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1Université Marne-La-Vallée, Paris, France
2 210 KAP Hall, University of Southern California, Los Angeles, CA 90089.

key words: Stochastic systems; Stochastic Estimation; Stochastic Inverse Analysis; Estimation of

Chaos Coefficients

SUMMARY

This paper deals with the identification of probabilistic models of the random coefficients in stochastic
boundary value problems (SBVP). The data used in the identification correspond to measurements of
the displacement field along the boundary of domains subjected to specified external forcing. Starting
with a particular mathematical model for the mechanical behavior of the specimen, the unknown
field to be identified is projected on an adapted functional basis such as a provided by a finite
element discretization. For each set of measurements of the displacement field along the boundary, an
inverse problem is formulated to calculate the corresponding optimal realization of the coefficients of
the unknown random field on the adapted basis. Realizations of these coefficients are then used, in
conjunction with the maximum likelihood principle, to set-up and solve an optimization problem for
the estimation of the coefficients in a polynomial chaos representation of the parameters of the SBVP.
Copyright c© 2004 John Wiley & Sons, Ltd.

1. Introduction

In many problems of science and engineering, the physical systems under consideration can be
modeled by boundary value problems whose parameters are random variables or stochastic
fields. A fundamental difficulty in connection with these problems is the experimental
identification of probabilistic models of these random parameters. Although stochastic inverse
problems, in general, have received considerable attention over the past decade by engineers,
scientists and mathematicians [1, 2, 3, 4, 5], the particular class of problems addressed in
this paper, and pertaining to the experimental identification of stochastic process models of
parameters in random boundary value problems, has remained largely unexplored.

This paper deals with the identification of a probabilistic model of the random coefficients
of stochastic differential operators for boundary value problems. A concrete example would
be the experimental identification of the random field modeling the Young modulus of a
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2 C. DESCELIERS ET.AL

random linear isotropic elastic heterogeneous medium. The data on which the identification is
based correspond to measurements of the displacement field along the boundary of specimens
submitted to a given external load. Briefly, the proposed method consists of first estimating
the optimal spatial distribution of the model parameters, one realization at a time. This is
accomplished through an inverse analysis which involves projecting the unknown field to be
identified (for instance the Young modulus) on an adapted functional basis (for instance the
finite element basis). This series of inverse problems results in a statistical sample consisting
of realizations of the random parameter. These parameters are then represented by using
the chaos decomposition [6,7,8] and invoking a second optimization problem involving the
maximum likelihood principle. The end product is a set of deterministic coefficients which
provides a chaos representation of the random model parameters that is statistically consistent
with the mechanical model and the experimental measurements.

A numerical application is presented in order to exemplify the proposed procedure. In
particular a three-dimensional elastic linear isotropic heterogeneous elastic bounded domain
subjected to static loads is considered. The sole random parameter of this random medium is
the Young modulus which is modeled as a random field. A chaos representation of this random
field is constructed from an experimental database previously constructed via numerical
simulation and consisting of the displacement field on the boundary of the elastic random
medium. A convergence analysis is also performed.

2. Representation of the Stochastic Field

Consider the second-order  n -valued stochastic field

U(x) = (U1(x), . . . , Un(x)) x ∈ Ξ ⊂  d (1)

indexed by some set Ξ in  d , with zero mean and which is mean-square continuous on Ξ.
We are interested in constructing representations of the stochastic field U(x) on a bounded
and closed subset D in Ξ. This construction permits the treatment of the case where U(x)
is stationary, associating Ξ to the whole of  d . A first step is to develop a representation of
random field U(x) in terms of a denumerable set of random variables. These random variables
can be viewed as the projections of U on a hilbertian basis {vi}. These projections are second-
order random variables and are in general correlated and represent, in some sense, the original
stochastic field.

In the next subsection, the representation of stochastic field U is developed for a general
hilbertian basis. The following subsection demonstrates the development for the important
special cases where these bases are obtained from the eigenvalue problem associated with any
self-adjoint operator or from the eigenvalue problem associated with the covariance operator
of random field U . The representation of stochastic field U associated with this latter basis
is also known as the Karhunen-Loeve expansion. Properties of the general representations are
derived at the end of the section.

2.1. Representation on Hilbertian Bases

In general, stochastic field U of interest is not directly observable. Rather, it is indirectly
obtained by solving an inverse problem that represents the measuring process. Examples of
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ESTIMATION OF STOCHASTIC CHAOS REPRESENTATIONS 3

this procedure include estimating elasticity constants, U(x), from displacement measurements
on the boundary of a nonhomogeneous specimen, or estimating the strain field, U(x), from
its locally averaged measurements. The structure of the information associated with this
type of inverse problem justifies the estimation of generalized representators of U(x) from
which the physical pointwise representation can be subsequently synthesized. These generalized
coordinates can be constructed as projections in a suitable Hilbert space H .

Let H be a Hilbert space of functions x 7→ v(x) defined on D with values in  n , and denote
the inner product on H by 〈v,w〉H , Let {vj , j = 1, . . . ,+∞} be a hilbertian basis in H , which
is thus a complete orthonormal system in H ,

〈vj ,vk〉H = δjk , (2)

where δjk denotes the kronecker delta function. Stochastic field U(x) can then be written as,

U(x) =

∞∑

j=1

√
λjηjvj(x) , (3)

where, η1, η2 . . . , are centered second-order random variables, generally correlated, such that

E{η2
j } = 1 , ∀j ≥ 1 . (4)

and where

λ1 ≥ λ2 ≥ . . .→ 0 , (5)

is a decreasing sequence of positive real numbers such that
∞∑

j=1

λj < +∞ , (6)

The series on the right-hand side of Equation (??) converges in mean-square sense in H . In
this case, the following equality holds,

E{‖U‖2
H} =

∞∑

j=1

λj , (7)

where E{} denotes the operator of mathematical expectation. An expression for ηj can then
be written in the form,

ηj =
1√
λj

〈U ,vj〉H . (8)

2.2. Special Cases

Two particular cases of hilbertian bases can be associated with common experimental
procedures. The first one corresponds to the situation where the covariance function of
stochastic field {U(x), x ∈ D} can be accurately estimated either from direct measurements
or indirect measurements following an inverse problem. In this case the eigenvectors of the
covariance operator can be used as hilbertian basis {vj}. In the second case, the covariance
function cannot be estimated in the physical coordinate system. In this case, an associated
eigenvalue problem, adapted to the physical problem at hand, has to be introduced for
constructing hilbertian basis {vj}. These two cases are addressed, respectively, in the following
two sections.

