d\) whereas \(\gamma \sim p\alpha/b\) if \(b\) goes to \(\infty\).

Proof. Starting from \(D + 1\), the process \(U\) jumps after a random time with law \(\mathcal{E}(b)\) to \(d\) and then goes to zero exponentially fast until it (possibly) goes back to \(D + 1\). The first jump time \(T\) starting from \(D\) can be constructed as follows: let \(E\) be a random variable with exponential law \(\mathcal{E}(1)\). Then

\[
T \overset{\cal p}{=} \begin{cases}
-\frac{1}{\alpha} \log \left(1 - \frac{\alpha E}{DG}\right) & \text{if } E < \frac{D\kappa}{\alpha}, \\
+\infty & \text{otherwise}.
\end{cases}
\]

Indeed, conditionally on \(\{U_0 = D\}\),

\[
\int_0^t \lambda(V_s) ds = \int_0^t dke^{-\alpha s} ds = \frac{D\kappa}{\alpha} (1 - e^{-\alpha t}).
\]

In other words, the cumulative distribution function \(F_T\) of \(T\) is such that, for any \(t \geq 0\),

\[
1 - F_T(t) = \Pr(T > t) = \exp \left(-\frac{D\kappa}{\alpha} (1 - e^{-\alpha t})\right).
\]

Let us define \(p = e^{-D\kappa/\alpha}\). The law of \(T\) is the mixture with respective weights \(p\) and \(1 - p\) of a Dirac mass at \(+\infty\) and a probability measure on \(\mathbb{R}\) with density

\[
f : t \mapsto f(t) = \frac{D\kappa}{1 - p} e^{-\alpha t} e^{-\frac{D\kappa}{\alpha} (1 - e^{-\alpha t})} \mathbb{1}_{(0, +\infty)}(t)
\]

and cumulative distribution function

\[
F : t \mapsto F(t) = \frac{1 - \exp \left(-\frac{D\kappa}{\alpha} (1 - e^{-\alpha t})\right)}{1 - \exp \left(-\frac{D\kappa}{\alpha}\right)} \mathbb{1}_{(0, +\infty)}(t).
\]
Starting at D, U will return to D with probability $1 - p$. The Markov property ensures that the number N of returns of U to D is a random variable with geometric law with parameter p. The length of a finite loop from D to D can be written as the sum $S + E$ where the law of S has the density function f given in (5.2), the law of E is the exponential measure with parameter b and S and E are independent.

Lemma 3.3. The variable S is stochastically smaller than an exponential random variable with parameter α i.e. for any $t \geq 0$, $F(t) \geq F_\alpha(t)$ where $F_\alpha(t) = (1 - e^{-\alpha t})\mathbb{I}_{\{t \geq 0\}}$.

Proof. For any $t \geq 0$,

$$1 - F(t) = \frac{\exp \left(\frac{D_\alpha e^{-\alpha t}}{s} \right) - 1}{\exp \left(\frac{D_\alpha}{s} \right) - 1} \leq e^{-\alpha t} = 1 - F_\alpha(t).$$

This ensures the stochastic bound.

As a consequence, the Laplace transform L_S of S with density f is smaller than the one of an exponential variable with parameter α: for any $s < \alpha$,

$$L_S(s) \leq \frac{\alpha}{\alpha - s}.$$

If L_c is the Laplace transform of $S + E$, then, for any $s < \alpha \wedge b$, we have

$$L_c(s) \leq \frac{\alpha}{\alpha - s} \frac{b}{b - s}.$$

Let us denote by H the last hitting time of d i.e. the last jump time of U and by L its Laplace transform. Let us introduce $N \sim G(p), \ (S_i)_{i \geq 1}$ with density f and $(E_i)_{i \geq 1}$ with law $\mathcal{E}(b)$. All the random variables are assumed to be independent. Then

$$H \leq \sum_{i=1}^N (S_i + E_i).$$

Classically, for any $s \in \mathbb{R}$ such that $(1 - p)L_c(s) < 1$, one has

$$L(s) = \mathbb{E}(e^{sH}) = \frac{pL_c(s)}{1 - (1 - p)L_c(s)} = \frac{p}{1 - p} \left(\frac{1}{1 - (1 - p)L_c(s)} - 1 \right).$$

Let us denote by

$$\gamma = \frac{(\alpha + b) - \sqrt{(\alpha + b)^2 - 4pab}}{2} \quad \text{and} \quad \tilde{\gamma} = \frac{(\alpha + b) + \sqrt{(\alpha + b)^2 - 4pab}}{2}$$

the two roots of $\xi^2 - (\alpha + b)\xi +xab = 0$. Notice that $\gamma < \alpha \wedge b < \tilde{\gamma}$. For any $s < \gamma$, one has $(1 - p)L_c(s) < 1$ and

$$L(s) \leq \frac{pab}{(\gamma - s)(\tilde{\gamma} - s)} \leq \frac{pab}{\tilde{\gamma} - s} \frac{1}{\gamma - s}. \tag{3.3}$$

Let us now turn to the control of $\mathbb{E}(U_t | U_0 = D)$. The idea is to discuss whether $H > \beta t$ or not for some $\beta \in (0, 1)$ (and then to choose β as good as possible):

- if $H < \beta t$, then $U_t \leq e^{-(1-\beta)at}$,
- the event $\{H \geq \beta t\}$ has a small probability for large t since H has a finite Laplace transform on a neighbourhood of the origin.
From Equation (3.3), we get that, for any α,

\[
E(U_t|U_0 = D) = E(U_t^1 | \{ T \leq \beta t \}) + E(U_t^1 | \{ T > \beta t \})
\leq De^{-(1-\beta)t\alpha} + (D + 1)L(s)e^{-\beta ts}.
\] (3.4)

