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Abstract

Recent studies on general equilibrium models with transaction costs show that the
dynamics of the real exchange rate are necessarily nonlinear. Our contribution to the
literature on nonlinear price adjustment mechanisms is threefold. First, we model the
real exchange rate by a Multi-Regime Logistic Smooth Transition AutoRegression (MR-
LSTAR), allowing for both ESTAR-type and SETAR-type dynamics. This choice is
motivated by the fact that even the theoretical models, which predict a smooth behavior
for the real exchange rate, do not rule out the possibility of a discontinuous adjustment
as a limit case. Second, we propose two classes of unit-root tests against this MR-
LSTAR alternative, based respectively on the likelihood and on an auxiliary model.
Their asymptotic distributions are derived analytically. Third, when applied to 28
bilateral real exchange rates, our tests reject the null hypothesis of a unit root for
eleven series bringing evidence in favor of the purchasing power parity.
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1 Introduction

The issue of whether the long-run purchasing power parity (PPP) relationship holds is

still largely unsettled1. The most widespread test for the long-run PPP consists in testing

for a unit root in the real exchange rate within a linear framework. So far, the conclusions

emerging from this approach are mixed2. Over the last decade, empirical and theoretical

analysis of the real exchange rate have shifted toward a nonlinear framework.

From a theoretical point of view, introducing shipping costs into two-country general

equilibrium models (e.g. Dumas [1992], Uppal [1993], Sercu, Uppal and Van Hulle [1995] or

Berka [2004]) generates two regimes for the real exchange rate process. The “outer” regime

corresponds to PPP departures, which are greater than the shipping costs in absolute

value. In this regime, shipping takes place to exploit the profit opportunities and the PPP

deviations are corrected by international trade. The “inner” regime is associated with

PPP differentials that are smaller than the transaction costs in absolute value. In this

regime, no shipping takes place and PPP deviations are not corrected for, and hence may

persist for quite some time. As pointed out by Taylor [2001], this theoretical outcome

could explain the failure of standard unit root tests to reject the null hypothesis. He

shows that the power of the Augmented Dickey-Fuller (ADF) test falls dramatically when

the fraction of observations lying in the “inner” regime increases, even if the process is

globally stationary.

From an empirical point of view, the nonlinear dynamics predicted by the theoretical

models with transaction costs have been accounted for by threshold models. More pre-

cisely, two kinds of threshold models have been, concurrently but independently, explored

to this end. The first one, namely the Self-Exciting Threshold Autoregressive (SETAR)

model, retains a discontinuous transition function between regimes (see e.g. Obstfeld and

Taylor [1997]). The second one is the Smooth Transition Autoregressions (STAR), which,

contrary to the SETAR, allow for smooth regime changes. So far, the Exponential Smooth

Transition Autoregression (ESTAR) has been retained to capture this kind of smooth ad-

justment (see e.g. Michael, Nobay and Peel [1997], Baum, Barkoulas and Caglayan [2001],

Taylor, Peel and Sarno [2001], O’Connell and Wei [2002] and Kilian and Taylor [2003]).

In order to test for long-run PPP, Enders and Granger [1998], Lo and Zivot [2001] and

Bec, Ben Salem and Carrasco [2004] among others have proposed unit root tests, which

are specifically devised to have power against a stationary SETAR alternative. Similarly,
1See Rogoff [1996] for a survey.
2See for instance the recent empirical studies by Papell [1997], Lothian and Taylor [2000], Murray and

Papell [2002a] or Murray and Papell [2002b].
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Kapetanios, Shin and Snell [2003] have developed tests to test unit-root against a station-

ary ESTAR alternative. All these tests were found to be more powerful than the ADF

test. Two recent papers are closely related to the present paper. Bec, Guay and Guerre

[2008] propose a new sup Wald test with the specific feature that the set of thresholds

is selected differently under the null and the alternative. This adaptive selection aims to

improve the power of the test. Park and Shintani [2005] derive the asymptotic distribution

of a inf-t test for various alternatives including TAR and LSTAR models, however they

limit their attention to testing a simple null hypothesis and their results do not directly

apply to our setting.

