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Abstract

We consider a functional linear model where the explicative variables
are stochastic processes taking values in a Hilbert space, the main example
is given by Gaussian processes in L2([0, 1]). We propose estimators of the
Sobol indices in this functional linear model. Our estimators are based
on U−statistics. We prove the asymptotic normality and the efficiency
of our estimators and we compare them from a theoretical and practical
point of view with classical estimators of Sobol indices.

Mathematics Subject Classification:
Keywords Karhunen-Loève expansion, fractional Gaussian process, semi-
parametric efficient estimation, sensitivity analysis, quadratic functionals.

Introduction
Many mathematical models encountered in applied sciences involve a large num-
ber of poorly-known parameters as inputs. It is important for the practitioner
to assess the impact of this uncertainty on the model output. An aspect of
this assessment is sensitivity analysis, which aims to identify the most sensitive
parameters, that is, parameters having the largest influence on the output. In
global stochastic sensitivity analysis (see for example [17] and [19] and references
therein) the input variables are assumed to be independent random variables.
Their probability distributions account for the practitioner’s belief about the
input uncertainty. This turns the model output into a random variable, whose
total variance can be split down into different partial variances (this is the so-
called Hoeffding decomposition see [24]). Each of these partial variances mea-
sures the incertitude on the output induced by each input variable uncertainty.
By considering the ratio of each partial variance to the total variance, we obtain
a measure of importance for each input variable that is called the Sobol index
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or sensitivity index of the variable [20]; the most sensitive parameters can then
be identified and ranked as the parameters with the largest Sobol indices.

Once the Sobol indices have been defined, the question of their effective
computation or estimation remains open. In practice, one has to estimate (in
a statistical sense) those indices using a finite sample of evaluations of model
outputs [6]. Many Monte Carlo or quasi Monte Carlo approaches have been
developed by the experimental sciences and engineering communities. This in-
cludes the FAST methods (see for example [3], [23] and references therein) and
the Sobol pick-freeze (SPF) scheme (see [20, 22]). Nevertheless, those methods
require many evaluations of model outputs which can be a strong limitation
when thoses evaluations are expensive. Many approaches have been developped
to overcome this issue. The most popular are Bayesian approach (see for exam-
ple [17]) or the construction of metamodels. As mentioned in Kleijnen [11] (see
equation (1) page 121) one can use functional linear regression as metamodel.
In this paper, we study the particular context of the functional linear regression
and propose a different way of estimation. We consider nonparametric estima-
tors of quadratic functionals by projection methods, which are related to the
procedures developed by Laurent (see [12, 13]) in a density model and by Da
Veiga and Gamboa in [4] in a regression model. This method allows us to es-
timate simultaneously all the Sobol indices with a single sample of reasonable
size.

More precisely we consider a separable Hilbert space H endowed with the
scalar product <,> and X1, . . . , Xp, p independent centered, H-valued, stochas-
tic processes. The model that we consider is a linear regression model :

Y = µ+

p∑
k=1

< βk, Xk > +ε.

where βi, 1 ≤ i ≤ p are elements of H, µ is in R and ε is a centered noise
independent of the processes X1, . . . , Xp.

Our approach is based on the so-called Karhunen-Loève decomposition of
the processes Xk ([16, 1]). Thanks to this decomposition we construct natural
estimators of the Sobol indices for whom we prove asymptotic normality and
efficiency. (Asymptotic efficiency is a natural property which generalizes the
notion of minimum variance unbiased estimator, see [24] chapters 8 and 25 or
[8] for more details.)

This paper is organized as follows: in the first section, we set up the notations
for the model, review the definition of Sobol indices and present our estimators.
In the second section, we prove asymptotic normality and efficiency when we
consider a simple functional linear regression model. These two properties are
generalized in the third section in the general setting of the multiple functional
linear regression. In Section 3, we also compare this method with the classical
SPF. The fourth section gives numerical illustrations on a benchmark model.

1 Setting and notations

Let H be a separable Hilbert space endowed with the scalar product <,> and
let X1, . . . , Xp be p independent centered, H-valued, stochastic processes.
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The generic model that we consider is the following

Y = µ+

p∑
k=1

< βk, Xk > +ε, (1)

where βk, 1 ≤ k ≤ p are elements of H, µ is in R and ε is a centered noise with
variance η2 independent of the processesX1, . . . , Xp, and with finite fourth order
moment.
We define, as usual in a finite dimensional setting, the Sobol index with respect
to the entry (explicative variable) number k :

Sk =
Var(E(Y |Xk))

Var(Y )
.

From the observation of
(
X1
i , . . . , X

p
i , Yi

)
1≤i≤n i.i.d. obeying to Model (1), our

aim is to estimate the vector
(
S1, . . . , Sp

)
. Since Var(Y ) can be easily estimated

by the empirical variance based on (Y1, . . . , Yn), the main purpose of the paper
is to estimate for all k the quantity

V k = Var(E(Y |Xk)).

We will assume that we know the distributions of the input processes
(
Xk
)

1≤k≤p.
In the next section we consider the simple case where p = 1. In this setting the
Sobol index is of less interest, but the computations then easily extend to the
generic model.

2 Simple functional linear regression model

Using the same notations as in Section 1, we consider, in this section, the case
p = 1, which leads to the model

Y = µ+ < β,X > +ε. (2)

We observe a n-sample of (X,Y ), that we denote (Xi, Yi), 1 ≤ i ≤ n.
We have E(Y |X) = µ+ < β,X > and V X = Var (E(Y |X)) = Var(< β,X >).
The Sobol index SX is defined by

SX =
V X

Var(Y )
.

We assume that E
(
‖X‖2

)
< ∞, so that the covariance operator defined for

all f ∈ H by Γ(f) = E [< X, f > X] is Hilbert-Shmidt and is diagonalizable
via the Karhunen-Loève expansion in an orthonormal basis of eigenfunctions
(ϕl, 1 ≤ l), with decreasing eigenvalues (λl, 1 ≤ l) such that

∑∞
l=1 λl < ∞. See

e.g. [14, 15, 10]. We set < X,ϕl >=
√
λlξl. The variables (ξl)l≥1 are centered,

uncorrelated, with variance 1. When X is a Gaussian process, the variables
(ξl)l≥1 are i.i.d. standard Gaussian variables.

Example 2.1 (Examples of Karhunen-Loève expansions ([16, 1])).
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1. Let B = (Bt)t∈[0,1] a Brownian motion and H = L2([0, 1], dt). Then

λl =
1

(π(l − 1
2 ))2

and ϕl(t) =
√

2 sin(
t√
λl

), l ≥ 1.

