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Abstract

We provides quantitative bounds for the long time behavior of a class of Piecewise
Deterministic Markov Processes with state space R? x E where E is a finite set. The
continous component evolves according to a smooth vector field that it switched at
the jump times of the discrete coordinate. The jump rates may depend on the whole
position of the process. Under regularity assumptions on the jump rates and stability
conditions for the vector fields we provide explicit exponential upper bounds for the
convergence to equilibrium in terms of Wasserstein distances.

Keywords. Coupling; Ergodicity; Linear Differential Equations; Piecewise Deterministic Markov Process;
Switched dynamical systems; Wasserstein distance.
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1 Introduction and main results

Piecewise deterministic Markov processes (PDMPs in short) are intensively used in many
applied areas (molecular biology [29], storage modelling [7], Internet traffic [19, 22, 23],
neuronal activity [8,27],...). Roughly speaking, a Markov process is a PDMP if its random-
ness is only given by the jump mechanism: in particular, it admits no diffusive dynamics.
This huge class of processes has been introduced by Davis (see [14] [I5]) in a general
framework. Several works [I8, 1T, 12] deal with their long time behavior (existence of an
invariant probability measure, Harris recurrence, exponential ergodicity...). In particular,
it is shown in [I3] that the behavior of a general PDMP can be related to the one of the
discrete time Markov chain made of the positions at the jump times of the process and
and of an additional independent Poisson process. Nevertheless, this general approach
does not seem to provide quantitative bounds for the convergence to equilibrium. Recent
papers have tried to establish such estimates for some specific PDMPs (see [10} 20, [4]) or
continuous time Markov chains (see [9]).

In the present paper, we investigate the long time behavior of an interesting subclass
of PDMPs that plays a role in molecular biology (see [29, [§]). We consider a PDMP on
R? x E where E is a finite set. The first coordinate moves continuously on R? according to
a smooth vector field that depends on the second coordinate whereas the second coordinate
jumps with a rate that may depend on the first one. This class of Markov processes is
reminiscent of the so-called iterated random functions in the discrete time setting (see [17]
for a good review of this topic).

Let E be a finite set, (A(-,4))icr be n nonnegative continuous functions on R%, P be
an irreducible stochastic matrix and, for any i € E, F* : R? — R? be a smooth vector



field such that the ordinary differential equation

o = T,

{xé = Fi(xy), t>0

has a unique and global solution ¢ —+ ¢i(x) on [0, 00) for any initial condition z € R?. Let
us consider the Markov process

(Z)is0 = (X1, 11))150 on RY X E

defined by its extended generator L as follows:

Lf(w.i) = (F'(2), Vo f(0.0)) + A, 8) Y P(i. ) (f(2,5) = f(,3) (1)

JjeEE

for any smooth function f: R%x E — R (see [I5] for full details on the domain of ). Let
us describe the dynamics of this process. Assume that (Xg,Iy) = (z,7) € R? x E. Before
the first jump time T; of I, the first component X is driven by the vector field F* and
then X; = ¢!(z). The time T} can be defined by:

t
leinf{t>0: /)\(Xs,i)dSZEl},
0

where Fj is an exponential random variable with parameter 1. Since the paths of X are
deterministic between the jump times of I, the randomness of 77 comes from the one of
Fy and

t .
T = inf{t >0 / Nl (2),4) ds > El}.
0

Remark 1.1. Notice that P, ;)(T1 = +00) > 0 if and only if

+o0 .
/ AMei(x),i)ds < +oo.
0

If we assume that X := inf(, ;y A(z,i) > 0 then the process I jumps infinitely often.

At time T7j, the second coordinate I performs a jump with the law P(i,-) and the
vector field that drives the evolution of X is switched...

Remark 1.2. In general, I is not a Markov process on its own since its jump rates depend
on X. In this paper, we will study the two cases of jump rates that depend (or not) on X.