Our analysis departs from existing work in three dimensions. First, it relies on a gen-

eral model, the Multi-Regime Logistic Smooth Transition AutoRegression (MR-LSTAR),

allowing for both ESTAR-type and SETAR-type dynamics. Indeed, even though the ES-

TAR model is often considered as the smooth transition analogue of the SETAR model,

the former does not nest the latter. Yet, as will be stressed in the next section, nei-

ther the discontinuous nor the continuous adjustment cases can be ruled out a priori on

theoretical grounds. Second, we develop two classes of unit-root tests against this MR-

LSTAR alternative, based respectively on the likelihood and on an auxiliary model. The

asymptotic distribution of each test is derived analytically and is shown to be nuisance

parameter free. A Monte Carlo experiment reveals that contrary to the ADF test, the

power of our tests remains high for large values of the threshold parameter. Third, we

apply our tests on monthly data from 8 countries leading to 28-real exchange rates for

the post-Bretton Woods period. The null of a unit root is rejected for eleven pairs of

currencies, while the ADF test rejects only for one series. The half-lives we obtain are

much smaller for large shocks than for small shocks, which supports the theory of PPP

in the presence of transaction costs. Another interesting result is that the shapes of the

estimated transition functions are only slightly smoother than the discontinuous transition

function characterizing the SETAR model.

The paper is organized as follows. In Section 2 we discuss the real exchange rate

nonlinear dynamics implied by existing theoretical models. This motivates the choice of

our MR-LSTAR model, which is then presented and compared to the ESTAR. Section

3 describes the unit root tests and their asymptotic distributions before reporting their

small sample properties. The data and the empirical results are presented in Section 4.

Section 5 concludes.
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2 The Nonlinear Continuous Adjustment Specification

2.1 Theoretical backgrounds

Recent general equilibrium models with proportional transport costs — see e.g. Sercu

et al. [1995], Bec et al. [2004], Dumas [1992], Uppal [1993] and Berka [2004] — outline

multi-regime dynamics for the real exchange rate process. Assuming a symmetrical two-

country setup, these models predict the existence of a no-trade region within which the

real exchange rate adjustment toward the PPP equilibrium, if any, is expected to be slow.

Let yt denote the logarithm of the real exchange rate (the price of a unit of domestic

goods in units of foreign goods). The region of no trade, called the inner regime, is

defined by yt ∈ (−λ;λ) where λ ∈ (0, 1) is the proportional shipping cost. Outside this

region, international arbitrage forces the real exchange rate back toward the band. In these

models, the real exchange rate is a nonlinear monotone function of the physical imbalance,

ω, as measured by the difference in endowments between home and abroad. Therefore, the

behavior of ω determines the dynamics of yt. When ω is exogenous, as in Sercu et al. [1995]

and Bec et al. [2004], the implied dynamics of the real exchange rate can be represented by

a discontinuous adjustment threshold model, namely the SETAR model. However, these

very simple models may be viewed as a crude version of the more sophisticated setups

proposed by Dumas [1992] or Berka [2004]. More particularly, Dumas’ model features

country-specific productivity shocks and the dynamics of ω are endogenously determined

through the capital accumulation process.

Replicating Figure 5 of Dumas [1992], Figure 1, below, shows the conditional expected

change of the real exchange rate as a function of its lagged value in the inner regime.