2. Let W = (Wt)t∈[0,1] a Brownian bridge and H = L2([0, 1], dt).

λl =
1

(πl)2
and ϕl(t) =

√
2 sin(πlt), l ≥ 1.

3. Let X = (Xt)t∈[0,1] a fractional Brownian motion with Hurst exponent H.
Then the asymptotic of the eigenvalues is given by

λl =
sin(πH)Γ(2H + 1)

(lπ)2H+1
+ o

(
l
(2H+2)(4H+3)

4H+5 +δ
)
.

In the case H = 1/2, the Brownian case, the result agrees with the exact
result λl = 1

(π(l−1/2))2 .

In the basis (ϕl)l≥1, β has the expansion β =

∞∑
l=1

γlϕl, and we have :

E(Y X) = E(< X, β > X) = Γ(β) =

∞∑
l=1

λlγlϕl.

Setting g =
∑∞
l=1 λlγlϕl, we have : γl =< g,ϕl > /λl.

The index V X is then given by

V X = Var(E(Y |X)) = E(E(Y |X)2) = E(< β,X >< β,X >) =< β,Γ(β) > .

which expends V X =

∞∑
l=1

λlγ
2
l .

We consider the empirical unbiased estimator of γl :

γ̂l =
1

λl

1

n

n∑
i=1

< Xi, ϕl > Yi.

For all m ∈ N∗, we introduce the U -statistics of order 2 :

V̂ Xm =

m∑
l=1

1

λl

1

n(n− 1)

∑
1≤i 6=j≤n

< Xi, ϕl > Yi < Xj , ϕl > Yj . (3)

We have EV̂ Xm =

m∑
l=1

λlγ
2
l , hence V̂ Xm is a biased estimator of V X , with bias

Bm =

∞∑
l=m+1

λlγ
2
l .

In the following section, we study the asymptotic behaviour of V̂ Xm , for a
suitable choice of the parameter m.
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2.1 Central limit theorem
Using Hoeffding’s decompsition of the U -statistics V̂ Xm (see [7]), we straightfor-
wardly get the following result.

Proposition 1. V̂ Xm can be rewritten as the sum of a totally degenerated U-
statistics of order 2, a centered linear term and a deterministic term in the
following way :

V̂ Xm = UnK + PnL+

m∑
l=1

γ2
l λl (4)

where

UnK :=

m∑
l=1

1

λl

1

n(n− 1)

∑
1≤i6=j≤n

(Yi < Xi, ϕl > −γlλl) (Yj < Xj , ϕl > −γlλl)

PnL :=
2

n

m∑
l=1

n∑
i=1

γl (Yi < Xi, ϕl > −γlλl) .

As a consequence, we have

V̂ Xm − V X = UnK + PnL−
∑
l>m

γ2
l λl = UnK + PnL− Bm.

Theorem 2. Let (Xi, Yi)1≤i≤n be i.i.d. observations with the same distribution
as (X,Y ) from Model (2). We assume that E(‖X‖4) < +∞ and that E(ε4) <
+∞. We consider the Karhunen-Loève expansion of X :

X =
∑
l≥1

√
λlξlϕl.

We assume
sup
l≥1

E(ξ4
l ) < +∞. (5)

We consider the estimator V Xm of VX defined by (3) with m = m(n) =
√
nh(n),

where h(n) satisfies : h(n)→ 0 and ∀α > 0, nαh(n)→ +∞ as n→ +∞.
We assume that there exist C > 0 and δ > 1 such that

∀l ≥ 1, λl ≤ Cl−δ

Then we have
√
n(V̂ Xm − V X)

L→
n→∞

N (0, 4Var(Y < X, β >)). (6)

Comments :

1. We may assume that h(n) = 1/ log(n), and hence m(n) =
√
n/log n, to

fill the condition
∀α > 0, lim

n→∞
nαh(n) = +∞.

The estimator V̂ Xm converges at the parametric rate 1/
√
n, for any β.
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2. The nature of the problem of estimating the quadratic functional V Xm is
completely different from the estimation of the signal β, where nonpara-
metric rates are obtained (see for example [2] for the estimation of β in a
circular functional linear model).

3. We will prove in the next section the asymptotic efficiency of the estimator
V̂ Xm .

4. Note that the condition (5) is verified when X is a Gaussian process, since
in the case, the variables (ξl)l≥1 are i.i.d. standard Gaussian variables.

5. In Theorem 2 we have assumed that there exist C > 0 and δ > 1 such
that

∀l ≥ 1, λl ≤ Cl−δ.
Let us recall that since E

(
‖X‖2

)
< +∞,

∑
l≥1 λl < +∞ hence this

assumption is not very strong.

Proof. In order to prove (6), we will show that
B2
m = o (1/n)

E
(
(UnK)2

)
= o (1/n)

√
nPnL

L→
n→∞

N (0, 4Var(Y < X, β >))
.

a) Bias term

Since we have assumed that ∀l ≥ 1, λl ≤ Cl−δ for some C > 0 and δ > 1, and
since

∑
l≥1 γ

2
l < +∞, we get

Bm =
∑
l>m

γ2
l λl ≤ C

∑
l>m

γ2
l l
−δ ≤ m−δ

∑
l>m

γ2
l .

Recalling the definition of m = m(n), we obtain

B2
m = o

(
1

n

)
.

b) Term UnK

One has E((UnK)2) = E1 + E2 + E3 where

E1 =
2

(n(n− 1))2

m∑
l1,l2=1

1

λl1λl2

∑
1≤i1 6=j1≤n

E
[
(Yi1 < Xi1 , ϕl1 > −λl1γl1)

(Yi1 < Xi1 , ϕl2 > −λl2γl2)(Yj1 < Xj1 , ϕl1 > −λl1γl1)(Yj1 < Xj1 , ϕl2 > −λl2γl2)
]
,

E2 =
4

(n(n− 1))2

m∑
l1,l2=1

1

λl1λl2

∑
i1,j1,j2all 6=

E
[
(Yi1 < Xi1 , ϕl1 > −λl1γl1)

(Yi1 < Xi1 , ϕl2 > −λl2γl2)(Yj1 < Xj1 , ϕl1 > −λl1γl1)(Yj2 < Xj2 , ϕl2 > −λl2γl2)
]
,

E3 =
1

(n(n− 1))2

m∑
l1,l2=1

1

λl1λl2

∑
i1,j1,i2,j2all 6=

E
[
(Yi1 < Xi1 , ϕl1 > −λl1γl1)

(Yi2 < Xi2 , ϕl2 > −λl2γl2)(Yj1 < Xj1 , ϕl1 > −λl1γl1)(Yj2 < Xj2 , ϕl2 > −λl2γl2)
]
.
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One easily see that

E2 = 0 and E3 = 0,

since the variables (Y < X,ϕl > −λlγl) are centered and independent.

