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Abstract

We investigate whether the liquid-vapour phase transition of strongly dipolar fluids can be un-

derstood using a model of patchy colloids. These consist of hard spherical particles with three

short-ranged attractive sites (patches) on their surfaces. Two of the patches are of type A and one

is of type B. Patches A on a particle may bond either to a patch A or to a patch B on another par-

ticle. Formation of an AA (AB) bond lowers the energy by ǫAA (ǫAB). In the limit ǫAB/ǫAA ≪ 1,

this patchy model exhibits condensation driven by AB-bonds (Y-junctions). Y-junctions are also

present in low-density, strongly dipolar fluids, and have been conjectured to play a key role in

determining their critical behaviour. We map the dipolar Yukawa hard-sphere (DYHS) fluid onto

this 2A + 1B patchy model by requiring that the latter reproduce the correct DYHS critical point

as a function of the isotropic interaction strength ǫY . This is achieved for sensible values of ǫAB

and the bond volumes. Results for the internal energy and the particle coordination number are

in qualitative agreement with simulations of DYHSs. Finally, by taking the limit ǫY → 0, we

arrive at a new estimate for the critical point of the dipolar hard-sphere fluid, which agrees with

extrapolations from simulation.

PACS numbers: 64.70.F-, 64.75.Yz, 47.65.Cb
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I. INTRODUCTION

Even after some forty years of efforts we still do not know whether dipolar forces alone

suffice to condense a vapour into a liquid. We shall not, of course, attempt to solve this

difficult problem here. Rather, we will show how some of our results for a different model

system, where liquid-vapour coexistence is also elusive, may be relevant to the criticality of

dipolar fluids. But first we give a brief review of the current state of our knowledge.

In the classic Van der Waals picture of phase transitions, simple fluids interact via

isotropic intermolecular potentials that comprise a short-ranged repulsion and a longer-

ranged attraction. Condensation is then driven by the free energy balance between the

high-entropy vapour phase (where attraction dominates) and the low-energy liquid phase.

(where repulsion prevails).

Most molecular species, however, exhibit permanent dipole moments. The simplest model

of a dipolar fluid is the dipolar hard sphere (DHS) fluid, which consists of hard spheres of

diamater σ, having at their centre a dipole momnent of strength µ. The dipole-dipole

interaction is strongly anisotropic and long-ranged, hence notoriously difficult to treat theo-

retically. For this reaeon, a number of authors [1–5] have sought to derive isotropic effective

interaction potentials that nevertheless capture the essentials of the true dipolar fluid, for

the purpose of easier computation of its phase behaviour. In all cases, the leading term

of this effective potential is attractive and has the same distance dependence as, e.g., the

long-range part of the Lennard-Jones (LJ) potential. de Gennes and Pincus [6] conjectured

that the phase diagram of DHSs should be similar to that of a Van der Waals fluid, with

vapour, liquid and solid phases.

Surprisingly, however, numerical simulations of DHS [7] and also of Stockmayer fluids [8]

have revealed that the anisotropy of the dipolar potential promotes the formation of self-

assembled aggregates (chains, rings and more complex clusters) if the dipolar interaction

strength is of the order of the thermal energy. This is in sharp contrast with the isotropic

compact clusters observed in simple fluids. Moreover, unlike in simple fluids the pair cor-

relation function of DHS is strongly peaked at contact and the internal energy is nearly

independent of the density [9]. It is at present unclear whether strong association pre-empts

condensation, or any other kind of fluid-fluid phase separation, as failure to observe it may

be an artifact of the simulation techniques [10–13]. New methods are needed to allow a re-
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assessment of the dipolar and related condensation problems in the light of recent theoretical

results [14].

Thus dipolar particles may or may not condense, but they certainly associate. The sim-

plest theories of association as applied to this system [15–19] assume that the only effect of

the strongly anisotropic interparticle interaction is to drive cluster formation. Consequently,

the fluid is described as an ideal mixture of self-assembling clusters, failing to exhibit any

phase transitions unless direct or indirect interactions between the clusters are added. Nev-

ertheless, these theories reproduce well the slow variation of the internal energy with the

density and cluster size (or mass) distribution. Alternative treatments of the competition

between phase separation and association in the Stockmayer and DHS fluids include variants

of the Flory-Huggins (FH) model of equilibrium polymerisation [20, 21] and a thermody-

namic perturbation theory for associating fluids [22, 23]. The former rely on casting the free

energy of the Stockmayer fluid in FH form; the latter includes a contribution from associ-

ation to the free energy, but does not distinguish between chaining and branching, the two

types of self-assembly that appear to influence the phase behaviour of dipolar fluids.