The main goal of the present work is to provide quantitative bounds for the long time
behavior of ergodic processes driven by ({l). We will provide quantitative bounds in terms
of the Wasserstein coupling distance rather than total variation one. Recall that for every
p = 1, the Wasserstein distance W), between two laws p and ji on R? with finite p** moment
is defined by

1/p
I JrdxRd
where the infimum runs over all the probability measures on R? x R? with marginals
and i (such measures are called couplings of p and fi). It is well known that for any p > 1,
the convergence in W, Wasserstein distance is equivalent to weak convergence together



with convergence of all moments up to order p. However, two probability measures can
be both very close in the W), sense and singular. Choose for example p = dg and ji = o..
In this case,

Wy, i) =€ and  |p— fflpy = 1.

See e.g. [28, [32] for further details and properties for Wasserstein distances.

Estimates for the Wasserstein distances do not require (and provide) any information
about the support of the invariant measure (which is the set of the recurrent points). This
set may be difficult to determine and if the initial distribution of X is not supported by
this set, the law of X; and the invariant measure may be singular. To illustrate this fact,
one can consider the following trivial example:

E={0,1}, Xa,i)=1, F'z)=—(z—ia) witha=(1,0).

The process (X, 1) is ergodic and its invariant measure p is supported by the segment
{pz ; p€[0,1]}. The invariant measure is a Beta distribution (see [7]). Despite this
process is very simple, if Xy = (0,1) then the law of X; is singular with the invariant
measure for any ¢ > 0. In particular, ||£(X;) — p||py is equal to 1 for any ¢ > 0 whereas
Wy (L(X¢), 1) goes to 0 exponentially fast (see below).

In [2], the authors provide Hérmander-like conditions on the vectors fields (F*),. that
ensure, for constant jump rate (\;);cp, the uniqueness and the absolute continuity of the
invariant measure provided that it exists. The main drawback of this result is that these
regularity assumptions have to be checked at a point that can be reached starting from
any other point. It can be hard to determine the set of such points and it can be empty.
Several examples are studied in [6] that underline this fact. In particular, even if the
process evolves in a compact set, the process (X, I) may admits one or several recurrent
classes (and invariant measures) depending only on the values of jump rates (\;)ick.

We are able to get explicit rates of convergence in two situations. Firstly, if the
jump rates of I does not depend on X, then the vector fields (F ’A)iE p will be assumed
to satisfy an averaged exponential stability. Secondly, if the jump rates of I are assumed
to be lipschitz functions of X, then the vector fields (F ’A)iE p will be assumed to satisfy a
uniform exponential stability.

1.1 Constant jump rates

If the jump rates of I do not depend on X, then (It)t>0 is a Markov process on the finite
space E and (X;)oc,<, is a deterministic function of ()< ,- Many results are available
both in the discrete time setting (see [26] B 21], [25] [T]) and in the continuous time setting
(see [24], [16], B]). Morevover [5] provides a simple example of surprising phase transition
for a switching of two exponentially stable flows that can be explosive (when the jump
rates are sufficiently large).

Assumption 1.3. Assume that the jump rates (A(-,1))icg do not depend on x and that
I is an irreducible Markov process on E. Let us denote by v its invariant probability
measure.

Assumption 1.4. Assume that for any i € E, there exists a(i) € R such that,

(z—3,Fi(z) - F'(3)) < —a(d|z — il*, 2,7 €RY,



and that
Z a(i)v(i) >0
S

where v is defined in Assumption [I.3.

Firstly, one can establish that the process X is bounded in some L? space.

Lemma 1.5. Under Assumptions[I.3 and[1.4), there exists k > 0 such that, for any q¢ < &,
the function t — B(|X¢|?) is bounded as soon as E(|Xo|?) is finite. More precisely, there
exists M(q,m) such that

sup E(]X:|7) < M(q,m),

t=0

as soon as E(|Xo|?) < m.

Let us now turn to the long time behavior estimate.

Theorem 1.6. Assume that Assumptions and[I4] hold. Let p < q < Kk and denote by
s the conjugate of q: ¢~ 4+ s7' = 1. Assume that py and jig admit a finite ¢ moment
smaller than m. Then,

1+ smp/p

where p and 1, are positive constants depending only the Markov chain I. These constants
are made explicit in the proof.