From Figure 1, we see that the real exchange rate process is mean reverting, i.e. its

conditional expected change is negative (positive) for positive (negative) values, and the

mean reversion is strongest when the deviation from parity is largest3. Hence, from an

empirical point of view, these features point to a smooth transition autoregression. The

question is which STAR model to choose. As stressed by Dumas [1992], the shape of

the conditional expected change function depends crucially on the relative risk aversion

(RRA) parameter. The dotted line in Figure 1 represents the conditional expected change

associated with a low degree of risk aversion. As one approaches risk neutrality, the

function stays longer on the zero axis. Indeed, the lower the risk aversion, the less sensitive
3Even though the process for ω is exogenous in Berka [2004], the same kind of dynamics for the real

exchange rate are obtained. This results from the multi-sector assumption, each type of good involving a
different loss-shipping factor. Aggregation over the different goods then provides a smooth adjustment of
the real exchange rate.
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Figure 1: Conditional expected change of the real exchange rate in the inner regime

the agents are to the ex ante benefits of diversification achieved by shipping. Consequently,

a low degree of risk aversion makes rebalancing of physical capital less desirable, which

in turn implies a slower mean reversion of the real exchange rate. In the limit case

of risk neutrality, the conditional expected change function lies on the zero axis, which

corresponds to a SETAR-type discontinuous adjustment. Note that the possibility of risk

neutrality cannot be ruled out according to the findings of, e.g., Hansen and Singleton

[1982], Hansen and Singleton [1984], and Epstein and Zin [1991].

2.2 Comparison between ESTAR and MR-LSTAR models

According to the discussion above, it seems highly desirable to empirically analyze the

nonlinear dynamics of the real exchange rate in a framework which encompasses both

discontinuous and continuous types of adjustments. As will be stressed below, the most

popular model, namely the Exponential STAR model, cannot account for the discontinuous

case. In this subsection, we compare the ESTAR and MR-LSTAR models in the simplest

setup, one that includes only one autoregressive lag.

Consider first the ESTAR model given by:

yt = φ1yt−1G + φ2yt−1(1−G) + εt, (1)



5

where the transition function G is given by:

G = G(yt−1, γ, κ) = 1− exp(−γ(yt−1 − κ)2). (2)

The positive parameter γ governs the speed of transition between regimes and is called

the speed parameter. Note that when yt−1 goes to ±∞, G goes to one so that the ESTAR

model becomes:

yt = φ1yt−1 + εt, (3)

the parameter φ1, hence, characterizing the “outer” regime dynamics. When yt−1 = κ,

then G = 0 and the ESTAR model dynamics are now governed by φ2:

yt = φ2yt−1 + εt.

Hence, the weight of the “outer” regime parameter, φ1, decreases as yt−1 approaches κ.

Finally, the dynamics generated by the transition function, (2), are symmetrical around

κ.

An undesirable feature of model (1) is that it collapses to the linear process given in

(3) when the speed parameter, γ, goes to infinity. This should correspond to a sudden

shift between regimes. To overcome this issue, a natural candidate is the MR-LSTAR

model mentioned in van Dijk, Terasvirta and Franses [2002]:

yt = φ1yt−1G1 + φ2yt−1G2 + φ3yt−1G3 + εt, (4)

where the transition functions are now defined by:

G1 = [1 + exp(γ(yt−1 + λ)]−1 ,

G2 = 1−G1 −G3,

G3 = [1 + exp(−γ(yt−1 − λ)]−1 ,

and λ is the threshold parameter. Note that when yt−1 goes to −∞, G1 goes to unity

while G3 goes to zero, so that the MR-LSTAR dynamics are governed by φ1. On the

other hand, when yt−1 goes to +∞, G1 goes to zero whereas G3 goes to one, so that the

MR-LSTAR dynamics are governed by φ3. One reason which motivates the choice of this

MR-LSTAR model is that it becomes a SETAR model as the speed parameter, γ, goes to

∞. In this case, note that G1 → I (yt−1 < −λ) and G3 → I (yt−1 > λ) . Hence, when γ

goes to ∞, Model (4) rewrites as the following 3-regime SETAR:

yt = φ1yt−1I (yt−1 < −λ) + φ2yt−1I (−λ ≤ yt−1 ≤ λ) + φ3yt−1I (yt−1 > λ) + εt.
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In order to compare this MR-LSTAR model with the ESTAR above, suppose that φ1 = φ3,

i.e., the dynamics are assumed to be symmetrical in the ‘lower’ and ‘upper’ regimes, which

is a maintained assumption in the ESTAR model (1). Consequently, the MR-LSTAR

dynamics will be symmetrical around zero, which would correspond to κ = 0 in model (1).