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1–22
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4 C. DESCELIERS ET.AL

2.2.1. Karhunen-Loeve Expansion. The Karhunen-Loeve development for this {U(x), x ∈ D}
provides a representation of U with a number of interesting properties. It is in fact optimal
in the mean-square sense and yields a sequence of random variables that, while uncorrelated,
are generally statistically dependent.

Working in Hilbert space H = L2(D, n ) with the inner product given by

〈v,w〉H =

∫

D
〈v(x),w(x)〉 n dx, (9)

the Karhunen-Loeve expansion can then be obtained by solving the following eigenvalue
problem,

R v = λv (10)

where R is the covariance operator in H defined by the positive symmetric bilinear form on
H ×H ,

〈R v,w〉H =

∫

D

∫

D
〈[R (x,x′)] v(x′),w(x)〉 n dx dx′ (11)

in which [R (x,x′)] is the matrix of covariances of U(x),

[R (x,x′)] = E{U(x)U(x′)T } . (12)

Since U(x) is assumed to be mean-square continuous on Ξ, the covariance function [R (x,x′)]
is continuous on Ξ × Ξ and consequently, it is square-integrable on D × D since D is a
compact set. Thus, R as defined above is Hilbert-Schmidt, and therefore its eigenvalues
form a decreasing sequence of positive numbers, λ1 ≥ . . . ≥ λn ≥ . . .→ 0, and its eigenvectors
form a complete orthonormal system in H ,

〈vj ,vk〉H = δjk . (13)

Moreover, for every x and x′ in D,

[R (x,x′)] =

∞∑

j=1

λjvj(x)vj(x
′)T , (14)

in which the series on the right-hand side is uniformly convergent on D × D. Furthermore, it
can be shown that

E{‖U‖2
H} =

∫

D
tr [R (x,x)]dx =

∞∑

j=1

λj < +∞. (15)

It is noted that since the left-hand side of Equation (??) is finite, the series on the right-
hand side is also finite and the operator RU is nuclear. The resulting expansion given by
Equation (??) is referred to as the Karhunen-Loeve expansion. As noted above, the series in this
representation converges in mean-square sense in H . It is also noted that since the covariance
function of U is continuous, this convergence is uniform at every x ∈ D. In addition, the
random variables {ηj}, given by Equation (??), are second-order centered orthogonal random
variables,

E{ηj} = 0 ∀j E{ηjηk} = δjk . (16)

It is again emphasized that these random variables are not, in general, statistically independent.

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1–22
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ESTIMATION OF STOCHASTIC CHAOS REPRESENTATIONS 5

2.2.2. Hilbertian Basis from a Self-Adjoint Operator. A generalization of the previous
treatment is possible by considering representation on more general basis functions constructed
as the eigenfunctions of a self-adjoint operator, A. This operator, defined in H , is generally
unbounded and admits a countable sequence of real eigenvalues s. This eigenvalue problem
could, for example, be associated with an underlying boundary value problem that involves
random field U as a parameter. This boundary value problem can be either derived from
the physical problem itself or from a reduced model that is more efficient at representing the
measurement process.

Thus a hilbertian basis is obtained as the solution {vj} of the eigenvalue problem,

Av = sv . (17)

At this point, the development in the previous subsection for representing random field
U in the coordinate system {vj} can be readily implemented. In particular, the scalar λj

introduced in Section (??) is the square of the magnitude of the projection of U on coordinate
vj as indicated by Equation (??). In general, however, and except for the Karhunen-Loeve
representation, convergence of representations with respect to hilbertian bases is not uniform,
and the associated random variables are not orthogonal.

2.3. Finite-Dimensional Approximation and Error Estimation

A truncated expansion on hilbertian bases is commonly used in computationally targeted
representations of stochastic fields. Truncating the expansion of U(x) at the µth term results
in the following approximation to the field,

Uµ(x) =

µ∑

j=1

√
λjηjvj(x) (18)

incurring a random error ǫµ(x) given by,

ǫµ(x) =
∞∑

j=µ+1

√
λjηjvj(x) (19)

which converges in mean-square sense in H to zero as µ → ∞. Note that for the Karhunen-
Loeve case, this convergence is at every x ∈ D. Moreover it is noted that,

E{‖Uµ‖2
H} =

µ∑

j=1

λj , (20)

and thus,

E{‖U − Uµ‖2
H} =

∞∑

j=µ+1

λj (21)

with the above series converging to zero as µ → ∞. Using Equation (??), the above norm of
the error can be expressed as,

E{‖U − Uµ‖2
H} =

∫

D
tr[R (x,x)] dx −

µ∑

j=1

λj . (22)

Equation (??) permits the estimation of the norm of the error associated with a given level
of truncation, from a knowledge of the covariance function of U(x) and µ basis functions,
v1, . . . ,vµ.