Let us now compute E1. Denote Z̄j,k := Yj < Xj , ϕk > −λkγk.

E1 =
2

(n(n− 1))2

m∑
l,k=1

1

λlλk

∑
1≤i 6=j≤n

E
[
Z̄1,lZ̄2,lZ̄1,kZ̄2,k

]
=

2

n(n− 1)

m∑
l,k=1

1

λlλk
E
[
Z̄1,lZ̄2,lZ̄1,kZ̄2,k

]
=

2

n(n− 1)

m∑
l,k=1

1

λlλk
E2
[
Z̄1,lZ̄1,k

]
≤ 2

n(n− 1)

m∑
l,k=1

1

λlλk
E
[
(Y < X,ϕl >)2

]
E
[
(Y < X,ϕk >)2

]
=

2

n(n− 1)

m∑
l,k=1

E
[
Y 2ξ2

l

]
E
[
Y 2ξ2

k

]
≤ 2

n(n− 1)
E
[
Y 4
] m∑
l,k=1

E
[
ξ4
l

]1/2 E [ξ4
k

]1/2
≤ 2

n(n− 1)
E
[
Y 4
]( m∑

l=1

E
[
ξ4
l

]1/2)2

By assumption (5) we know that supk E(ξ4
k) ≤ K, hence we have

E1 ≤ 2Km2

n(n− 1)
E
(
Y 4
)

and we still obtain that E
(
(UnK)2

)
= o

(
1
n

)
.

c) Term PnL

First, let

PnL
′ :=

2

n

n∑
i=1

[
Yi < Xi, β > −E(Y < X, β >)

]
(7)

=
2

n

n∑
i=1

Yi < Xi, β > −
∑
l≥1

γ2
l λl

 (8)

since

E(Y < X, β >) = E(< X, β >2) = E

( ∞∑
l=1

γl
√
λlξl

)2
 =

∞∑
l=1

γ2
l λl,

7



we write

PnL =
2

n

m∑
l=1

n∑
i=1

γl (Yi < Xi, ϕl > −γlλl)

=
2

n

n∑
i=1

(
Yi < Xi, β >m −

m∑
l=1

γ2
l λl

)
= PnL

′ + (PnL− PnL′),

where < Xi, β >m denotes
∑m
l=1 γl < Xi, ϕl >. In the one hand,

PnL
′ − PnL =

2

n

n∑
i=1

Yi [< Xi, β > − < Xi, β >m]− 2
∑
l>m

γ2
l λl

=
2

n

n∑
i=1

∑
l>m

γl [Yi < Xi, ϕl > −γlλl]

Let Z :=
∑
l>m γl [Y < X,ϕl > −γlλl] and let us give an upper bound for

Var(Z).

Var(Z) = Var

(∑
l>m

γl [Y < X,ϕl > −γlλl]

)

= Var

(∑
l>m

γlY < X,ϕl >

)

≤ E

Y 2

(∑
l>m

γl < X,ϕl >

)2


= E
(
Y 2 < X, β >2

m⊥

)
≤ E

(
Y 2||X||2m⊥

)
||β||2m⊥ by Cauchy-Schwarz inequality

≤ E
(
Y 2||X||2

)
||β||2m⊥ ,

where < X, β >m⊥ and |β||m⊥ respectively denote
∑
l>m γl < Xi, ϕl > and∑

l>m γ
2
l . The first expectation does not depend on n and the second term

tends to 0 when n (and therefore m) tends to ∞. As a consequence,
• Var(Z) = o(1),
• Var(PnL− PnL′) = o

(
1
n

)
,

• PnL− PnL′ = oP

(
1√
n

)
.

In the other hand, we establish a central limit theorem for PnL′, since it is an
empirical sum of iid centered variables. As a conclusion,

√
nPnL

′ L→
n→∞

N (0, 4Var(Y < X, β >)) (9)

and by Slutsky theorem since PnL− PnL′ = oP

(
1√
n

)
,

√
nPnL

L→
n→∞

N (0, 4Var(Y < X, β >)). (10)
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This concludes the proof.

Our aim is to estimate the Sobol index SX which is defined by SX = V X/Var(Y ).
It is therefore natural to introduce the estimator of SX defined by V̂ Xm /V̂ , where
V̂ is the empirical variance estimating Var(Y ):

V̂ :=
1

n− 1

n∑
i=1

(Yi − Ȳn)2.

In the following theorem, we obtain the asymptotic behaviour of this estimator.

Theorem 3. Under the same assumptions as in Theorem 2, we have

√
n

(
V̂ Xm

V̂
− SX

)
L→

n→∞
N
(

0,
Var(U)

(Var(Y ))2

)
(11)

where U := 2Y < X, β > −SX(Y − E(Y ))2.

Proof. (i) First, letWi = (2 [Yi < Xi, β > −E(Y < X, β >)] , Y 2
i , Yi)

t (i = 1, . . . , n)
and W = (2 [Y < X, β > −E(Y < X, β >)] , Y 2, Y )t. Then

Wn =
1

n

n∑
i=1

Wi = (PnL
′, Y 2

n, Y n) and EW := E(W ) = (0,E(Y 2),E(Y )).

Now from the Central Limit Theorem,

√
n
(
Wn − EW

) L→
n→∞

N3 (0,Σ)

with

Σ =

 4Var(Y < X, β >) 2Cov(Yi < X, β >, Y 2) 2Cov(Y < X, β >, Y )
2Cov(Y < X, β >, Y 2) Var(Y 2) Cov(Y 2, Y )
2Cov(Y < X, β >, Y ) Cov(Y 2, Y ) Var(Y )


(ii) Then let W ′i = Wi + (UnK + (PnL− PnL′) +

∑m
l=1 γ

2
l λl, 0, 0). We have

W
′
n =

1

n

n∑
i=1

W ′i = (V̂ Xm , Y 2
n, Y n).