Model (4) then becomes:

yt = φ1yt−1Γ + φ2yt−1(1− Γ) + εt, (5)

where Γ = G1 + G3. Hence, Models (5) and (1) are quite similar to each other, except for

the definition of the transition function, which is logistic in the former and exponential

in the latter. To illustrate the properties of the transition functions Γ and G of models

(5) and (1), we consider a sequence of yt−1 ∈ [−0.4; +0.4], a threshold parameter λ = 0.2

and various values of the speed parameter, γ, ranging from 0.1 to 7500.4 The ESTAR

and MR-LSTAR functions associated with the ‘inner’ regime, namely (1−G) and (1−Γ),

respectively, are reported in Figure 2. As the speed parameter approaches zero, both

Figure 2: MR-LSTAR and ESTAR transition functions

functions tend to become flat, as shown at the top left panel of this figure. For medium

values, such as γ = 30, these functions are quite similar and, hence, similarly mimic the

smooth transition adjustment. However, the shapes of (1−G) and (1−Γ) become different
4The values for yt−1 and λ are chosen according to the model estimates for the Italian Lira real exchange

rate vis-à-vis the US Dollar.
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as γ increases. The LSTAR function tends to become discontinuous, defining a central

area for yt−1 ∈ (−λ,+λ) exactly as a 3-regime SETAR model would do. On the contrary,

the inner regime in the ESTAR model tends to shrink to a single point.

We now discuss how these properties translate in terms of conditional expected change

functions. As the functions (1 − G) and (1 − Γ) behave very similarly to each other

for small and medium values of γ, the conditional expected change functions will also

be very close to each other for ESTAR and LSTAR models. However their shapes will

differ dramatically for large values of γ. Figure 3 reports the conditional expected change

function obtained from the symmetrical ESTAR and MR-LSTAR models for the following

parameters values: φ1 = 0.7, φ2 = 1, κ = 0, λ = 0.2 and γ = 250. Figure 3 shows that the

Figure 3: Simulated conditional expected change functions

MR-LSTAR model has the advantage of mimicking the behavior of the real exchange rate

predicted by Dumas’ model when the level of relative risk aversion is low. On the other

hand, the ESTAR is not able to capture these dynamics under any parametrization.

2.3 The proposed MR-LSTAR model

The general MR-LSTAR model we will study in the remainder of the paper writes:

∆yt = (−µ1 + ρ1yt−1) G1 + (µ2 + ρ2yt−1) G2 + (µ1 + ρ1yt−1) G3 (6)

+a1∆yt−1 + ... + ap−1∆yt−p+1 + εt,
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with εt ∼ iid
(
0, σ2

)
, G1 = G (yt−1,−γ,−λ), G2 = 1 − G1 − G3, and G3 = G (yt−1, γ, λ)

where

G (yt−1, γ, λ) = [1 + exp (−γ (yt−1 − λ))]−1 , γ > 0, λ > 0. (7)

This symmetrical MR-LSTAR model generalizes model (5) by including lagged values of

∆yt to remove some of the autocorrelations in εt, and by allowing for drifts in the outer and

inner regimes, denoted µ1 and µ2, respectively. Following the theoretical models discussed

above, we maintain the assumption that the autoregressive coefficients are the same in the

two outer regimes and we assume that µ3 = −µ1, as in e.g. Obstfeld and Taylor [1997].

As the focus of the paper is on testing unit root versus a stationary LSTAR alternative,

we need to determine under which conditions the MR-LSTAR process is stationary and

“well behaved”. We briefly discuss sufficient conditions for yt, defined in (6), to be β −
mixing with geometric decay. This property implies that (a) the stationary distribution

of yt exists, (b) starting from an arbitrary value y0 the process yt becomes stationary

exponentially fast, and (c) yt is α − mixing with geometric decay which is a desirable

property to do inference.