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1–22
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6 C. DESCELIERS ET.AL

2.4. Probability Distribution of a Finite Approximating Sequence

For all b in  µ , the characteristic functional of the  µ -valued random variables η = (η1, . . . , ηµ)
appearing in Equation (??) can be written as,

Ψ (b) = E
{
ei〈 ,!〉 µ

}

= E

{
e

i

 " ,
!µ

j=1
1√
λj
#jbj

"
H

}

= E
{
ei〈" ,$〉H

}
(23)

for ζ in a finite subspace of H written as,

ζ(x) =

µ∑

j=1

1√
λj

bjvj(x) . (24)

The following relationship is thus deduced between the characteristic functional Ψ (b) of η

and the characteristic functional Ψ" (ζ) of U ,

Ψ (b) = Ψ" (ζ)

= E
{
ei〈" ,$〉H

}
. (25)

It is noted that the characteristic functional Ψ" (ζ) of U , defined on an appropriate space,
completely defines the probability law of stochastic field U . From the above development, this
functional also completely characterizes the characteristic functional of the finite sequence of
random variables η = (η1, . . . , ηµ) for any value of µ <∞.

It is recalled that if Ψ is an integrable function on  µ , then random variable η is defined
by a probability density function p (y) with respect to dy which is given by,

p (y) =
1

(2π)µ

∫ µ

e−i〈%,!〉 µΨ (b) db . (26)

It is also noted from Equation (??) that if U is a Gaussian stochastic field, then η is a Gaussian
random vector.

2.5. Example of a finite-dimensional construction using a finite element basis

In general, a finite-dimensional approximation of the decomposition defined by Eq. (??)
has to be constructed. Typically, domain D is a bounded domain discretized by the finite
element method. Therefore, a finite element representation of random field {U(x),x ∈ D} is
constructed such that

U(x) ≃
Ni∑

k=1

Ũk hk(x) , (27)

in which h1(x), . . . , hNi
(x) are the functions which are constructed from the interpolation

functions of the finite elements used, where Ni is an integer related to the degree of this

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1–22
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ESTIMATION OF STOCHASTIC CHAOS REPRESENTATIONS 7

approximation and to the mesh size and where {Ũ1, . . . , ŨNi
} are the values of U(x) at

the different nodes of the finite element mesh of domain D. Let η̃ = (Ũ1, . . . , ŨNi
) be the

centered second-order  nNi -valued random variable whose covariance matrix is defined by
[C  ] = E{η̃η̃T }. It should be noted that U(x) being a random vector with values in  n ,

Ũ1, . . . , ŨNi
are also random vectors with values in  n and consequently, η̃ is a random

vector with values in  nNi . Let us consider the eigenvalue problem [C  ] Fj = λjFj for positive
symmetric matrix [C  ] for which the positive eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λµ ≥ . . . are ordered
in descending order. The associated eigenvectors F1,F2, . . . , are normalized to one. Therefore,
it can be written that η̃ ≃ η̃µ =

∑µ
j=1

√
λjηjFj in which the real-valued random variables

{η1, . . . , ηµ} defined by
√
λjηj = 〈η̃,Fj〉 nNi are such that, for all j and k, E{ηj} = 0 and

E{ηjηk} = δjk. The finite-dimensional representation associated with Eq. (??) can then be
deduced.

3. Properties of the Chaos Decomposition of the Finite Dimensional Approximation

In this section the Chaos representation of the random variable η is used to derive the Chaos
decomposition of random field Uµ. A-posteriori error estimators corresponding to a finite
dimensional Chaos representation are also derived along with representations of the associated
characteristic functionals.

3.1. Chaos Representation

In general, as explained in Section (??), second-order  µ -valued random vector η, while
orthonormal, has an arbitrary probability distribution depending on the probability law of
random process U . It is assumed, however, that there exists a mapping g :  ν −→  µ such
that

η = g(W ), (28)

where W = (W1, . . . ,Wν) is a ν-dimensional zero-mean Gaussian vector such that

E{WiWj} = δij , (29)

and such that its probability density function with respect to dw is given by,

p! (w) =
1

(2π)
ν/2

e−
1
2 ‖w‖2 ν . (30)

Moreover, noting that from Equation (??) it is deduced that,

E
{
‖η‖2 µ

}
= µ < +∞ , (31)

η admits a Chaos decomposition in terms of Gaussian variable W of the form

η =

∞∑",|"|=1

a"φ"(W ) , (32)

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1–22
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8 C. DESCELIERS ET.AL

where α is a multi-index (α1, . . . , αν) ∈  ν , |α| = α1 + . . . + αν , a is a vector in !µ and
φ (W ) = φα1(W1) × . . .× φαν

(Wν), in which φαk
(w) is the normalized Hermite polynomial

of order αk such that
∫ φαk

(w)φαj
(w)

1√
2π
e−

1
2w2

dw = δαkαj
. (33)

This orthogonality condition can be generalized to the multi-indexed Hermite polynomials in
the form,

E{φ (W )φ!(W )} = δ ! = δα1β1 × . . .× δανβν
. (34)

The coefficients a can be clearly expressed in the form,

a = E{ηφ (W )}

=

∫ ν

g(w)φ (w)p" (w)dw , (35)

which presumes knowledge of the functional form of g(.). Substituting the Chaos representation
of random variable η given by Eq. (??) into Eq. (??) yields the chaos representation of
{Uµ(x), x ∈ D},

Uµ(x) =
∞∑ ,| |=1

uµ (x)φ (W ) , (36)

in which

uµ (x) =

µ∑

j=1

√
λj{a }jvj(x) , (37)

and where {a }j denotes the jth component of vector a . Since E{ηjηk} = δjk (Eq. (??)), it
can be deduced that

∞∑ ,| |=1

a aT = [ Iµ] , (38)

in which [ Iµ] is the (µ× µ) unit matrix.
It is noted at this point, that the parameter ν represents, essentially, the number of

independent information carriers in the process Uµ(x). For general processes, it is be known
a-priori, and its estimated value, as described in this paper, can be used in developing reduced-
order models for the phenomenon being represented.