Wﬂﬂu%)gzﬂﬂ%ﬂﬂwﬂmp<———ﬁl_¢>7

Corollary 1.7. Under Assumptions[L.3 and[I1.4], the process Z admits a unique invariant
measure (L and

Mp
Wy (e, ) < 2M q,mp/qexp ——Ft|.
p( t ) ( ) 1 Snp/

1.2 Non constant jump rates

Let us know turn to the case when the jump rates of I depend on X. We will assume that
this dependence is smooth and that each vector field F* has a unique stable point.

Assumption 1.8. There exist 0 < A < X and & > 0 such that, for any z,% € R% and
1€F, B
AMz,i) € [MA] and  |A(z,i) — A(Z,1)| < klz — 2,
Moreover the matriz P is irreducible.
Assumption 1.9. Assume that there exists a > 0 such that,
(v —3,F(2) - Fi(3)) < —ale — 3", z,2€R’ i€k (3)
Assumption ensures that, for any i € F,

<e Mz —z|, z,ieRL

vi(z) — pi(1)

As a consequence, the vector fields F' has exactly one critical point o (i) € RY. Moreover
it is exponentially stable since, for any = € RY,

Gilw) = o) < e o — o (i)].

In particular, X cannot escape from a sufficiently large ball. More precisely, the following
estimate holds.



Lemma 1.10. Under Assumtions [I.8 and [I.9, the process Z cannot escape from the
compact set B(0,r) x E where B(0,r) is the (closed) ball centered in 0 € R? with radius r
given by A

max;cp |[F*(0)]

r= — (4)

Moreover, if | Xo| > r then X hits B(0,r) exponentially fast.

Let us now state our main result which establishes the quantitative exponential ergod-
icity of the process Z under Assumptions [[.8 and .9l

Theorem 1.11. Assume that Assumptions [L.8 and [L.9 hold and that the supports of pio
and fig are included in the ball B(0,r) where r is given by ({@l). Then

o
W ) < 2r(1+ct ——t
1(//[/t7/’[/t) r( +c)exp( 1+C¥/'}/)
where
2)\) — 2)0)2 — 2
,Y:(OHF M) —V{e+2))?—8pad .« epad |
2 a+7v+/(a+2))? — 8pa)
with p = e~ */* and e = exp(1).

Corollary 1.12. Under Assumptions[I.8 and[1.9, the process Z admits a unique invariant
measure [, and

o
4% ) < 2r(1 4 ct)ex (—725).
1(pee, ) < 2r( ) exp T+
The paper is organized as follows. Section [2is dedicated to the proof of Theorem
Theorem [[LTT] is established in Section [3l

2 Constant jump rates

The aim of this section is to prove Theorem Assumption [L3]ensures that (1), is an
irreducible Markov process on the finite space E. Its generator A is the matrix defined by
A(i,1) = —A(i) and A(i,5) = A(2)P(i,j) for i # j. Let us denote by v its unique invariant
probability measure. The study of the long time behavior of I is classical: since I takes its
values in a finite set, it is quite simple to construct a coalescent coupling of two processes
starting from different points.

Lemma 2.1 ([30]). If Assumption [I.3 holds then there exists p > 0 such that for any
i,j] € I, .

P(T > t|Io = i, Ip=j) <e (5)
where (It)t20 and (.ft)t20 are two independent Markov processes with infinitesimal genera-

tor A starting respectively at i and j and T = inf {t =>0: 1= jt} is the first intersection
time.

Remark 2.2. If E = {1, 2}, then the first intersection time is distributed as an exponential
random variable with parameter A(1) + A\(2) and Equation () holds with p = A(1) + A(2).

The proof of Theorem [[.6]is made of two steps. Firstly we couple two processes starting
respectively from (x,7) and (Z,7) to get a simple estimate as time goes to infinity. Then
we use this estimate and Lemma [2.T] to manage the general case.



2.1 Moments estimates

In this section we prove Lemma and get an LP estimate for |X;|. For any p > 2 and
e >0,

%\Xt\p = P’Xt’p72<Xt7 Pl (Xt)>
= p| Xl (Xe, P () = F1(0) + plX, P> (Xi, FT(0) )
< —pal) = )X+ C,e).
As a consequence,

t
s

t t
E(|X:[") < C(p, s)/ E<ef (pa(lu)=e) d“) ds + E(|Xo|")E (e Jotwerttu)=e) d“).
0
Remark 2.3. A similar estimate can be obtained for p > 1 using a reqularization of the
application x — |z|P.