Since, UnK+(PnL−PnL′)+
∑
l>m γ

2
l λl = oP

(
1
n

)
, we still have a Central Limit

Theorem √
n
(
W
′
n − EW ′

)
L→

n→∞
N3 (0,Σ)

where EW ′ = (E(Y < X, β >),E(Y 2),E(Y )).
(iii) Let Φ the mapping from R3 to R defined by Φ(x, y, z) = x

y−z2 . We want to
apply the Delta method (cf. [24]) to W ′ and Φ. Easily,

∂Φ
∂x (x, y, z) = 1

y−z2
∂Φ
∂x (EW ′) = 1

Var(Y )
∂Φ
∂y (x, y, z) = − x

(y−z2)2
∂Φ
∂y (EW ′) = −E(Y <X,β>)

(Var(Y ))2

∂Φ
∂z (x, y, z) = 2xz

(y−z2)2
∂Φ
∂x (EW ′) = 2E(Y <X,β>)E(Y )

(Var(Y ))2

9



so that
√
n
(

Φ(W
′
n)− Φ(EW ′)

)
L→

n→∞
N
(
0,Φ′(EW ′)ΣΦ′(EW ′)t

)
.

But Φ(Wn) =
V̂ X
m

V̂
, Φ(EW ′) = SX and

Φ′(EW ′)ΣΦ′(EW ′)t = 4
Var(Y < X, β >)

(Var(Y ))2
+ 2

E(Y < X, β >)

(Var(Y ))3

[
4E(Y )Cov(Y < X, β >, Y )

−2Cov(Y < X, β >, Y 2) + 2(E(Y ))2E(Y < X, β >)
]

+
(E(Y < X, β >))2

(Var(Y ))4

[
Var(Y 2)− 4E(Y )Cov(Y 2, Y )

]
One can check that

Φ′(EW ′)ΣΦ′(EW ′)t =
Var(U)

(Var(Y ))2
.

Remark 2.1. 1. In the case where the variance of Y is known and plug in
the estimator, the result is

√
n

(
V̂ Xm

Var(Y )
− SX

)
L→

n→∞
N (0, 4

Var(Y < X, β >)

(Var(Y ))2
). (12)

2. In the general case where the variance of Y is unknown and Y is centered,
we thus have an extra term (due to the estimation of the variance), namely
the difference between the two asymptotic variances is

Var(U)− 4Var(Y < X, β >)

(Var(Y ))2
=

E(Y < X, β >)

(Var(Y ))4

[
E(Y < X, β >)Var(Y 2)− 4Var(Y )Cov(Y < X, β >, Y 2)

]
It is worth to notice that this term is not always positive. Namely, if
< X, β > is a centered variable with second moment s2 and fourth moment
k1s

4 and if ε is a centered variable with second moment η2 and fourth
moment k2η

4, then the latter extra term is

− 6s4

(s2 + η2)2
+

s4

(s2 + η2)4
((3− k1)(3s4 + 4η2s2)− (3− k2)η4).

In particular, when < X, β >
L∼ N (0, s2) and ε L∼ N (0, η2), k1 = k2 = 3

and one gets an extra term equal to

−6s4(s2 + η2)2

(Var(Y ))4
.

In this particular case, the asymptotic variance of the estimator of the
Sobol index is smaller when the variance of Y is estimated that when it is
known and plug in the estimator.
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2.2 Asymptotic efficiency

In this section we prove that V̂ Xm /V̂ is asymptotically efficient for estimating the
Sobol index SX (see [24], Section 25 for the definition of asymptotic efficiency).
This notion somewhat extends the notion of Cramér-Rao bound and enables to
define a criterion of optimality for estimators, called asymptotic efficiency.

Proposition 2.1 (Asymptotic efficiency). Under the same assumptions as in
Theorem 2, V̂ Xm /V̂ is asymptotically efficient for estimating S.

Proof. Note that

S = Φ(V X ,Var(Y )) and
V̂ Xm

V̂
= Φ(V̂ Xm , V̂ )

where Φ is defined by Φ(x, y) = x/y.
First let us prove that V̂ Xm is asymptotically efficient for estimating V X . The
result directly comes from decomposition (4) and the Hoeffding’s decomposition
V̂ Xm − V X = UnK + PnL− Bm, PnL is asymptotically efficient (example 25.24
[efficiency of the empirical distribution]), the other terms are oP

(
1√
n

)
. From

which we conclude the asymptotic efficiency of V̂ Xm .

Second using again example 25.24, we get the asymptotic efficiency of V̂ for
estimating Var(Y ).
Then theorem 25.50 (efficiency in product space) in [24] gives that (V̂ Xm , V̂ ) is
asymptotically efficient for estimating (V X ,Var(Y )).
Now since Φ is differentiable in R2 \ {y = 0} then by theorem 25.47 (effi-
ciency and Delta method), (Φ(V̂ Xm , V̂ ))n is asymptotically efficient for estimat-
ing Φ(V X ,Var(Y )).

3 Multiple functional linear regression model
We recall the model (1):

Y = µ+

p∑
k=1

< βk, Xk > +ε.

In this setting we observe a n-sample (Yi, X
1
i , . . . , X

p
i ) of (Y,X1, . . . , Xp).

3.1 Estimation by U-statistics of order 2
We assume that the processes

(
Xk
)

1≤k≤p are independent. Under this assump-
tion, the previous section whole applies and the Sobol indices can be estimated
from the U statistics of order 2. For all m ≥ 1, let

V̂ km =

m∑
l=1

1

λkl

1

n(n− 1)

∑
1≤i6=j≤n

< Xk
i , ϕl > Yi < Xk

j , ϕl > Yj .

For a suitable choice ofm = m(n), V̂ km is a consistent estimators of V k. Actually
by independence

E(Y |Xk) =< βk, Xk >,

11



and denoting ε̃ =
∑p
j=1,j 6=k < βj , Xj > +ε, we retrieve the simple regression

model.
In fact we can obtain a central limit theorem for V̂m where

V̂m = (V̂ 1
m, V̂

2
m, . . . , V̂

p
m)T . (13)

Let V j = Var(E(Y |Xj)), j = 1 . . . p and V = (V 1, V 2, . . . , V p)T .

Theorem 4. Let (Yi, X
1
i , . . . , X

p
i ) be i.i.d. observations from Model (1).

We assume that for all 1 ≤ j ≤ p, E(‖Xj‖4) < +∞ and that E(ε4) < +∞. We
consider the Karhunen-Loève expansion of Xj :

Xj =
∑
l≥1

√
λjl ξ

j
l ϕ

j
l .