3.2. Finite-Dimensional Approximation and Error Estimation

The finite chaos representation, Uµ,q of order q, of Uµ is given by

Uµ,q(x) =

q∑ ,| |=1

uµ (x)φ (W ) . (39)

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1–22
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ESTIMATION OF STOCHASTIC CHAOS REPRESENTATIONS 9

From the above it can be shown that,

E{‖Uµ − Uµ,q‖2
H}

E{‖Uµ‖2
H} =

∑µ
j=1 λj

∑∞ ,| |≥q+1 ({a }j)
2

∑µ
j=1 λj

. (40)

The orthogonality of the chaos basis, φ , results in

∞∑ ,| |≥q+1

‖a ‖2 µ = µ−
q∑ ,| |=1

‖a ‖2 µ > 0 (41)

which, together with Equation (??), yields two types of upper bounds on the error. Since
λ1 ≥ . . . ≥ λµ, the following expression can be obtained for the first bound,

E{‖Uµ − Uµ,q‖2
H}

E{‖Uµ‖2
H} ≤ λ1

λµ



1 −
q∑ ,| |=1

1

µ
‖a ‖2 µ



 . (42)

Moreover, since

sup
j

∞∑ ,| |≥q+1

({a }j)
2 ≤

∞∑ ,| |≥q+1

‖a ‖2 µ (43)

the following second upper bound is obtained,

E{‖Uµ − Uµ,q‖2
H}

E{‖Uµ‖2
H} ≤ µ


1 −

q∑ ,| |=1

1

µ
‖a ‖2 µ


 . (44)

For a given µ, equations (??) and (??) permit the a-posteriori estimation of the error
associated with truncating the Chaos decomposition of Uµ using the known coefficients
{a , |α| = 1, . . . , q}. If stochastic field U is such that the sequence of positive numbers λi

is slowly decreasing, which is the case for wideband fields for example, then Equation (??)
provides a tighter bound. In this case the value of µ required to achieve adequate representation
is large. If, on the other hand, stochastic field U is such that the sequence λi is rapidly
decreasing, which is the case for narrowband stochastic fields, then Equation (??) provides the
tighter bound. In this case the value of µ is relatively small. It should be noted that Eq. (??)
holds if Eq. (??) holds. Consequently, for q fixed, if the constraint

∑q ,| |=1 aαaα
T = [Iµ] is

used for accelerating the convergence of the computational process for calculating coefficients
aα then Eq. (??) does not hold. Nevertheless, the converged solution constructed with such
constraint is the solution of the problem.

3.3. Probability Distribution of the Finite-Dimensional Approximation

The probability distribution of η is next expressed in terms of its Chaos coefficients a .
Thus the probability distribution of  µ -valued η can be obtained by substituting its Chaos
representation in the expression of its characteristic functional,

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1–22
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10 C. DESCELIERS ET.AL

Ψ (b) = E {exp {i〈η, b〉 µ}}

= E




exp




i〈
∞∑!,|!|=1

a!φ!(W ), b〉 µ











= E




exp




i
∞∑!,|!|=1

φ!(W )〈a!, b〉 µ









 (45)

which can then be rewritten as,

Ψ (b) =

∫ ν

exp




i
∞∑!,|!|=1

φ!(w)〈a!, b〉 µ




 p" (w)dw . (46)

The probability density function of η has thus the expression,

p (y) =
1

(2π)µ

∫ µ

e−i〈#,$〉 µΨ (b)db

=
1

(2π)µ

∫ µ

exp {−i〈b,y〉 µ}
∫ ν

exp



i

∞∑!,|!|=1

φ!(w)〈a!, b〉 µ



 p" (w)dw db ,(47)

which can be formally rewritten as,

p (y) =

∫ ν

δ0



y −
∞∑!,|!|=1

φ!(w)a!

 p" (w)dw (48)

in which

δ0(v) = δ0(v1) . . . δ0(vµ) (49)

and where δ0(.) is the Dirac function in  at the origin. Truncating the Chaos decomposition
of η at order q results in the q-order approximation pq (y) of p (y) given by

pq (y) =
1

(2π)µ

∫ µ

exp {−i〈b,y〉 µ}
∫ ν

exp



i

q∑!,|!|=1

φ!(w)〈a!, b〉 µ



 p" (w)dw db

=

∫ ν

δ0


y −

q∑!,|!|=1

φ!(w)a!
 p" (w)dw . (50)

Thus from a knowledge of the Chaos coefficients a! of random variable η, its probability
density function can be approximated. It is also noted that the evaluation of the integral in
Equation (??) must be carried out for such a characterization to be quantified. From the
second of Equations (??), it is clear that the following equation holds,

pq (y) = E



δ0



y −
q∑!,|!|=1

φ!(W )a!





 , (51)
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ESTIMATION OF STOCHASTIC CHAOS REPRESENTATIONS 11

where expectation is taken relative to the ν-dimensional gaussian measure. It is interesting to
note that this last equation could have been written directly given that η has been represented
by its Chaos decomposition.

4. Statistical Representation of the Chaos Coefficients

Least squares estimation of a yields the Hilbertian projection of η on φ as indicated in
Equation (??). The evaluation of this projection requires knowledge of the joint probability
distribution of W and η which depends on the function g(.) which is unknown in the context
of experimental identification. Thus least squares estimation does not provide a feasible path
for estimating the Chaos coefficients from experimental evidence.

4.1. Maximum Likelihood Method

A probability density function of η in terms of parameters a has been derived in Equation
(??), which is independent of function g(.). The maximum likelihood method [9] can thus be
used to estimate, from observations of η, parameters a .