We have to investigate the behavior of the matrix A(pﬁ on F x E defined for any ¢t > 0
by

¢
A(pi)(i,j) =E; (exp (— /0 pa(ly,) du)]l{ltj}).

This study has been already performed (see [3] for further details). Let us state the precise
result. We denote by A, the matrix A —pB where B is the diagonal matrix with diagonal
(a(1),...,(n)) and associate to A, the quantity

(= — max Ren.
'l ~yESpec(Ap) i

The long time behavior of A, is characterised by 7, as it is recalled below.

Proposition 2.4 ([3]). For any p > 0, there exist 0 < C1(p) < Cao(p) < 400 such that,
foranyi,j € E and any t > 0,

Cl(p)einpt < A(p,t) (17]) < CQ(p)einpt' (6)

Moreover, the function p — n, is smooth and concave on Ry. Its derivative at p = 0 is

equal to
> aliyv(i) >0,
i€ER
and n,/p tends to a = min {a(i) : i € E} as p goes to infinity.
Remark 2.5. We have the following dichotomy:
e ifa >0, thenn, >0 for all p > 0,

e if a <0, there is k € (0,min{—a(i)/a(i) : a(i) < 0}) such that n, > 0 for p < K
and n, <0 forp > K.

Corollary 2.6. If p < k then t — E(|X¢|") is bounded as soon as E(|Xo|") is finite.



2.2 Convergence rate

Let us now get the upper bound for the Wasserstein distance W), for some p < x. Assume
firstly that the initial law are two Dirac masses at (x,7) and (Z,4). It is easy to construct
a good coupling of the two processes (X,I) and (X, I): since the jump rates of I do not
depend on X, one can choose I and I equal! As a consequence, for any p > 2,

%\Xt = Xy = plXs = XX - X, PR(X) - F(X))
< —pa(l)| Xy — XP.
As a consequence,
E(]Xt - X't]p) <E; (exp (—p/ota(fs) ds)) |z — z|P
<e W r — z|P.

Let us now turn to a general initial condition. Choose (z,4) and (%,7) in R? x E
and consider the following coupling: the two processes evolve independently until the
intersection time T of the second coordinates. Then, I and I are chosen to be equal for
ever. Now fix t > 0 and € (0,1).

E(1X - X)) = B(1X: — X Lipsgn) + E(1X0 — Kl Liresn)

Choose g € (p, k) and define r = ¢/p and s as the conjugate of r. The Holder inequality
ensures that

- - / s
E(1X: — Xl irs ) <E(1X — X7) " P(T > g1y
< M(q)P/ae=Br/o),

Moreover,

N - t
E(‘Xt — Xt‘p]l{Tgﬂt}) = E(’XT — XT‘pE]T (exp (—p/TOé(IS) ds))]l{Tgﬁt})
< M(p)e (=P,
At last, one has to optimize over 8 € (0,1). With

lp
B=—T0
77p+/0/5

one has

(- 7)< (-2
P

This concludes the proof of Theorem

3 Exponential convergence for non constant jump rates

Let us now turn to the proof of Theorem [LTIl In this section we do not assume that the
jump rates depend only on the discrete component. Thus, the coupling is more subtle since



once I and I are equal, they can go appart with positive probability. Nevertheless, the
main idea is the following. If T and I are equal, the distance between X and X decreases
exponentially fast and then it should be more and more easier to make the processes I
and I jump simultaneously (since the jump rates are Lipschitz functions of X'). This idea
has been used in a different framework in [10), 4].

This section is organized as follows. Firstly we prove Lemma [[LI0] that ensures that
the process X cannot escape from a sufficiently large ball. In particular, the support of
the invariant law of X is included in this ball. Then we construct the coupling of two
processes (X,I) and (X, ) driven by the same infinitesimal generator (Il) with different
initial condition. At last we compare the distance between X and X to an companion
process that goes to 0 exponentially fast.