We assume
∀1 ≤ j ≤ p, sup

l≥1
E((ξjl )

4) < +∞. (14)

We consider the estimator V̂m of V defined by (13) with m = m(n) =
√
nh(n),

where h(n) satisfies : h(n) → 0 as n → +∞ and ∀α > 0, nαh(n) → +∞ as
n→ +∞.
We assume that

∀ 1 ≤ j ≤ p, ∀l ≥ 1, λjl ≤ Cj l
−δj

for some Cj > 0 and δj > 1.
The following result holds :
√
n(V̂m−V )

L→
n→∞

Np
(

0, 4
(
Cov(Y < Xk, βk >, Y < X l, βl >)

)
k,l=1...p

)
. (15)

Proof. Using the same decomposition

V̂m − V = UnK + PnL− Bm

and the fact that ‖UnK‖, ‖PnL−PnL′‖ and ‖Bm‖2 are oP
(

1
n

)
and o

(
1
n

)
, we just

need to check that PnL′ = (PnL
′1, PnL

′2, . . . , PnL
′p)T converges in distribution

towards a Np
(

0, 4
(
Cov(Y < Xk, βk >, Y < X l, βl >)

)
k,l=1...p

)
.

We have

PnL
′ =

2

n

n∑
i=1

Wi

where Wi = (W 1
i , . . . ,W

p
i )T and W k

i = Yi < Xk
i , β

k > −E(Yi < Xk
i , β

k >).
Since the Wi’s are i.i.d., the result follows from the central limit theorem in
Rp.

Now define Ŝm as V̂m/V̂ = (V̂ 1
m/V̂ , . . . , V̂

p
m/V̂ )T , where V̂ ) denotes the empirical

estimator of the Var(Y ). Let us remind that S = V/Var(Y ) = (S1, . . . , Sp)T .
Using once again the Delta method, we easily get the following result.

Proposition 3.1. Under the same assumptions as in Theorem 4, we have

√
n
(
Ŝm − S

)
L→

n→∞
Np

(
0,

(
Cov(Uk, U l)

(Var(Y ))2

)
k,l=1...p

)
. (16)

where Uk := 2(Y − E(Y )) < Xk, βk > −Sk(Y − E(Y ))2.
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3.2 Comparison with Sobol estimators

Sobol [21] proposed an empirical method, based on a particular design of ex-
periments, to estimate Sobol indices. This method called Sobol Pick and Freeze
(SPF) is also studied in [18]. In [9, 5], the authors prove asymptotic normal-
ity and efficiency of Sobol estimators. In this section, our aim is to compare
the method proposed in this paper, which is based on U statistics of order 2,
and the method proposed by Sobol in order to see which experimental set up
should be used by the practitionner. It is important to notice that the two pro-
cedures are not based on the same design of experiments. Both methods lead
to asymptotically normal and efficient estimators, but the asymptotic variances
are different due to the designs of experiments. We therefore want to compare
the asymptotic variances obtained by the two methods, for a similar number of
experiments in both cases. Let us first recall the design of experiments and the
estimators proposed by Sobol.
Let (X,Y ) obey to the model (1), whereX = (X1, . . . , Xp). LetX ′ = (X ′1, . . . , X ′p)
an i.i.d. copy of X. For all k ∈ {1, . . . , p}, let Y k be defined by

Y k =< Xk, βk > +

p∑
j=1,j 6=k

< X ′j , βj > +ε′,

where ε′ is an i.i.d. copy of ε. Let (Y1, . . . , Yn) be i.i.d. copies of Y and for all
k ∈ {1, . . . , p} let (Y k1 , . . . , Y

k
n ) be i.i.d. copies of Y k. The estimator proposed

by Sobol to estimate V k = Var(E(Y |Xk)) is defined by

V̂ kSPF =
1

n

n∑
i=1

YiY
k
i −

(
1

n(p+ 1)

n∑
i=1

[
Yi + Y 1

i + . . .+ Y pi
])2

.

Now let ŜSPF = V̂SPF /Ṽ = (V̂ 1
SPF /Ṽ , . . . , V̂

p
SPF /Ṽ )T , where Ṽ is the estimator

of Var(Y ) in the S.P.F. method defined by

Ṽ =
1

n(p+ 1)

n∑
i=1

(
(Yi)

2
+
(
Y 1
i

)2
+ . . .+ (Y pi )

2
)
−

(
1

n(p+ 1)

n∑
i=1

[
Yi + Y 1

i + . . .+ Y pi
])2

.

Theorem 5. We have (see [9, 5])

√
n
(
ŜSPF − S

)
L→

n→∞
Np

(
0,

(
Cov(V k, V l)

(Var(Y ))2

)
k,l=1...p

)
. (17)

where V k := Y Y k − Sk
[
Y 2 +

∑p
k=1(Y k)2

]
/(p+ 1).

The asymptotic variance appearing in the central limit theorem for the esti-
mator ŜSPF = (Ŝ1

SPF , . . . , Ŝ
p
SPF ) (resp. Ŝm = (Ŝ1

m, . . . , Ŝ
p
m)) is denoted by

(Var(Y ))−2ΓSPF (resp. (Var(Y ))−2Γ (cf. (15)). Our aim is to compare Γ and
ΓSPF .

For sake of simplicity we assume ε = 0. Then we define Wi =< Xi, βi >,
σ2
i = Var(Wi), σ2 =

∑p
i=1 σ

2
i and Si = σ2

i /σ
2. After computations, one obtains

13



that Γ is defined by

∀k, Γ(k, k) =
σ4
k

σ4

p∑
i=1

[
E(W 4

i )− 3σ4
i

]
+ 4

σ2 − σ2
k

σ2
E(W 4

k ) + 4σ2σ2
k + 12

σ6
k

σ2
− 14σ4

k

∀k 6= l, Γ(k, l) = − 2

σ2

[
E(W 4

k )σ2
l + E(W 4

l )σ2
i

]
+ 2σ2

kσ
2
l

[
3
σ2
k + σ2

l

σ2
− 1

]
+
σ2
kσ

2
l

σ4

p∑
i=1

[
E(W 4

i )− 3σ4
i

]

and ΓSPF by

∀k, ΓSPF (k, k) =

(
1− 4

p+ 1

(
σ2
k

σ2

))
E(W 4

k ) +
σ4
k

σ4

(
p2 − 2p+ 5

(p+ 1)2

) p∑
i=1

E(W 4
i )

+

(
σ2
k

(p+ 1)σ2

)(
4 +

σ2
k

σ2

(
−2p2 + 5p− 13

p+ 1

)) p∑
i=1

σ4
i

+σ4 +

(
−p2 − 7p+ 6

(p+ 1)2

)
σ4
k +

4

p+ 1

σ6
k

σ2
− 4

p+ 1
σ2
kσ

2

∀k 6= l, ΓSPF (k, l) = − 2

p+ 1

(
σ2
kE(W 4

l ) + σ2
l E(W 4

k )

σ2

)
+

(
σ2
kσ

2
l

σ4

)(
p2 − 2p+ 5

(p+ 1)2

) p∑
i=1

E(W 4
i )

+

(
2(σ2

k + σ2
l ) +

−2p2 + 5p− 13

(p+ 1)2σ4

) p∑
i=1

σ4
i

+σ4 + σ2
kσ

2
l

(
2p2 − p+ 9

(p+ 1)2

)
− p+ 3

p+ 1
σ2(σ2

k + σ2
l )

+
2

p+ 1

σ2
kσ

2
l

σ2
(σ2
k + σ2

l ).