Consider the probability space (Ω, T , P ). Let (η(θ1), . . . ,η(θm)) bem realizations of random
vector η. The problem then is reduced to estimating {aα, |α| = 1, . . . , q} from observations
{y1, . . . ,ym} in which (y1 = η(θ1), . . . ,y

m = η(θm)).
Consider next the likelihood function associated with observations y1, . . . ,ym, given by

L(y1, . . . ,ym; A) = p!(y1,A) × . . .× p!(ym,A) , (52)

in which A = {a , |α| = 1, . . . , q}. The problem then can be stated as

max" L(y1, . . . ,ym; A) . (53)

Introducing the manifold M defined by Eq. (??), then the optimization problem defined by
Eq. (??) can be replaced by a more efficient one:

max"∈M
L(y1, . . . ,ym; A) . (54)

However, the optimization problem defined by Eq. (??) yields a very high computational cost
induced by the estimation of the joint probability density functions p!(yj ,A), for reasonable
values of the length µ of random vector η. Consequently, it is proposed to substitute the usual
likelihood function by the following one,

L̃(y1, . . . ,ym; A) = {
µ∏

j=1

pηj
(y1

j ,A)} × . . .× {
µ∏

j=1

pηj
(ym

j ,A)} , (55)

in which yk = (yk
1 , . . . , y

k
µ) resulting in the following approximation to the optimization

problem defined by Eq. (??)

max"∈M
L̃(y1, . . . ,ym; A) . (56)
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It should be noted here that regularity of this maximization problem follows from the regularity
of the representations given in equations (??) and (??). It is furthermore noted that although

the surrogate likelihood function L̃() digresses to the exact likelihood L() when the random
variables ηi are independent, equation (55) does not imply an assumption of independence
between these ηi.

4.2. Algorithm for ML Estimation

Although the gradients on manifold M of the probability density function of ηj with respect
to a could be derived analytically in integral forms, they seem not be too useful given the
complexity of the resulting integrals. Thus, the suggested algorithm to solve the optimization
problem defined by Eq. (??) involves, in some form, the following generic steps.

1. Get A = {a } with a ∈ M.
2. Estimate the probability density functions pη1(y

1
1 ,A), . . . , pηµ

(ym
µ ,A).

3. Calculate L̃(y1, . . . ,ym; A).
4. Evaluate the next estimate of a in M.

Of the above four steps, the second one is certainly the most difficult to achieve. The
most efficient procedure consists in synthesizing realizations of η =

∑q a φ (W ), followed,
for j = 1, . . . , µ, by estimating pηj

(y1
j ,A), . . . , pηj

(ym
j ,A) using standard methods from

mathematical statistics [?].

5. Validation by a Numerical Simulation

5.1. Description of the numerical example

We consider a boundary value problem associated with a three-dimensional elasticity problem
for a bounded domain. The elastic medium has a random parameter modeled by a stochastic
field (the Young modulus) whose representations will be given in section 5.2. It should be noted
that the Poisson ratio should be modeled by a random field. Nevertheless, in order to simplify
the present example, we have chosen to model the Poisson ratio by a constant. By using
the methodology proposed in the previous sections, we will construct a representation of this
stochastic field from an experimental database relative to measurements of the displacement
field on the boundary of the elastic domain. For this example, the experimental database is
generated by Monte Carlo numerical simulation of the stochastic boundary value problem.

5.2. Construction of an ”experimental data basis” by Monte Carlo numerical simulation of

the direct problem

5.2.1. Definition of the mechanical system. Below, we consider an elastostatic problem. The
stochastic system (the structure) is constituted of an non-homogeneous isotropic linear elastic
medium occupying a three-dimensional bounded domain D with boundary ∂D given in a
Cartesian system Ox1x2x3. The geometry of domain D is a slender rectangular box shown in
Figure 1 whose dimensions along x1, x2 and x3 are L1 = 1.3 × 10−1m, L2 = 2 × 10−2m and
L3 = 2× 10−2m. The structure is fixed on a part Γ0 of ∂D for which the displacement field is
zero.
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Figure 1. Definition of the mechanical system

The structure is subjected to 14 external point forces applied to the nodes in the end-section
defined by x1 = L1. Let f1, . . . ,f4 be the point forces applied to the nodes belonging to the
edges Γ1, . . . ,Γ4 (Fig. 1) such that f1 = (0, 0, 1), f2 = (0, 1, 0), f3 = −f1 and f4 = −f2.
Let f5 and f6 be the point forces applied to the nodes denoted as A (Fig. 1) and such that
f5 = (2, 0, 0) and f6 = (0, 2, 0).

5.2.2. Definition of the random field modeling the Young modulus. It is assumed that the only
random parameter is the Young modulus which is modeled by a positive-valued second-order
random field E(x) defined, for all x in D, as

E(x) = E0 δ
2 h(1/δ2, V (x)) , (57)

in which E{E(x)} = E0 > 0 is the mean value independent of x, where δ > 0 is a real
parameter independent of x and allowing the dispersion level to be controlled, such that
δ2 = E−2

0 E{(E(x) − E0)
2}. The function u 7→ h(α, u) from  into ]0 ,+∞[ is such that

Γα = h(α,U) is a gamma random variable with parameter α if U is a normalized Gaussian
random variable (E{U} = 0 and E{U2} = 1). Consequently, for all u in  , we have

h(α, u) = F−1
Γα

(FU (u)) , (58)

in which u 7→ FU (u) = P (U ≤ u) is the cumulative distribution function of the normalized
Gaussian random variable U such that

FU (u) =

∫ u

−∞

1√
2π

e−t2/2 dt . (59)

The function p 7→ F−1
Γα

(p) from ]0 , 1[ into ]0 ,+∞[ is the reciprocal function of the cumulative
distribution function γ 7→ FΓα

(γ) from ]0 ,+∞[ into ]0 , 1[ of the gamma random variable Γα
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with parameter α, which is such that, for all γ in  + ,

FΓα
(γ) =

∫ γ

0

1

Γ(α)
tα−1 e−t dt , (60)

in which Γ(α) =
∫ +∞
0 tα−1 e−t dt is the gamma function. This procedure permits the simulation

of positive non-gaussian processes with a marginal probability density specified as the density
of a Gamma variable. In the right-hand side of Eq. (??), {V (x),x ∈ D} is a normalized
Gaussian second-order random field such that E{V (x)} = 0 and E{V (x)2} = 1, defined by