A different approach to the phase behaviour of the dipolar fluid was proposed in [24].

Following the results for the structure suggested by simulations (long chains that may form

branches, see, e.g. [18]), it was assumed that the dipolar fluid at low densities and tem-

peratures can be described as a perturbation of a ground state that consists of infinitely

long chains. This perturbation consists of the appearance of two types of thermally excited

defects: end defects, which correspond to the formation of shorter chains, and Y-junction

defects, which correspond to the merging of three chains. Chain ends and junctions carry

energy penalties ǫe and ǫj , respectively. The entropic gain of defect forming is related to

the lattice model from which the free energy was derived [25]. It was shown that a critical

point would exist only if the energy cost of forming a junction is small enough, ǫj < ǫe

3
.

When such a critical point exists, phase coexistence is obtained between a low-density gas

of short chains (i.e., rich in end defects) and a high-density networked liquid (i.e., rich in

Y-junctions). More strikingly, it was found that the phase diagram displays a pinched, or

reentrant, behaviour: as temperature is decreased, the densities of the coexisting liquid and

vapour phases become more similar, rather than more different, as is the norm in most

fluids. This model thus introduces a new perspective on association in dipolar fluids: the

anisotropy of the dipolar potential promotes competition between chaining and branching,
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which determines the peculiar phase behaviour of DHSs. Safran’s model can be quantita-

tively related to the dipolar fluid by expressing the two energy scales ǫj , ǫe, in terms of the

dipole moment. The shortcomings of this description of the DHS fluid are: (i) the difficulty

of relating ǫj and the dipole moment; (ii) its origin in a lattice model, which hinders quan-

titative comparion with continuous models like DHSs; and (iii) the asymptotic character of

its thermodynamics, which is only valid at extremely low densities and temperatures.

In recent work [26], we have established an analogy between Tlusty and Safran’s (TS)

model [24] and patchy particles with three bonding sites (patches), two of type A and one of

type B. In this model, henceforth denoted 2A + 1B model, particles can bind to each other

through their patches, thereby forming AA bonds that lower the energy by ǫAA, and AB

bonds that lower the energy by ǫAB. If ǫAA > 2ǫAB, the ground state consists of long chains of

particles connected by AA bonds. Two end defects are created when a long chain breaks into

two, with an energy cost of ǫAA. A Y-junction is formed when, after breaking a long chain

into two, one of the ends (a non-bonded A patch) bonds to an interior particle of another

chain (to a non-bonded B patch), creating a AB bond. The energy cost of this Y-junction

is thus −ǫAB + ǫAA/2. Moreover, it was also shown that Wertheim’s first order perturbation

theory [27–30], as applied to the patchy model predicts the same phase behaviour as TS:

a critical point can only exist if ǫAB > ǫAA/3 (which is equivalent to ǫj > ǫe/3 in the TS

model); coexistence, when present, is between a low-density phase with few AA and AB

bonds, and a high-density phase rich in AB and AA bonds; and pinching is also observed

[31].

Despite the similiraties between the TS model and the patchy model, there are advan-

tages in using the latter. These come from the fact that the patchy model, combined with

Wertheim’s perturbation theory, yields a thermodynamics that is able to describe a fluid.

In fact, TS relies on a lattice model and, in its thermodynamic description, the entropy of

the ends and junctions is solely related to the properties of the underlying lattice [25]. By

contrast, the entropy of the bonded patches is related to their size and to the properties

of the reference system [26, 32]. Therefore, when comparing both models with simulation

results, better agreement is expected for the patchy model.