Sobol experiment requires (p+ 1)n observations (or computations of the black-
box code) to estimate the p indices. In order to have a fair comparison of both
methods, we consider that we have n(p+1) i.i.d. observations from Model (1) to
estimate the Sobol indices by our methods. With n(p+ 1) observations instead
of n, the asymptotic variance matrix Γm is devided by p+ 1, hence, we have to
study the matrix

D := (p+ 1)ΓSPF − Γ.

In order to compare the two methods, we evaluate the eigenvalues of the matrix
D in order to determine whether it is positive-definite or not. If not we study
only the sign of the diagonal terms of D that correspond to the difference of the
asymptotic variances obtained with both methods.

First example: We asssume that for i = 1, . . . , p with p ≥ 2

< Xi, βi >∼ N (0, 1).
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We have

Di,i =
p5 + 2p4 − 5p3 − 2p2 + 6p− 6

p(p+ 1)
> 0 ∀ 1 ≤ i ≤ p,

Di,j =
p5 + 4p4 + 3p3 + 2p− 6

p(p+ 1)
∀ 1 ≤ i 6= j ≤ p.

Let α = p5 + 2p4 − 5p3 − 2p2 + 6p − 6, β = p5 + 4p4 + 3p3 + 2p − 6. The
eigenvalues of D are [α−β]/[p(p+1)] of order p−1 and [α+(p−1)β]/[p(p+1)]
of order 1. But

α− β = 2p(−p3 − 4p2 − p+ 2) < 0 ∀p ≥ 2,

and
α− β + pβ = p(p5 + 4p4 + p3 − 8p2 − 2) > 0 ∀p ≥ 2.

For p ≥ 2, the matrix D is not positive nor negative. Hence, as mentioned
before, we simply study the sign of the diagonal terms of the matrix D. Since
Di,i > 0 for any p ≥ 2 and i = 1 . . . p, the asymptotic variance of each estimator
of Sobol indices with SPF method is larger than the one obtained by the method
proposed in this paper using the same number of observations.

Second example : In the case p = 2 and σ2 = σ2
1 + σ2

2 = 1, the model is

Y =< X1, β1 > + < X2, β2 > .

Then if W1 =< X1, β1 > and W2 =< X2, β2 >,

D1,1 = E(W 4
1 )

(
−1 +

2

3
σ4

1

)
+

2

3
σ4

1E(W 4
2 ) + 3− 8σ6

1 + 10σ4
1 − 8σ2

1 + σ2
1(σ4

1 + σ4
2)

(
4− 2

3
σ2

1

)
D2,2 = E(W 4

2 )

(
−1 +

2

3
σ4

2

)
+

2

3
σ4

2E(W 4
1 ) + 3− 8σ6

2 + 10σ4
2 − 8σ2

2 + σ2
2(σ4

1 + σ4
2)

(
4− 2

3
σ2

2

)
D2,1 = σ2

1σ
2
2

(
2

3
(E(W 4

1 ) + E(W 4
2 )) + 3

)
+
(
σ4

1 + σ4
2

)(7

3
+ 3σ2

1σ
2
2

)
− 2

In the particular case where W1 ∼ N (0, x) and W2 ∼ N (0, 1 − x), for some
x ∈]0, 1[, we obtain

D1,1(x) = 3− 4x+
1

3

(
x2 − 8x3 + 8x4

)
,

D2,2(x) = 3− 4(1− x) +
1

3

(
(1− x)2 − 8(1− x)3 + 8(1− x)4

)
,

D1,2(x) =
1

3
+

10

3
x− 40

3
x2 + 20x3 − 10x4.

Let λ1(x) and λ2(x) be the eigenvalues of D(x) and x1 and 1−x1 the real zeros
of its determinant (x1 ≈ 0.6701). Then

x 0 1− x1 x1 1
λ1(x) + λ2(x) + | + | +
λ1(x)λ2(x) - 0 + 0 -
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For x ∈]x1, x2[, the matrix D(x) is positive-definite. We can also study the signs
of the diagonal terms of the matrix D(x) for x ∈]0, 1[.

Now let x0 the zero of D1,1(x) (x0 ≈ 0.6738). The folowing tabular gives the
signs of the diagonal terms of the matrix D(x) :

x 0 1− x0 x0 1
D1,1(x) + | + 0 -
D2,2(x) - 0 + | +

We deduce from this tabular that for x ∈]1−x0, x0[, our method leads to smaller
variances for both estimators.

4 Numerical experiments
We perform a simulation study to evaluate the performances of the procedure
proposed in this paper for estimating Sobol indices in a functional linear model,
and to compare this procedure with Sobol’s procedure.
We consider the model :

Yi =

p∑
k=1

< βk, Xk
i > +εi, (18)

where for all k = 1, . . . , p, Xk and βk are defined from the coefficients of their
expansions onto an orthonormal basis of L2([0, 1]). For all k, we consider the
basis corresponding to the eigenfunctions of the Karhunen-Loève expansion of
the process Xk and we define the function βk by the coefficients of its expansion
onto this basis. For the simulations, the basis that we consider is either the
one associated to the Karhunen-Loève expansion of the Brownian motion (that
has been recalled in Section 2) or the one associated to the fractional Brownian
motion. It is important to recall that the processes Xk and the related functions
βk are expanded onto the same basis and that the estimators proposed in this
paper will perform well in the case where the coefficients of the functions βk
in those basis are non-increasing. The variables εi are i.i.d. Gaussian centered
variables with variance σ2.

4.1 First example
4.1.1 Using Karhunen-Loève expansion of the Brownian motion

We consider the model (18) with p = 2 and εi = 0 for all i. The processes X1

and X2 are given by a truncated expansion of the Brownian motion onto its
Karhunen-Loève basis, with coefficients:

λl =
1

π(l − 1/2)2
, 1 ≤ l ≤ L;

λl = 0, l > L.