3.1 A preliminary estimate

Proof of Lemma [L.I0. Setting £ =0 in (3]) ensures that, for ¢ € (0, a),
(), 3) < —alaf? + (£(0,9),2) < (o — )|z + C),

if C(e) = maxyep |f(0,y)|°/(4¢). In other words,

X2 — | X.? = /t2(f(Xu,Yu),Xu> du < —2( — ) /t X, |2 du + 2C(e)(t — s).

As a consequence,

C(e)

a—¢&

X2 < (1 — e X R,

With ¢ = /2, one gets that X cannot escape from the centered closed ball with radius
2C(a/2)/a. With € = a/4, one gets that if |Xo| > r, then X will hit B(0,r)
exponentially fast. O

3.2 The coupling

Let us construct a Markov process on (R? x E)? with marginals driven by () starting
respectively from (z,47) and (Z,7). This is done wvia its infinitesimal generator which is
defined as follows:

o ifi£j

1’1 ZPZZ .%'Z x])_f(xaiwfaj))

i'eER

ANZ,4) > PG (f @y, 8,5 — f,y, &)
j'eE

o if i = j and A(z,1) > A\(Z,19):
Af(@,i,&,5) =(F'(@), Vo f (2,1, 3,1)) + (F'(7), Vi f (2,0, 7,7))
A&, i) Y P, (f(x,i,&,1) = f(x,i,&,1))

i'eER

+ (A(z,7) — A(Z,19)) Z P(i,i")(f (x4, 2,4) — f(x,i,7,1)),



o if i = j and A(z,i) < A(Z,1):

Af(@,i,&,5) =(F'(@), Vo f (2,1, 3,1) ) + (F'(7), Vi f (2,0, 7,7))
+ Ma, i) Y PG, ) (f (2, 2,4) — f(@,i,&,1))

i'eER

+ (A(Z,7) — A(z,19)) Z P(i,i")(f(x,i,%,7) — f(x,i,%,1)).

i'eE

Notice that if f depends only on (z,) or on (Z,j), then Af = Lf. Let us explain how this
coupling works. When I and I are different, the two processes (X, 1) and (X,I) evolve
independently. If I = I then two jump processes are in competition: a single jump vs
two simultaneous jumps. The rate of arrival of a single jump is given by |A(z,7) — A(Z,17)|.
It is bounded above by k|z — Z|. The rate of arrival of a simultaneous jump is given by
Mz, 1) ANXNZ,1) = A

Assume firstly that Xy and Xp belong to the ball B(0,r) where r is given by [@). Let
us define D; as the distance between X; and X, for any t > 0. The process (Dt)t>0 is
not Markovian. Nevertheless, as long as I = I, D, decreases with a rate which is greater
than «. If it is no longer the case, then D; can increase. Nevertheless it is still smaller
than d = 2r. After the coalescent time T, of two independent independent copies of Y, D
decreases once again. If £ = {0,1}, then T is equal to the minimum of the jump times
of the two independent processes which are both stochastically greater than a random
variable of law £()). Thus T, is (stochastically) smaller than £(2)). Then E(D;) < E(Uy)
where the Markov process (U)s on [0,d]U{d + ¢} is driven by the infinitesimal generator

Gf(x) = —axf'(z) + kx(f(d+e) — f(z)) ifz€[0,d],
QA(f(d) — f(d + g)) fr—=ddte.

3.3 The companion process

Let us consider the Markov process V' = (V;);5q on [0, 1] U{1 + ¢} defined by its infinites-
imal generator:

Hf(x) = {—omcf'(x) +rx(f(1+¢) — f(z) ifzel0,1],
b(f(1) — f(1+¢)) fr=14c

Theorem 3.1. For anyt > 0,

E(ViVo=1) < <1 +(1+ 8)(\/(a +pbo)4;)e_ 4pab> oﬁf’y) exp (— T +1a/7at) (7)

where

(a+0b) — /(o +b)? —4dpab _ (@ +0b)—(a—0)2+4(1 — p)adb
2 2 ’

—K/a

p=e and =

Remark 3.2. If a goes to oo, then 7y goes to 1 whereas v ~ pa/b if b goes to oc.