Our purpose is to provide a simple analogy between the 2A + 1B model and DHSs. This

analogy will be quantitatively tested by comparing our theoretical results for the thermo-

dynamics and the structure of the patchy model, with those of simulations of the dipolar
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Yukawa hard-sphere (DYHS) fluid [13, 23], for decreasing values of the isotropic Yukawa

interaction strength.

This paper is organized as follows: in section II we detail the analogy between the patchy

model and the DYHS (IIA), and use Wertheim’s perturbation theory to derive the thermo-

dynamics (II B). Results for the critical parameters, phase diagrams, internal energy and

particle coordination numbers are presented and discussed in section III. Finally in section

IV we conclude and highlight further directions for research.

II. THEORY

A. Analogy between DYHSs and patchy particles

The DYHS fluid studied in [13, 23] consists of hard spheres (HSs) of diameter σ with a

central point dipole of strength µ and interacting through a potential that comprises two

contributions: the anisotropic dipole-dipole interaction and a Yukawa isotropic attraction of

energy scale ǫY and decay parameter z (we have set z = 1.8 for consistency with [13, 23]).

The 2A + 1B model of patchy particles will then consist of HSs of diameter σ, which

attract isotropically through the same Yukawa potential as the DYHS fluid, but where the

central dipole has been replaced by two patches of type A and one patch of type B, placed

on the HS surface [26]. These patches may form AA and AB bonds, which lower the energy

by ǫAA and ǫAB, respectively. To proceed with this analogy, ǫAA and ǫAB must be related to

the dipolar energy scale µ2/σ3. A sketch of this analogy is given in figure 1.

When ǫAA > ǫAB/2 (and ǫY = 0) the ground state of the 2A+1B patchy particles consists

of long chains connected by AA bonds. Likewise, the ground state of DHSs consists of long

chains (or rings) of particles aligned head to tail. Because the absolute minimum of the

DHS pair potential (the energy of two dipolar spheres at contact and aligned head to tail)

is 2µ2/σ3, we shall take

ǫAA = 2µ2/σ3. (1)

This first relation between the DHS and 2A + 1B models is therefore obtained by matching

their ground sates.

The relation between ǫAB and the dipolar energy is established by considering branched

Y-shaped arrangements (see figure 1b) containing N particles. It is this structure that,
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together with the breakup of short chains, is expected to appear as a low-energy, thermally-

excited perturbation of the ground state of infinite chains [24]. A Y-shaped arrangement of

N DHSs that results from bringing together the ends of three chains of aligned dipoles (see

figure 1b) has energy −2(N −3)µ2/σ3 −u3µ
2/σ3, where −u3µ

2/σ3 is the dipolar interaction

energy between the three dipoles that make up the junction. On the other hand, the Y-

shaped arrangement of N patchy particles that results from bonding an A patch at a chain

end with a B patch on an interior particle of another chain, has energy −(N − 2)ǫAA − ǫAB.

Matching these two results and using equation (1), we obtain

ǫAB = (u3 − 2)µ2/σ3. (2)

u3 can be evaluated by considering three DHSs in contact (see figure 2). The configurations

depicted show that a simple approximation for u3 should be avoided. In fact, both configu-

rations seem reasonable for Y-arrangements of dipoles: (a) results from slightly bending one

chain and attaching another chain at the bend; (b) is a highly symmetric (ring-like) config-

uration that corresponds to the lowest possible energy. Choosing (a) or (b) has completely

different consequences for the phase behaviour [26, 33]: (a) corresponds to ǫAB/ǫAA ≈ 0.105

(i.e., ǫAB/ǫAA < 1/3) and thus to the absence of a critical point, whereas (b) corresponds to

ǫAB/ǫAA = 0.875 (i.e., ǫAB/ǫAA > 1/2) and thus to the existence of a critical point that is

not of the TS type, since the ground state is not a gas of long chains [31]. In order to avoid

this somewhat arbitrary (and possibly biased) choice, we will let u3 (or, equivalently, ǫAB)

be a free parameter of the patchy model, and determine it by fitting the DYHS thermody-

namics as determined by simulations [13] to that of our 2A + 1B model. Notice that this

apparent shortcoming has one obvious advantage: we cannot know in advance whether the

DHS fluid will exhibit a critical point. This conclusion will depend on the value obtained

for ǫAB, which is determined not only by the analogy we propose, but also by the simulation

results.