Concerning the functions β1, β2, they are respectively caracterized by the coef-
ficients (γl)l≥1 of their expansion onto the same basis:
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1. First Model: let (γ1
l )l and (γ2

l )l be defined as

γ1
l = l−1/2−1/100, 1 ≤ l ≤ L, γ1

l = 0, l > L;
γ2
l = l−1, 1 ≤ l ≤ L, γ2

l = 0, l > L.

2. Second Model: we suppress the two first coefficients of γ defined as in the
first model.
Let (γ′1l )l and (γ′2l )l be defined by γ′′1l = γ1

l+2 and γ′′2l = γ2
l+2.

3. Third Model: we replace the fourth first coefficients of γ defined as in the
first model by 0.
Let (γ′′1l )l and (γ′′2l )l be defined by γ′′1i = γ′′2i = 0 for i = 1, . . . 4 and for
l ≥ 5 by γ′′1l = γ1

l and γ′′2l = γ2
l .

We denote by S = (S1, S2) the vector of Sobol indices. We performNsim = 5000
simulations, we set L = 100 and we study the influence of the parameter n with
n = 102 or 103. We compare the estimator Ŝm of the vector S defined in Section
3.1 with the SPF estimator defined in Section 3.2. Both estimators are based
on 3n observations. The observations are i.i.d. for the estimator Ŝm and obey
to the design described in Section 3.2 for ŜSPF . We set m = b

√
3n/ log 3nc (i.e.

m = 7 or 19) in the definition of the estimator Ŝm.

In the following tabulars we report an empirical estimator of the bias (Bias(Ŝm)
and Bias(ŜSPF )), of the standard deviation (Std(Ŝm) and Std(ŜSPF )) and of
the square root of the Mean Squared Error (RMSE(Ŝm) and RMSE(ŜSPF ))
for each estimator.

First Model: S = [0.5107, 0.4893]

n Bias(Ŝm) Bias(ŜSPF ) Std(Ŝm) Std(ŜSPF )
102 10−3[3.65, 3.98] 10−3[5.42, 6.34] 10−2[7.16, 7.20] 10−2[8.94, 9.12]
103 10−4[6.80, 0.55] 10−4[5.38, 3.79] 10−2[2.26, 2.20] 10−2[2.79, 2.83]

Second Model: S = [0.7535, 0.2465]

n Bias(Ŝm) Bias(ŜSPF ) Std(Ŝm) Std(ŜSPF )
102 10−3[7.27, 0.37] 10−3[6.07, 3.61] 10−2[8.04, 5.45] 10−2[7.78, 9.90]
103 10−4[7.76, 7.04] 10−4[7.58, 3.52] 10−2[2.52, 1.71] 10−2[2.42, 3.13]

Third Model: S = [0.8655, 0.1345]

n Bias(Ŝm) Bias(ŜSPF ) Std(Ŝm) Std(ŜSPF )
102 10−1[2.91, 0.29] 10−3[2.44, 7.73] 10−2[7.56, 3.89] 10−2[7.11, 9.94]
103 10−2[3.93, 0.17] 10−4[5.71, 6.25] 10−2[2.52, 1.27] 10−2[2.24, 3.17]

First Model: S = [0.5107, 0.4893]

n RMSE(Ŝm) RMSE(ŜSPF )
102 10−2[7.17, 7.21] 10−2[8.95, 9.14]
103 10−2[2.26, 2.20] 10−2[2.79, 2.83]

Second Model: S = [0.7535, 0.2465]

n RMSE(Ŝm) RMSE(ŜSPF )
102 10−2[8.07, 5.45] 10−2[7.80, 9.90]
103 10−2[2.52, 1.71] 10−2[2.41, 3.13]

Third Model: S = [0.8655, 0.1345]

n RMSE(Ŝm) RMSE(ŜSPF )
102 10−1[3.01, 0.48] 10−2[7.12, 9.97]
103 10−2[4.67, 1.28] 10−2[2.24, 3.17]

Those simulations show that as expected the method of the paper provides
better MSE as soon as the signal is concentrated on the first terms of the basis
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which is considered. If it is not the case as in the third model, the SPF can be
more efficient. Models 2 and 3 are unfavorable to our estimator, but it is worth
to notice that in many cases, considering the linear functional regression model,
when a signal has weak components on the first elements of the karhunen-Loève
basis it tends to make the influence on the model (Sobol index) smaller.

4.1.2 Using Karhunen-Loève expansion of the fractional Brownian
motion

We consider the model (18) with p = 2 and εi = 0 for all i. The processes X1

and X2 are defined by the coefficients of their expansion onto the Karhunen-
Loève basis of the fractional Brownian motion (we use an approximation of the
eigenvalues) :

λl =
sin(πH)Γ(2H + 1)

(lπ)2H+1
, 1 ≤ l ≤ L;

λl = 0, l > L.

Note that no close form of the Karhunen-Loève basis of the fractional Brow-
nian motion is known but we don’t need it for the simulations, we simply use
the fact that 〈Xi, ϕl〉 =

√
λlξ

i
l , where the variables (ξil )l≥1, i = 1, 2 are i.i.d.

standard normal variables.
Concerning the functions β1, β2, they are respectively caracterized by the coef-
ficients of their expansion onto the same basis:

1. First Model: let (γ1
l )l and (γ2

l )l be defined as

γ1
l = l−1/2−1/100, 1 ≤ l ≤ L, γ1

l = 0, l > L;
γ2
l = l−1, 1 ≤ l ≤ L, γ2

l = 0, l > L.

2. Second Model: we suppress the two first coefficients of γ defined as in the
first model.
Let (γ′1l )l and (γ′2l )l be defined by γ′′1l = γ1

l+2 and γ′′2l = γ2
l+2.

We perform Nsim = 5000 simulations, L = 100 and study the influence of
the parameter n. We set H = 1/8, m = b

√
3n/ log(3n)c in the definition of Ŝm

and denote by S = (S1, S2) the vector of Sobol indices.

In the following tabulars we report the simulation results.