From Equation (3.3), we get that, for any $s < \gamma$, $\log L(s) - \beta ts \leq h(s)$ where

\[h(s) = \log \left(\frac{pab}{\gamma - \gamma} \right) - \log(\gamma - s) - \beta ts. \]

The function h reaches its minimum at $s(t) = \gamma - (\beta t)^{-1}$ and

\[h(s(t)) = \log \left(\frac{pab}{\gamma - \gamma} \right) + \log(\beta t) - 1 - \gamma \beta t. \]

For $t > 0$ and $\beta \in (0, 1)$, choose $s(t) = \gamma - (\beta t)^{-1}$ in (3.4) to get

\[
E(U_t|U_0 = D) \leq De^{-(1-\beta)t\alpha} + (D + 1)e^{h(\gamma t)}
\leq De^{-(1-\beta)t\alpha} + (D + 1)\left(\frac{pab}{\gamma - \gamma} \right) \beta te^{-\gamma \beta t}.
\]

At last, one can choose $\beta = \alpha(\alpha + \gamma)^{-1}$ in order to have $(1 - \beta)\alpha = \gamma \beta$. This ensures that

\[
E(U_t|U_0 = D) \leq \left(D + (D + 1) \left(\frac{pab}{\gamma - \gamma} \right) \frac{\alpha t}{\alpha + \gamma} \right) \exp \left(-\frac{\alpha \gamma}{\alpha + \gamma} t \right).
\]

Replacing $\gamma - \gamma$ by its expression as a function of α, b and p provides (3.1). ☐

4 Example

The Morris–Lecar model introduced in [28] describes the evolution in time of the electric potential $V(t)$ in a neuron. The neuron exchanges different ions with its environment via ion channels which may be open or closed. In the original — deterministic — model, the proportion of open channels of different types are coded by two functions $m(t)$ and $n(t)$, and the three quantities m, n and V evolve through the flow of an ordinary differential equation.

Various stochastic versions of this model exist. Here we focus on a model described in [35], to which we refer for additional information. This model is motivated by the fact that m and n, being proportions of open channels, are better coded as discrete variables. More precisely, we fix a large integer K (the total number of channels) and define a PDMP (V, u_1, u_2) with values in $\mathbb{R} \times \{0, 1/K, 2/K, \ldots, 1\}$ as follows.

Firstly, the potential V evolves according to

\[
\frac{dV(t)}{dt} = \frac{1}{C} \left(I - \sum_{i=1}^{3} g_i u_i(t)(V - V_i) \right)
\] (4.1)

where C and I are positive constants (the capacitance and input current), the g_i and V_i are positive constants (representing conductances and equilibrium potentials for different types of ions), $u_3(t)$ is equal to 1 and $u_1(t)$, $u_2(t)$ are the (discrete) proportions of open channels for two types of ions.

These two discrete variables follow birth-death processes on $\{0, 1/K, \ldots, 1\}$ with birth rates α_1, α_2 and death rates β_1, β_2 that depend on the potential V:

\[
\alpha_i(V) = c_i \cosh \left(\frac{V - V_i'}{2V_i''} \right) \left(1 + \tanh \left(\frac{V - V_i'}{V_i''} \right) \right)
\]

\[
\beta_i(V) = c_i \cosh \left(\frac{V - V_i'}{2V_i''} \right) \left(1 - \tanh \left(\frac{V - V_i'}{V_i''} \right) \right)
\] (4.2)
where the c_i and V_1', V_2'' are constants.

Let us check that our main result can be applied in this example. Formally the process is a PDMP with $d = 1$ and the finite set $E = \{0, 1/K, \ldots, 1\}$. The discrete process (u_1, u_2) plays the role of the index $i \in E$, and the fields $F^{(u_1, u_2)}$ are defined (on \mathbb{R}) by (4.1) by setting $u_1(t) = u_1, u_2(t) = u_2$.

The constant term u_3g_3 in (4.1) ensures that the uniform dissipation property (1.4) is satisfied: for all (u_1, u_2),

$$
\left\langle V - \bar{V}, F^{(u_1, u_2)}(V) - F^{(u_1, u_2)}(\bar{V}) \right\rangle = -\frac{1}{C} \sum_{i=1}^{3} u_i g_i (V - \bar{V})^2 \leq -\frac{1}{C} u_3 g_3 (V - \bar{V})^2.
$$

The Lipschitz character and the bound from below on the rates are not immediate. Indeed the jump rates (4.2) are not bounded from below if V is allowed to take values in \mathbb{R}.

However, a direct analysis of (4.1) shows that V is essentially bounded: all the fields $F^{(u_1, u_2)}$ point inward at the boundary of the (fixed) line segment $S = [0, \max(V_1, V_2, V_3 + (I + 1)/g_3 u_3)]$, so if $V(t)$ starts in this region it cannot get out. The necessary bounds all follow by compactness, since $\alpha_i(V)$ and $\beta_i(V)$ are C^1 in S and strictly positive.

References

[23] _____, Self-adaptive congestion control for multiclass intermittent connections in a communication network, Queueing Syst. 69 (2011), no. 3-4, 237–257. MR-2886470

Acknowledgments. We deeply thank the referee for his/her quick and constructive report. FM and PAZ thank MB for his kind hospitality and his coffee breaks. We acknowledge financial support from the Swiss National Foundation Grant FN 200021-138242/1 and the French ANR projects EVOL and ProbaGeo.