The bonding of A and B patches is characterised not only by two energy scales, but also

by the bond volumes, vAA and vAB, [26, 32], which are related to the patch sizes. We will let

these two volumes be free parameters of the patchy model, and they will also be determined

by fitting the thermodynamics of the DYHS fluid to that of 2A + 1B patchy particles.

6
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B. Free energy of the 2A + 1B patchy model

The free energy per particle f of the 2A + 1B patchy model with an additional Yukawa

attracton will be approximated by:

βf = βfHS + βfb + βfY , (3)

where β ≡ 1/(kBT ), T is the temperature, kB is the Boltzmann constant, fHS is the HS

contribution (which we approximate by the the Carnahan-Starling CS expression [34]), fb is

the bonding contribution due to the patches, and fY is the Yukawa contribution.

For HSs with two A and one B patches, Wertheim’s theory [27, 28, 36] gives the following

expression for the bonding contribution to the free energy [26, 35]:

βfb = 2 lnXA + ln XB − XA −
XB

2
+

3

2
, (4)

where Xα is the probability of having a patch of type α not bonded. The variables Xα are

related to the density and temperature through the laws of mass action that are derived by

treating bond formation as a chemical reaction [27, 28, 36]. For the case where only AA and

AB bonds can form, these are [26, 35],

XA + 2η∆AAX2

A + η∆ABXAXB = 1, (5)

XB + 2η∆ABXAXB = 1, (6)

where η ≡ (N/V )vs is the packing fraction, and

∆αβ =
1

vs

∫

vαβ

gref(r) [exp(βǫαβ) − 1] dr. (7)

This integral is calculated over vαβ , the volume of bond αβ, and gref is the pair correlation

function (PCF) of the HS reference system. These equations yield the probability pα =

1 − Xα that a site of type α is bonded, as a function of density, temperature, and the

interaction strengths. As we shall see, this enables us to calculate structural properties, in

addition to thermodynamic properties.

The integral in equation (7) is evaluated by replacing the PCF by its value at contact in

the CS approximation [34]:

gref(r) = gref(σ
+) =

1 − η
2

(1 − η)3
. (8)
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This is expected to be reasonable provided that the typical size of the patches (and, conse-

quently, that of the bonds) is ≪ σ. Within this approximation, equation (7) becomes

∆αβ =
vαβ

vs

[exp(βǫαβ) − 1]
1 − η

2

(1 − η)3
. (9)

The contribution to the free energy coming from the Yukawa attraction, fY , will be given

by a simple mean-field (MF) approximation, as used, e.g., in [36]:

βfY = −
1

2
βη

∫

φY (r12)dr12 = −2πβ
(

z−1 + z−2
)

ǫY η, (10)

with, as in [12], z = 1.8. We expect equation (10) to become increasingly inaccurate as

attractive Yukawa forces become dominant over dipolar forces and the density of the coex-

isting phases (as well as that of the critical point) increases. A slightly more sophisticated

alternative consists in setting

βfY = −βBY
2 η ≈

2π

3
× 3.097 (βǫY )1.0724 η (11)

where BY
2 is the second-virial coefficient of the HS Yukawa fluid, interpolated from the

numerical results in [37] after subtracting the HS contribution (which is already contained

in βfhs). Below we shall assess the relative merits of equations (10) and (11); it turns out

that there is very little difference between them in the ranges of parameters (ρ, T, ǫY ) of

interest.

We are now in possession of a free energy, equation (3), which is a function of, besides

(η, T ), ǫAB, vAA, vAB (through equation (4)) and ǫY (through equation (10) or equation

(11)). We shall first derive the formal expressions for the critical density and temperature,

and then search for the values of ǫAB, vAA and vAB that best reproduce the critical densities

and temperatures found in the DYHS simulations of [12] for several values of ǫY . Once these

parameters are known, all thermodynamic quantities of interest can be calculated, as well

as some structural properties.