First Model: S = [0.5551, 0.4448]

n Bias(Ŝm) Bias(ŜSPF ) Std(Ŝm) Std(ŜSPF )
102 10−2[2.55, 0.39] 10−3[5.55, 6.94] 10−2[7.28, 6.91] 10−2[8.79, 9.32]
103 10−3[5.78, 0.15] 10−4[8.22, 2.65] 10−2[2.30, 2.16] 10−2[2.74, 2.91]

Second Model: S = [0.7873, 0.2127]

n Bias(Ŝm) Bias(ŜSPF ) Std(Ŝm) Std(ŜSPF )
102 10−2[6.84, 0.56] 10−3[3.15, 5.15] 10−2[7.89, 5.04] 10−2[7.54, 9.87]
103 10−2[2.06, 0.07] 10−4[3.59, 4.08] 10−2[2.50, 1.60] 10−2[2.37, 3.13]

18



First Model: S = [0.5551, 0.4448]

n RMSE(Ŝm) RMSE(ŜSPF )
102 10−2[7.71, 6.92] 10−2[8.81, 9.35]
103 10−2[2.37, 2.16] 10−2[2.74, 2.92]

Second Model: S = [0.7873, 0.2127]

n RMSE(Ŝm) RMSE(ŜSPF )
102 10−1[1.04, 5.07] 10−2[7.54, 9.89]
103 10−2[3.23, 1.60] 10−2[2.37, 3.13]

The same conclusion holds: if the signal is not concentrated on the first terms of
the basis which is considered, then the SPF can be more efficient. When this is
not the case, our estimator has better performances than the SPF for a similar
number of observations.

4.2 Second example

4.2.1 Using Karhunen-Loève expansion of the Brownian motion

We consider the model (18) with p = 4 and εi = 0 for all i. The processes Xk
i

for 1 ≤ k ≤ p and 1 ≤ i ≤ n are i.i.d. and defined as X1 and X2 in Section
4.1.1.

1. First Model: concerning the functions βk for k = 1, . . . , 4, they are re-
spectively caracterized by their coefficients (γkl )l’s k = 1, . . . , 4 of their
expansion onto the same basis:

γ1
l = (l + 1)−1/2−1/100, 1 ≤ l ≤ L, γ1

l = 0, l > L;
γ2
l = (l + 1)−1, 1 ≤ l ≤ L, γ2

l = 0, l > L;
γ3
l = (l + 1)−2, 1 ≤ l ≤ L, γ3

l = 0, l > L;
γ4
l = (l + 1)−3/2, 1 ≤ l ≤ L, γ4

l = 0, l > L.

2. Second Model: we replace the first coefficient of γ defined as in the first
model by 0.
Let for k = 1, . . . , 4, (γ′kl )l be defined by γ′k1 = 0 and for l ≥ 2 by γ′kl = γkl .

3. Third Model: we suppress the two first coefficients of γ defined as in the
first model.
Let for k = 1, . . . , 4, (γ′′kl )l be defined by γ′′kl = γkl+2.

We perform Nsim = 5000 simulations, L = 100 and we study the influence of
the parameter n, where 5n observations are used for both methods. We set
m = b

√
5n/ log(5n)c in the definition of Ŝm and denote by S = (S1, S2, S3, S4)

the vector of Sobol indices.

In the following tabulars we report the simulation results. We see here that
the method based on U -statistics always leads to better results than the SPF
method. This is due to the fact that the SPF method needs 5n simulations
to estimate the four Sobol indices. With the same number of simulations, the
method proposed in the paper performs better, even in the second and third
model. Let us recall that a drawback of the method proposed in this paper is
that the distribution of the input processes X1, . . . , Xp is assumed to be known
which is not necessary for the method SPF.

19



First Model: S = [0.5438, 0.2639, 0.0635, 0.1288]

n Bias(Ŝm) Bias(ŜSPF )
102 10−3[3.39, 1.30, 0.56, 0.08] 10−3[5.32, 5.41, 8.87, 4.70]
103 10−4[7.66, 3.60, 0.33, 2.07] 10−4[3.84, 0.59, 0.35, 5.65]

Second Model: S = [0.7561, 0.1871, 0.0112, 0.0456]

n Bias(Ŝm) Bias(ŜSPF )
102 10−3[5.72, 0.81, 0.17, 0.18] 10−3[1.01, 5.64, 5.68, 05.44]
103 10−4[6.27, 1.05, 0.08, 0.61] 10−4[5.38, 2.92, 7.14, 7.56]

First Model: S = [0.5438, 0.2639, 0.0635, 0.1288]

n Std(Ŝm) Std(ŜSPF )
102 10−2[5.54, 4.28, 2.35, 3.23] 10−2[9.91, 9.79, 9.71, 9.62]
103 10−2[1.82, 1.36, 0.72, 0.99] 10−2[3.13, 3.12, 3.11, 3.06]

Second Model: S = [0.7561, 0.1871, 0.0112, 0.0456]

n Std(Ŝm) Std(ŜSPF )
102 10−2[6.11, 3.72, 1.22, 2.01] 10−1[1.07, 1.00, 1.01, 0.99]
103 10−2[1.97, 1.17, 0.33, 0.60] 10−2[3.36, 3.16, 3.14, 3.13]

First Model: S = [0.5438, 0.2639, 0.0635, 0.1288]

n RMSE(Ŝm) RMSE(ŜSPF )
102 10−2[5.55, 4.29, 2.35, 3.22] 10−2[9.92, 9.80, 9.75, 9.63]
103 10−2[1.82, 1.36, .72, 0.99] 10−2[3.13, 3.12, 3.11, 3.06]

Second Model: S = [0.7561, 0.1871, 0.0112, 0.0456]

n RMSE(Ŝm) RMSE(ŜSPF )
102 10−2[6.14, 3.72, 1.22, 2.01] 10−1[1.07, 1.00, 1.01, 0.99]
103 10−2[1.97, 1.17, 0.33, 0.60] 10−2[3.36, 3.16, 3.14, 3.13]

5 Conclusion

We have proposed an estimator of the sobol indices in a simple functional re-
gression model. When the entries of the model are independent our estimator
is asymptotically efficient. This is also the case of the so-called SPF estimator.
As the designs underlying the two estimators are not the same, we numerically
compared the two estimators in the same conditions, that is with the same num-
ber of calls to the model. The results are strongly dependent on the behavior
of the regressors. When the regressors are well represented onto the Karhune-
Loève basis associated to the entries then our estimator behave well and takes
advantage of the information given by the knowledge of the entries, it performs
better than the SPF. A contrario, if the regressors have small coefficients on the
first elements of the Karhunen-Loève basis, the SPF is more precise than our
estimator, since the knowledge of the entries is of less use.

These conclusions are brought in the case of a model with independent en-
tries. One possible advantage of our estimator is that we can generalize it to
the case of dependent entries, which is not the case of the SPF which deeply
relies on the independence of the entries. This will be the topic of a forthcoming
research paper.
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