V (x) =
3∑

k=1

ξk
√
γk ψk(x) , (61)

in which {ξ1, ξ2, ξ3} are independent Gaussian random variables and where {γk}k≥1 and
{ψk}k≥1 are defined below. In order to construct functions {ψ1, ψ2, ψ3}, the following problem
is introduced. Let C be the integral linear operator defined by the kernel C(x,x′) such that

C(x,x′) = exp (−|x1 − x′1|/L) , (62)

in which L = L1/4 and where x = (x1, x2, x3) and x′ = (x′1, x
′
2, x

′
3) belong to D. The eigenvalue

problem related to operator C is then written as
∫

D
C(x,x′)ψ̃k(x′)dx′ = γkψ̃k(x) . (63)

Since C is a Hilbert-Schmidt operator in L2(D, ), the family of the eigenvalues {γk}k≥1

constitutes a sequence which is assumed to be ordered by decreasing values and the family of
eigenfunctions {ψ̃k}k≥1 is a Hilbertian basis of L2(D, ). Finally, the functions {ψk}k≥1 are
chosen such that

ψk(x) =
ψ̃k(x)√∑3

k=1 γk ψ̃k(x)2
. (64)

Due to Eq. (??), it should be noted that Eq. (??) does not correspond to a truncated Karhunen-
Loeve development for which the function defined by Eq. (??) is covariance function of V .
Figure 2 shows the graphs of 7 realizations of the stochastic field {E(x), x1 ∈ [0 , L1]} obtained
for E0 = 2.1 × 1010N.m−2 and δ = 0.2. Since the covariance function (x,x′) 7→ ρ(x,x′)
(x,x′) 7→ ρ(x,x′) of stochastic field {E(x), x1 ∈ [0 , L1]} does not depend on x2, x

′
2, x3, x

′
3,

this function is rewritten (x1, x
′
1) 7→ ρ(x1, x

′
1).

5.3. Identification of the random field modeling the Young modulus by solving an inverse

problem

5.3.1. Construction of the experimental database. The finite element mesh of the structure
is shown in Figure 1 and consists of 8-node isoparametric 3D solid finite elements. There are
Nd = 117 degrees of freedom. Let ξ = (ξ1, ξ2, ξ3) be the  3 -valued random variable constituted
of the 3 independent random variables appearing in Equation (??) and characterizing the basic
uncertainty in the problem. It is assumed that this spatial discretization is adequate for the
accurate representation of the dominant eigenfunctions of the covariance kernel. Let [A(ξ)]
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Figure 2. Graphs of 7 realizations of stochastic field {E( ),x1∈[0 ,L1]}. Horizontal axis x1, vertical axis
E( ).

be the random stiffness matrix with values in the set of all the positive-definite symmetric
(Nd×Nd) real matrices. The  Nd -valued random vector of the nodal displacements is denoted
by X = !(ξ) and is such that

[A(ξ)]X = G , (65)

in which G is the  Nd -vector of the external forces. The vector of the Nb = 81 degrees of

freedom corresponding to the nodes belonging to the boundary ∂D is denoted by X∂D. We
introduce the mapping P from  Nd on  Nb such that

X∂D = P (X) . (66)

The experimental data base is assumed to consist of m = 50 random realizations of X∂D which
are denoted by X1

∂D = X∂D(θ1), . . . ,X
m
∂D = X∂D(θm).
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5.3.2. Solving the inverse problem. The finite element approximation Ẽ of random fields E
indexed by D is such that

Ẽ(x) =

Ni∑

k=1

Ẽkhk(x1) , (67)

in which h1(x1), . . . , hNi
(x1) are the linear interpolation functions related to the finite element

mesh of domain D, where Ni = 20 is the degree of this approximation and where Ẽ1, . . . ẼNi

are the interpolation coefficients. We introduce the  Ni -valued random variable η̃0 such that

η̃0 = (Ẽ1, . . . , ẼNi
) . (68)

Let [Ã(η̃0)] be the random stiffness matrix constructed using the finite element approximations

Ẽ(x) of the Young modulus. For each set of realizations X1
∂D, . . . , Xm

∂D belonging to the
experimental data base, the realizations

ỹ1
0 = η̃0(θ1), . . . , ỹ

m
0 = η̃0(θm) , (69)

of the random variable η̃0 are constructed by solving the following nonlinear least squares
problems

ℓ(ỹ1
0 ,X

1
∂D) = min  ℓ(ỹ,X1

∂D) , (70)

...

ℓ(ỹm
0 ,X

m
∂D) = min  ℓ(ỹ,Xm

∂D) , (71)

in which

ℓ(ỹ, z) =
∥∥∥P

(
[Ã(ỹ)]−1G

)
− z

∥∥∥
2

. (72)

Finally, for all x fixed in D, the realizations Ẽ1(x) = Ẽ(x; θ1), . . . , Ẽm(x) = Ẽ(x; θm) of

random variable Ẽ(x) are constructed by using Eqs. (??) to (??). The above least squares
problems are solved by using standard methods [10,11].

5.3.3. Statistical reduction. The objective of the statistical reduction is to reduce the size of
the random vector η̃0 used in the representation of the random fields modeling the random
Young modulus. Let η̃ ∈  Ni be the mean vector defined by

η̃ = E{η̃0} . (73)

An estimation of vector η̃ is given by

η̃ ≃ 1

m

m∑

k=1

ỹk
0 . (74)

Let η̃ be the centered  Ni -valued random vector defined by

η̃ = η̃0 − η̃ . (75)

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1–22
Prepared using nmeauth.cls



ESTIMATION OF STOCHASTIC CHAOS REPRESENTATIONS 17

The centered realizations ỹ1 = η̃(θ1), . . . , ỹ
m = η̃(θm) of the random vector η̃ are then given

by

ỹ1 = ỹ1
0 − η̃ , (76)

...