III. RESULTS

We introduce reduced units defined as usual: reduced temperature T ∗ = kBTσ3/µ2;

reduced Yukawa energy parameter ǫ∗Y = ǫY σ3/µ2, reduced dipolar interaction parameter

(µ∗)2 = µ/(ǫY σ3) = 1/ǫ∗Y ; reduced number density ρ∗ = ρσ3. This amounts to taking σ, the
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HS diameter, as our unit of length, and σ3/µ2 as our unit of energy. Note that this choice

of energy scale is neutral from the point of view of criticality, as AA bonds can only lead to

chaining, and not phase coexistence, at any finite temperature. The DHS limit corresponds

to ǫ∗Y = 0.

We started by estimating the model parameters ǫAB, vAA and vAB, by requiring that our

2A + B patchy model reproduce the critical temperatures and densities listed in Table 1 of

[13], for a range of Yukawa interaction strengths. This was achieved using the least-squares

routine LMDIF from MINPACK library, coupled with NETLIB routine HYBRD for solving

the critical point equations, which yielded the parameters collected in table I. The quality of

fits, as measured by their root mean square deviation, does not depend strongly on how many

points we fit, or how we treat the attractive Yukawa term. Note that, for all fits, one has

ǫAB/ǫAA < 1/2, i.e., results are consistent with the hypothesis that the ground state of the

system is long chains. These results thererfore indicate that competition between chaining

and branching plays a prominent role in the phase behaviour. Note also that, for all fits

but one, ǫAB/ǫAA > 1/3, which strongly suggests that there exists a critical point in the

DHS limit. Consequently, we predict that the critical point of the DHS fluid (corresponding

to ǫ∗Y = 0) will occur at T ∗

c ≈ 0.14 − 0.16, ρ∗

c ≈ 0.03 − 0.05, which is in line with earlier

estimates reviewed in [13]. In what follows we have used the set of parameters shown in

bold, chosen on the basis of (i) simplicity of the MF treatment of attractions; (ii) sensible

values for vAA and vAB. The other sets of parameters (except the very first one, for which

ǫAA/ǫAB < 1/3 ) nevertheless yield very similar results. Finally, one apparent shortcoming

of these fits is that the values of vαβ are larger than those usually adopted in patchy particle

models (see, e.g., [33]), which must not violate Wertheim’s theory assumption that no more

than two particles connect at any given bond. Further work is needed to clarify if the bond

volumes in table I satisfy this requirement.

In figure 3 we plot the reciprocal of the critical temperature in Yukawa units (figure 3a),

the critical temperature (figure 3b) and the critical density (figure 3c). Agreement, which

is in general quite good, deteriorates slightly as we go to larger ǫ∗Y , i.e., as we approach the

non-polar Yukawa limit. This is a consequence of the fact that we fitted only to the six data

points with smallest ǫ∗Y (see above), coupled with our rather simplistic treatment of Yukawa

attractions at the MF level.

We found the phase diagram by equating the pressures and chemical potentials of the
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coexisting liquid and vapour phases, together with the mass-action law equations (5) and

(6) for the two phases. The resulting set of six coupled non-linear equations was solved

numerically using NETLIB routine HYBRD. Results are shown in figure 4, for different

values of the Yukawa interaction parameter ǫ∗Y . As ǫ∗Y → 0 and the DHS limit is approached,

the phase diagram develops a ‘pinch’, or re-entrance, at low temperatures: the densities of

the coexisting liquid and vapour phases become more similar, rather than more different,

as is the norm in most fluids. This is a consequence of the fact that 1/3 ≤ ǫAB ≤ 1/2,

and was previously observed in a Monte Carlo simulation of a variant of our patchy fluid

with two A and nine B patches [31]. In the present model this pinching only appears at

the smallerst ǫY , for which the chaining/branching competition dominates over the effect of

isotropic interactions.

The change in internal energy as a function of density at T ∗ = 0.15 and ǫ∗Y = 0.025,

can bee seen in figure 5a (to be compared with figure 4 of [13]). Whereas the total energy

decreases with density, in agreement with the classical picture of the liquid (higher-density)

phase as low-energy and low-entropy, the patchy contribution saturates, thus reproducing a

caractheristic footprint of DHSs. The latter contribution actually equals the internal energy

of the patchy fluid at the same density and temperature, since our theory treats bonding

and Yukawa attractive interactions separately.