Bec et al. [2004] study the mixing properties of a SETAR(p). We give here an intuitive

argument that shows that the mixing properties of SETAR and MR-LSTAR are essentially

the same. The mixing property (see e.g. Tjøstheim [1990]) of yt is dictated by what

happens as yt−1 goes to infinity. As yt−1 goes to plus infinity, G1 converges to 0 and G3

to 1, as yt−1 goes to minus infinity, G3 goes to 0 and G1 to 1, finally as |yt−1| goes to

infinity, 1 − G1 − G3 goes to zero. Therefore, for large values of |yt−1|, the MR-STAR

model behaves like a SETAR model where G1 is replaced by I (yt−1 < −λ) and G3 by

I (yt−1 > λ) . So the conditions on the parameters that guarantee the mixing property of

a MR-LSTAR are the same as those for the mixing property of its SETAR counterpart.

We refer the reader to the mixing conditions for a SETAR(p) model given in Theorem 1

of Bec et al. [2004] and do not reproduce them here. The more striking result is that the

coefficient in the middle regime, ρ2, may be equal to 0 (corresponding to a unit root) or

positive (explosive root) while the model remains globally stationary.

For the data at hand, the paper tries to answer the following questions: (i) Is Model

(6) stationary? (ii) Is it linear? The order in which these questions are addressed is

essential. The next section highlights this point.

2.4 Testing linearity

The order in which the unit root test and linearity test are performed is crucial. The

linearity tests proposed by, e.g., Hansen [1996] or Luukkonen, Saikkonen and Terasvirta
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[1988] requires that the series be stationary. Consequently, one must establish stationarity

before turning to linearity tests. In this section, we illustrate the way a linearity test may

lead to fallacious inference in the presence of a unit root. Consider a simple LSTAR model

given by:

yt = φ1yt−1 [1−G (yt−1; γ, λ)] + φ2yt−1G (yt−1; γ, λ) + εt, (8)

εt ∼ iid
(
0, σ2

)
. (9)

The hypothesis of interest is H0 : φ1 = φ2. Under H0, the model is linear and γ and λ

are not identified, therefore the usual properties of the Wald test no longer hold. As an

alternative, Luukkonen et al. [1988] suggest to use an auxiliary model,

yt = β0yt−1 + β1y
2
t−1 + et, (10)

and to test H ′
0 : β1 = 0. The Wald test of this hypothesis (denoted WL in the sequel) has

power against an alternative of type (8). Under the null hypothesis H0 : φ1 = φ2 = φ

where |φ| < 1, the Wald test statistic converges asymptotically to a chi-square with one

degree of freedom. But what is its limit if the process is a random walk, that is φ = 1,

under H0? This is an important issue as the linearity is often tested on series for which

there is no strong evidence of stationarity, see for instance Michael et al. [1997]. In the

appendix, we show the following result.

Proposition 1 If yt is a random walk with y0 = 0, then

WL
L→

{
1
3B (1)3

∫ 1
0 B (r)2 dr − 1

2

(
B (1)2 − 1

) ∫ 1
0 B (r)3 dr

}2

∫ 1
0 B (r)2 dr

{∫ 1
0 B (r)2 dr

∫ 1
0 B (r)4 dr −

(∫ 1
0 B (r)3 dr

)2
} ,

where B(.) is a standard Brownian motion.