ỹm = ỹm
0 − η̃ . (77)

Let [C  ] = E{η̃ η̃T } be the covariance matrix of the centered random vector η̃ whose
estimation is given by

[C  ] ≃ 1

m

m∑

k=1

ỹkỹkT . (78)

It should be be noted that m has to be greater than Ni in order to construct a positive-
definite matrix [C  ]. Let λ1 ≥ . . . ≥ λNi

be the eigenvalues of the covariance matrix [C  ].
The normalized eigenvectors associated with the eigenvalues λ1, . . . , λNi

are denoted by
F1, . . . ,FNi

. For all j = 1, . . . , Ni and ℓ = 1, . . . , Ni, we then have

[C  ]Fj = λjFj , (79)

〈Fj ,Fℓ〉 Ni = δjℓ . (80)

Consequently, the random vector η̃ can be written as

η̃ =

Ni∑

j=1

ηj

√
λjFj , (81)

in which η1, . . . , ηNi
are Ni centered real-valued random variables defined by

√
λjηj =

〈η̃,Fj〉 Ni and such that for all j and k, E{ηj} = 0 and E{ηjηk} = δjk. Figure 3 displays the

graph of function k 7→
∑k

i=1 λ
2
i .

It can be deduced that random vector η̃ defined by Eq. (??) can be approximated by the
random vector η̃µ defined by

η̃µ =

µ∑

j=1

ηj

√
λjFj , (82)

with µ = 5.

We then introduce the  µ -valued random variable ηµ = (η1, . . . , ηµ). The realizations
of random vector ηµ, denoted by y1 = ηµ(θ1), . . . ,y

m = ηµ(θm), are calculated, for all
j = 1, . . . , µ, by

yk
j =

1√
λj

〈ỹk,Fj〉 Ni . (83)

in which, for all k = 1, . . . ,m, we have yk = (yk
1 , . . . , y

k
µ).

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1–22
Prepared using nmeauth.cls



18 C. DESCELIERS ET.AL

0 5 10 15 20
3.5

4

4.5

5

5.5

6
x 10

40

Figure 3. Convergence analysis of the statistical reduction : graph of function k 7→
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5.3.4. Chaos decomposition. Let W ν = (W1, . . . ,Wν) be the ν-dimensional zero-mean
Gaussian vector such that E{WiWj} = δij . The truncated Chaos representation of the  µ -
valued random variable ηµ in terms of Gaussian variable W ν is written as

ηµ,ν =

q∑ ,| |=1

a φ (W ν) , (84)

where α is a multi-index belonging to !ν and where φ (W ν) is the multi-indexed Hermite
polynomials (section 2.1). The coefficients a belonging to  µ are such that (Eq. (??))

max!∈Mµ
L̃(y1, . . . ,ym; A) . (85)
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in which L̃ is defined by Eq. (??), where A = {a , |α| = 1, . . . , q} and where Mµ is the
manifold defined by the following equation

q∑ ,| |=1

a aT = [ Iµ] . (86)

It should be noted that, for all j = 1, . . . , µ, Eq. (??) yields
∑q ,| |=1{a }2

j = 1 which proves
that, for all α and for all j, we have

−1 ≤ {a }j ≤ 1 . (87)

It should also be noted that since Eq. (??) has been replaced by Eq.(??), Eq. (??) does not

hold (see for instance Section 3.2). Finally, random field {Ẽ(x),x ∈ D} defined by Eq. (??) is

approximated by the random field Ẽµ,ν(x) indexed by D and defined by

Ẽµ,ν(x) =

Ni∑

k=1

Ẽµ,ν
k hk(x1) , (88)

in which

Ẽµ,ν
k = η

k
+ η

µ,ν
k , (89)

where η = (η
1
, . . . , η

µ
) and ηµ,ν = (ηµ,ν

1 , . . . , ηµ,ν
µ ) are defined by Eqs. (??) and (??).

5.3.5. Algorithm for ML optimization. A critical step in estimating the chaos coefficients of
Young modulus is to execute item 1 as specified in Section 4.2. We then have to construct a
realization of random vector A = {a } with a belonging to the manifold Mµ defined by
Eq. (??) and knowing that Eq. (??) holds. Let [A] be the rectangular matrix whose columns
are the vectors a . Consequently, the number of rows is µ and the number of columns is∑q ,| |=1 1. Equation (??) can be rewritten as

[A][A]T = [ Iµ] , (90)

where entries of matrix [A] are in [−1 , 1]. The proposed method for constructing matrix [A]
verifying Eq. (??) is the following

1. Construction of a matrix [A0] corresponding to a realization of a random matrix whose
entries are independent uniform real random variables on [−1 , 1].

2. Construction of the matrix [A] such that [A] = [L]−T [A0] in which [L] is the upper
triangular matrix corresponding to the Cholesky decomposition [B0] = [L]T [L] of the
matrix [B0] = [A0][A0]

T .

It should be noted that Eq. (??) (i.e Eq. (??)) is satisfied for each iteration of the algorithm
defined in Section 4.2.

5.4. Convergence Analysis

Estimates of the mean value function x 7→ E(x) = E{E(x)} of stochastic field E are shown in

Figure 4. In particular, the functions x 7→ Ẽµ,ν
(x) = E{Eµ,ν(x)} are shown for ν = 1, . . . , 8
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Figure 4. Convergence analysis with respect to the dimension ν of germ  ν : graph of the reference

mean value function x1 7→ E(!) (Fig. a) and graphs of the mean value functions x1 7→  Eµ,ν
(!) for

ν = 1, . . . , 8 with µ = 5 and x2 = x3 = 10−2m (thick lines in Fig. b).

with µ = 5 and q = 6. It should be noted that Eµ,ν is independent of q by construction. It can

be seen that Ẽµ,ν
with µ = 5 is a reasonable approximation of mean value function E for all ν

greater or equal to 1.
In order to perform a convergence analysis of the method proposed in this paper, we

introduce the normalized stochastic field {ε(x),x ∈ D} such that

ε(x) =
E(x)

E{E(x)} . (91)

The finite element approximation of ε is then denoted as

ε̃µ,ν(x) =
Ẽµ,ν(x)

E{Ẽµ,ν(x)}
. (92)

For all x belonging to D, the probability density functions with respect to de of random
variables ε(x) and ε̃µ,ν(x) are denoted as pε( )(e; x) and pε̃µ,ν( )(e; x) respectively. Some
examples of probability density functions e 7→ pε̃µ,ν ( )(e; x) and e 7→ pε̃µ,ν( )(e; x) with
x = (L1/20, 10−1, 10−1), µ = 5 and for ν = 1, . . . , 8 are shown in Figure 5. These estimates
of the density function were obtained from a statistical sample of size 50000. It can be seen
that a convergence is effectively reached for ν = 3. The graph of the reference probability
density function e 7→ pε( )(e; x) in log scale shows that this probability density function is not
gaussian.