In figure 5b we plot several structural quantities at the critical point, in order to describe

the evolution of the structure of the fluid when ǫ∗Y is varied. For extremely small ǫ∗Y (i.e., close

to the DHS limit), ≈ 90% of A patches and ≈ 15% of B patches are bonded. The number

of AA bonds per particle is very large, hence there must be many long chains, forming

Y-junctions whenever a B patch is bonded. This scenario seems to hold up to ǫ∗Y ≈ 0.1,

with slightly shorter chains (a decreasing fraction of AA bonds) and a larger number of

Y-junctions (an increasing fraction of AB bonds). However, for ǫ∗Y > 0.1 there is a dramatic

change in the fluid structure at the critical point: the number n of chains becomes negligible

(there is a sharp decrease in the fraction of AA bonds) and the number of AB bonds,

although decreasing, is larger than the number of AA bonds. Since the critical temperature

and the critical density are both increasing, AB bonds become favoured relative to AA

bonds, because the associated entropy is larger on account of vAB ≫ vAA. Nevertheless,

the total number of bonds decreases strongly and the fluid becomes less and less associated

as ǫ∗Y increases, as expected. Therefore, above ǫ∗Y ≈ 0.1 criticaliy is already determined by
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the Yukawa attraction and not by the competition between chaining and branching. This

result shows that, as already discussed in [13], the DHS limit obtained from any model

that approaches it, must be taken with care, since dramatic changes in the strucure and

thermodynamics are expected.

Finally, in figure 6 we show the variation with density at T ∗ = 0.15 of the fractions of

particles bonded to zero (n0), one (n1), two (n2) or three (n3) other particles, corresponding

to, respectively, isolated particles, chain ends, particles inside chains, or Y-junctions. These

quantities are calculated using the probabilities pA = 1−XA and pB = 1−XB, and assuming

that bonds are independent. As the density increases n0+n1 decreases rather sharply whereas

n3 gently increases, implying that the lower-density (vapour) phase is richer in chain ends

and unattached particles, whereas the higher-density (liquid) phase is richer in junctions.

n2, on the other hand, first rises sharply, indicating that chains are increasing in length,

then reaches a maximum at ρ∗ ∼ 0.04, and finally drops very slowly, with increasing ρ∗.

This slow decrease of n2 (together with the increase in n3) is of entropic origin: AA bonds

are turning into AB bonds because vAB ≫ vAA. Except for the initial increase in n2, the

qualitative trends are the same as in the nearest-neighbour histograms of figure 6 of [13];

note, however, that the results in the latter figure do not extend below ρ∗ = 0.025, and that

n2 appears to be peaking around that value (see middle panel of figure 6 in [13]).

IV. CONCLUSIONS

We have been able to map the DYHS fluid onto a model of patchy colloids with three

interaction sites, two of type A and one of type B, where B sites do not interact. This was

achieved by requiring that this model reproduce the critical densities and temperatures found

from simulation, for a range of values of the Yukawa interaction parameter ǫ∗Y . Wertheim’s

association theory as applied to this model is able to reproduce the correct trends of the

particle coordination number: on increasing the density at constant temperature, the frac-

tion of particles with zero (isolated particles), one (chain ends) or two (inner particles in

chains) nearest neighbours decreases, whereas that of particles with three or more nearest

neighbours (junctions or particles inside compact clusters) increases. Moreover, we predict

that the dipolar contribution to the internal DYHS energy should saturate at high densities,

again in agreement with simulations.
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A more interesting consequence of using the 2A+1B patchy model is that, if our mapping

is valid, then the phase diagram of DYHSs should be rentrant, or ‘pinched’ in the ǫ∗Y → 0

limit: for T ∗<

∼
(2/3)T ∗

c , the density difference between the coexisting liquid and vapour phases

decreases as the temperature is further lowered. This is in stark contrast to the behaviour of

most fluids, but has actually been confirmned by simulation of 2A+9B patchy colloids [31].

Observation of the same effect for actual DYHS would be a stringent test of our approach.