From Proposition 1, we see that the asymptotic distribution of WL is very different

from a chi-square distribution, when the DGP is non-stationary. Using 10,000 replications

from a sample of size 10,000, we computed the fractiles of the distribution of WL and

compared them with those of a chi-square with 1 degree of freedom. The results are

summarized in Table 1. The line labelled “p-value” gives the probability of rejecting H0

obtained when using the critical values given by the chi-square when the data follow a

random walk. We see that the distribution of WL has a much thicker right tail than

the χ2 (1). Using the critical values of the chi-square might result in rejecting wrongly

the linear model. A 5% level for the chi-square corresponds to a 16.4% level for WL.
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Table 1: Fractiles of WL and χ2 (1)

1% 5% 10% 50 % 90% 95% 99%
WL .0001 .0054 .0215 .8012 5.1344 6.8564 10.9005

χ2 (1) - .004 .016 .455 2.71 3.84 6.63
p-value WL - .9573 .9131 .5976 .2416 .1643 .0552

We illustrated our point on a simple model but we expect the same conclusions to hold

for more general models. This is the reason why one should test for stationarity prior to

testing for linearity and not the other way around.

3 Testing Unit Root versus MR-LSTAR

3.1 Likelihood-based unit-root tests

In model (6), we want to test H0 : µ1 = µ2 = ρ1 = ρ2 = 0 “random walk without drift”,

against the alternative H1 : stationary MR-LSTAR model. Under the null hypothesis,

it is assumed that the roots of 1 − a1z − ... − apz
p = 0 lie outside the unit circle. For

convenience, we reparametrize the model in terms of β = λγ and λ, so that G (yt−1, γ, λ) =[
1 + exp

(
−β

λyt−1 + β
)]−1

. Note that under H0, the nuisance parameters β (or γ) and λ

are not identified. It is therefore impossible to find consistent estimators of β and λ under

the null hypothesis. For β and λ given, we can estimate the unrestricted and restricted

regressions by OLS. The vector of unrestricted residuals obtained from (6) is denoted ε̂.

The restricted regression is given by

∆yt = a (L)∆yt + εt. (11)

Denote the vector of restricted residuals by ε̃. In absence of heteroskedasticity, the trilogy

of tests can be written in terms of the residual sum of squares:

WT (β, λ) = T

[
ε̃′ε̃− ε̂′ε̂

ε̂′ε̂

]
,

LMT (β, λ) = T

[
ε̃′ε̃− ε̂′ε̂

ε̃′ε̃

]
,

LRT (β, λ) = T ln
[
ε̃′ε̃
ε̂′ε̂

]
.

Proposition 2 Let β > 0 and λ̃ = λ/
√

T > 0 be fixed. Suppose π =
(
β, λ̃

)
belongs to Π

where Π is a compact set of R+2∗ . Under H0, the Wald, Lagrange Multiplier and Likelihood
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Ratio tests satisfy

WT (β, λ) , LMT (β, λ) , LRT (β, λ) L−−−−→
T→∞

D (k) (12)

uniformly in π, where k =
(
β, λ̃/δ

)
, δ = σ/ (1− a1 − a2...− ap) and D (k) is a compli-

cated function of Brownian motions given in Equation (22) in Appendix A. Under the

alternative of a stationary MR-LSTAR model, the test statistics diverge.

Next, we discuss the assumptions on β (or γ) and λ. The assumption λ =
√

T λ̃ is

reminiscent of the assumption made in the structural change literature that the break-

point is supposed to be equal to Tπ with π ∈ (0, 1), which guarantees fixed proportions of

observations before and after the break. Here, the assumption is that λ grows at the same

rate as the standard error of an integrated process, so that under the null the proportions

of observations in the lower and upper regimes have a lower bound. Note that because γ

and λ are not identified under H0, we are free to make any assumptions on them. Moreover

under H0, yt/
√

T converges to a Brownian motion, δB (r) , with r = t/T. First assume

that γ and λ are fixed, then we obtain

G (yt, γ, λ) = [1 + exp (−γ (yt − λ))]−1

=
[
1 + exp

(
−γ
√

T

(
yt√
T
− λ√

T

))]−1

−−−−→
T→∞

I {δB (r) > 0} .

This means that testing with γ and λ fixed is equivalent to testing in the context of a

two-regime SETAR model with λ = 0. If moreover the symmetry of the outer regimes is

assumed, then the resulting model is actually linear. This will result inevitably in a great

loss of power. On the other hand, assuming that
(
β, λ̃

)
is fixed, we obtain

G (yt, γ, λ) =

[
1 + exp

(
−
√

Tβ

λ

yt√
T

+ β

)]−1
L−−−−→

T→∞

[
1 + exp

(
−β

λ̃
δB (r) + β

)]−1

.