For x in D, the standard deviation σε(x) of random variable ε(x) is shown in Figure 6.
In order to perform a convergence analysis of the standard deviation σε̃µ,ν (x) of random
variable ε̃µ,ν(x) with respect to parameter ν, the graph of functions x 7→ σε̃µ,ν (x) are also
shown in Figure 6. It can be seen that the standard deviation of random variable ε(x) is well
approximated by σε̃µ,ν (x) with µ = 5 and for ν greater or equal to 1.
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Figure 5. Examples of the probability density function of ε̃µ,ν for ν = 1, . . . , 8 with µ = 5 : Fig. a shows
the graph of the reference probability density function e 7→ pε( )(e; ) with  = (L1/20, 10−1, 10−1).

The graphs of e 7→ pε̃µ,ν ( )(e; ) with  = (L1/20, 10−1, 10−1) are constructed for ν = 1 (Fig. b),
ν = 2 (Fig. c) and ν = 3, . . . , 8 (Fig. d).

For x fixed in D, the third-order moment of random variable ε(x) with is denoted as M3
ε (x).

For all ν = 1, . . . , 8, the third-order moment M3
ε̃µ,ν (x) of random variable ε̃µ,ν(x) with µ = 5

and q = 6 is calculated. For studying the convergence of the third-order moment of random
variable ε̃µ,ν(x) with respect to ν, the graphs of function x1 7→M3

ε (x) and x1 7→M3
ε̃µ,ν (x) with

µ = 5 and for ν = 1, . . . , 8 are plotted in Figure 7. It can be seen that M3
ε̃µ,ν is a reasonable

approximation of M3
ε constructed for ν greater or equal to 2.

For x fixed in D, the fourth-order moment of random variable ε(x) is denoted as M4
ε (x).

For all ν = 1, . . . , 8, the fourth-order moment M4
ε̃µ,ν (x) of random variable ε̃µ,ν,q(x) with

µ = 5 and q = 6 is calculated. For studying the convergence analysis of the fourth-order
moment of random variable ε̃µ,ν(x) with respect to ν, the graphs of functions x1 7→ M4

ε (x)
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Figure 6. Convergence analysis of the standard deviation of random variable ε̃µ,ν( ) with respect to
ν for all  belonging to D : For x2 = x3 = 10−2m, graphs of functions x1 7→ σε( ) (Fig. a) and
x1 7→ σε̃µ,ν ( ) with µ = 5 and for ν = 1, . . . , 8 (Fig. b). Horizontal axis x1, vertical axis σε( ) and

σε̃µ,ν ( ).
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Figure 7. Convergence analysis of the third order moment of random variable ε̃µ,ν( ) with respect to
ν : For x2 = x3 = 10−2m, graphs of mappings x1 7→ M3

ε ( ) (Fig. a) and x1 7→ M3
ε̃µ,ν ( ) with µ = 5

and for ν = 1 (the lower thin line in Fig. b) and ν = 2, . . . , 8 (the thick lines in Fig. b). Horizontal
axis x1, vertical axis M3

ε ( ) and M3
ε̃µ,ν ( ).
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Figure 8. Convergence analysis of the fourth order moment of random variable ε̃µ,ν( ) with respect
to ν: For x2 = x3 = 10−2m, graphs of functions x1 7→ M4

ε ( ) (Fig. a) and x1 7→ M4
ε̃µ,ν ( ) with µ = 5

and for ν = 1 (Fig. b), ν = 2 (Fig. c) and ν = 3, . . . , 8 (Fig. d). Horizontal axis x1, vertical axis
M4

ε ( ) and M4
ε̃µ,ν ( ).

and x1 7→ M4
ε̃µ,ν (x) with µ = 5, q = 6, and for ν = 1, . . . , 8 are plotted in Figure 8. It can be

seen that M4
ε̃µ,ν is a reasonable approximation of M4

ε (x) for ν greater or equal to 3.
Figure 9 is related to the convergence analysis of the probability functions pεµ,ν,q( )(e; x)

with respect to the dimension q of the chaos representation introduced in Eq. (84). It can be
seen that pεµ,ν,q( ) is a reasonable approximation of pε( ) for q greater or equal to 3.

6. Conclusion

A method for solving the stochastic inverse problem with chaos decomposition for experimental
identification of stochastic system parameters is proposed. This method is based on the use
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Figure 9. Convergence analysis of the probability density function of ε̃µ,ν,q with respect to the
dimension q of the chaos representation with µ=5 and ν=3 : The graphs of e 7→pε( )(e; ) (thick solid
line) and the graphs of e 7→ pε̃µ,ν,q( )(e; ) are constructed for q = 1 (dashed thin line), q = 2 (dotted

thin line) and q = 3 (solid thin line).

of chaos decomposition of the stochastic parameters to be identified and of the maximum
likelihood principle. The convergence properties of this stochastic representation are studied
through a numerical example. For the example considered, this method allows the probability
density functions, the mean values, the standard deviation, the third and the fourth order
moments to be identified. The approach presented in this paper can readily, and most
beneficially, be extended to problems of structural dynamics.
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