Proof. Starting from 1 + £, the process V' jumps after a random time with law £(b) to 1
and then goes to zero exponentially fast until it (possibly) goes back to 1+ e. The first



jump time T starting from 1 can be constructed as follows: let E be a random variable

with law £(1). Then
1 oF . 5
c|l——log|l——) if B<—,
T= 0" K o
+o00 otherwise.

Indeed, conditionally on {Vp =1},

t t o
/ ANVs)ds = / ke S ds=—(1—e ),
0 0

«

In other words, the cumulative distribution function Fp of T is such that, for any ¢ > 0,
1= Pr(t) = P(T > t) = exp <_E(1 _ eat)>.
o

Let us define p = e */®. The law of T is the mixture with respective weights p and 1 — p
of a Dirac mass at +o0o and a probability measure on R with density

K —at —E(l—e—
[t f(t) = ¢ e a1 0 g o) (1) (8)

and cumulative distribution function

Starting at 1, X will return to 1 with probability 1 — p. The Markov property ensures
that the number N of returns of X to 1 is a random variable with geometric law with
parameter p. The length of a finite loop from 1 to 1 can be written as the sum S + F
where the law of S has the density function f given in (&), the law of E is the exponential
measure with parameter b and S and E are independent.

Remark 3.3. In the general case, E is not distributed as an exponential variable but as the
coalescent time of a finite Markov chain. Its Laplace transform is finite on a neighbourhood
of the origin.

Lemma 3.4. The variable S is stochastically smaller than an exponential random variable
with parameter o i.e. for any t >0, F(t) > Fo(t) where Fy(t) = (1 — e )10y

Proof of Lemma [37]} Recall that e"* —1 < (e® — 1)u for any = > 0 and u € [0,1]. Indeed,

ur Z k—lx_k< Zm_k_ J:_l)
e =u) u oy Su X = (e u.
k=1 k=1

As a consequence, for any ¢ > 0,

1-F(t)= —%—— < e =1-F,(t).

This ensures the stochastic bound. O

10



As a consequence, the Laplace transform Lg of S with density f is smaller than the
one of an exponential variable with parameter a: for any s < «,

Ls(s) < —

a—s
If L. is the Laplace transform of S + FE, then, for any s < a A b, we have

o b

L.(s) < .
(5) a—sb—s

Let us denote by H the last hitting time of 1 ¢.e. the last jump time of X and by L its
Laplace transform. Let us introduce N ~ G(p), (Si);>; with density f and (E;);,, with
law £(b). All the random variables are assumed to be independent. Then

N
HE > (i + E;).
i=1

Classically, for any s € R such that (1 —p)L.(s) < 1, one has

. Le(s) 1
1 =B(e) = s = (e 1)

Let us denote by

(a+0b) —/(a+0b)2—4pab q . (a+Db)+/(a+b)?—4pab
2 wme 7= 2

")/:

the two roots of X2 — (a+b)X + pab = 0. Notice that v < a Ab < 7. For any s < v, one
has (1 — p)Le(s) < 1 and

L(s) < pad < pab 1

MCEDCEE R ErEEr) Y

Let us now turn to the control of E(V;|Vp = 1). The idea is to discuss wether H > [t
or not for some § € (0,1) (and then to choose /5 as good as possible):

o if H < ft, then V; < e~ (1-Aat,

e the event {H > ft} has a small probability for large ¢ since H has a finite Laplace
transform on a neighbourhood of the origin.

For any 5 € (0,1) and s > 0,

< e—(l—ﬁ)at + (1 + E)L(s)e_sﬁt. (10)

From Equation (@), we get that, for any s < «, log L(s) — fts < h(s) where

b
h(s) = log <%) —log(y — s) — Bts.

The function h reaches its minimun at s(t) = v — (8t)~! and

h(s(t)) = log (%) +1log(Bt) + 1 — Bt

11



For t > 0 and 3 € (0,1), choose s(t) = v — (8t)~! in (I0) to get

e (Pt 4 (1 4¢) (M)Bte‘wt.
Y=
At last, one can choose 3 = a(a++)~! in order to have (1 — 3)a = /3. This ensures that

E(W)é(l—i—(l—i—a)(?abe) of )exp( il t).

J—v/a+7 Ca+ty

Replacing 4 — « by its expression as a function of «, b and p provides (). ]
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