In future work we plan to apply our mapping to other models that, while remaining simple

to simulate and study theoretically, converge to the DHS on varying some parameter, e.g.,

mixtures of polar and non-polar HSs in the limit of infinite dilution of the latter.
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n Yukawa ǫAB/ǫAA vAA/σ3 vAB/σ3 RMS deviation T ∗

c (DHS) ρ∗c (DHS)

8 eq. (10) 0.284805 0.00222266 0.459357 0.00691166 – –

7 eq. (10) 0.347745 0.00234394 0.231612 0.00564450 0.142 0.033

6 eq. (10) 0.37328 0.00220629 0.173476 0.00565144 0.150 0.040

8. eq. (11) 0.390595 0.00259764 0.145093 0.00697690 0.151 0.040

7. eq. (11) 0.46689 0.00282981 0.0665826 0.00695441 0.162 0.049

6. eq. (11) 0.46331 0.00247637 0.0668395 0.00657444 0.161 0.049

TABLE I: Fit parameters for the DYHS. n is the number of points from Table 1 in [13] included,

starting at the lowest ǫ∗Y . For each set we also give the estimates for the critical temperature and

density of the DHS fluid (corresponding to ǫ∗Y = 0).
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FIG. 1: Sketch of the mapping of the DHS fluid onto the 2A + 1B patchy model. The small black

(white) circles represent patches of type A (B). (a) A linear chain of N DHSs, in contact and

aligned head-to-tail, has energy −2(N − 1)µ2/σ3, whereas a row of N patchy particles has N − 1

AA bonds and thus energy −(N − 1)ǫAA. (b) A Y -shaped arrangement, made up of N particles.

In the DHS fluid this has energy −2(N − 3)µ2/σ3 − u3µ
2/σ3 (−u3µ

2/σ3 is the dipolar interaction

energy of the three particles that have come together). In the 2A + 1B model, this forms when

a free A patch A at a chain end bonds to a B patch on an interior particle of another chain; its

energy is −(N − 2)ǫAA − ǫAB.
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FIG. 2: Two examples of orientational configurations of three DHSs at contact. The dipolar energy

of configuration (a) is (−2
√

3 + 5

4
)µ2/σ3 ≈ −2.21µ2/σ3, and that of the ring configuration (b) is

−15

4
µ2/σ3.
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FIG. 3: (a) Reciprocal of the critical temperature in Yukawa units, ǫY /kBTc, vs the dipolar interac-

tion parameter (µ∗)2; (b) critical temperature T ∗

c and (c) critical density ρ∗c , vs the Yukawa energy

parameter ǫ∗Y . The filled circles are simulation data from Table 1 in [13], the lines are fits from our

theory, using the values boldfaced in table I for ǫAB , vAA and vAB . See the text for details.
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FIG. 4: Temperature-density phase diagram for different Yukawa interaction parameters ǫ∗Y as

shown, and ǫAB, vvAA and vAB as in figure 3. As ǫ∗Y → 0 the diagrams ‘pinch’ (become re-entrant)

at low temperatures, as seen in [31].
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FIG. 5: (a) Total and dipolar potential energy per particle in units of kBT vs density ρ∗ at a

fixed temperature T ∗ = 0.15, for ǫ∗Y = 0.0125. The values of ǫAB , vAA and vAB are as in figure 3.

As in figure 4 of [13], the dipolar energy saturates at higher densities. Notice that in our theory,

the dipolar (i.e., patchy) contribution to the internal energy of the DYHS fluid is identical to the

internal energy of the DHS fluid, since the Yukawa interaction does not affect bonding. (b) Degrees

of non-association at the cricial point, XAc and XBc.: both approach 1 (the fully non-associated

limit) as ǫ∗Y grows and the fluid becomes less DHS-like and more Yukawa-like. We also plot the

number of AA and AB bonds per particle at the critical point: nAA/N ≡ 1+XBc

2
− XAc and

nAB ≡ 1 − XB,c.
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FIG. 6: Fractions of particles either not bonded or bonded to one other particle (n0 + n1), bonded

to two other particles (n2), or to three other particles (n3), vs density at T ∗ = 0.15, for ǫAB, vAA

and vAB as in figure 3. In our theory ni do not depend on ǫ∗Y . Compare with figure 6 of [13].
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