(13)

Note that λ is assumed to diverge with
√

T only under the null hypothesis. This assump-

tion is used to derive the distribution of the test statistics under H0. Under H1, λ is of

course assumed to be fixed.

As β and λ are not identified under the null hypothesis, the choice of β and λ is

arbitrary. To select β and λ, we use the same strategy as in testing linearity against a

SETAR model (see Tong [1990]), namely we take the supremum of the test statistics with
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respect to the nuisance parameters. The tests under consideration are therefore:

SupW ≡ sup
(β,λ)∈B×Λ

WT (β, λ) ,

SupLM ≡ sup
(β,λ)∈B×Λ

LMT (β, λ) ,

SupLR ≡ sup
(β,λ)∈B×Λ

LRT (β, λ) ,

where B =
[
b, b̄

]
and Λ =

[
λ, λ̄

]
. Since λ plays the role of a threshold, we adopt the same

approach as in the SETAR literature. We order the absolute value of yt : |y|(1) < |y|(2) <

... < |y|(T ) and we discard 15% of the highest and smallest values. Hence, λ = |y|([15T/100])

and λ̄ = |y|([85T/100]) . For B, we choose any arbitrary fixed interval. The test will have

power even if a single value for β is used. However, the test will have more power if a

range of values is considered. The interval should not be too wide either because for large

β, G becomes flat. Note that (β, λ) ∈ B × Λ implies that

0 < b < β < b̄, 0 < `T <
λ̃

δ
< ¯̀

T , (14)

where `T = λ/(
√

Tδ) and ¯̀
T = λ̄/(

√
Tδ). Whereas b and b̄ are fixed numbers, `T and ¯̀

T

are random variables. Their limiting distributions are given by

`
L= lim

T→∞
|y|([15T/100])√

Tδ
= `0.15,

¯̀ L= lim
T→∞

|y|([85T/100])√
Tδ

= `0.85,

where `p is the random variable that solves

`p = inf
{

l :
∫ 1

0
I [|B (r)| ≤ `] dr > p

}
.

This choice of Λ and B insures that the asymptotic distributions of the sup tests are

nuisance parameter free. This justifies the use of empirical critical values obtained by

simulations.

Proposition 3 Under H0,

SupW, SupLM, SupLR L−−−−→
T→∞

sup
k∈K

D (k)

where K =
[
b, b̄

]× [
`, ¯̀]. Moreover, the limiting distributions of the sup tests are nuisance

parameter free.

The proofs of Propositions 2 and 3 are given in Appendix A. Note that the limiting

parameter space, K, is random which is unusual and complicates the asymptotic theory.

Our proof builds on results by Bec, Guay, and Guerre (2008, Theorems 2, 3, Section 2.3).
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3.2 Unit-root tests based on an auxiliary model

Luukkonen et al (1988) introduced a linearity test based on an approximation of the

function G by linearization. We propose to use the same approach to construct a unit-

root test. This idea has been exploited before by Kapetanios, Shin and Snell (2003) for

testing unit-root against a ESTAR model.

Using a ith order Taylor expansion of G around γ = 0, we get the following auxiliary

model

∆yt = a1∆yt−1 + ... + ap−1∆yt−p+1 +
i∑

j=1

βjy
j+1
t−1 + εt. (15)

In this case, a Wald test of H0 : β1 = ... = βi = 0 will have in general power against a

LSTAR (this test is referred to as Fi).

The question is which order i to choose. As a test Fi uses an auxiliary regression,

there may be LSTAR models against which this test has no power. This problem is

particularly serious for i = 1. Consider a simple illustration. Assume, to simplify, that

a1 = ... = ap−1 = 0, µ1 = µ2 = µ3, ρ1 = ρ3, and ρ2 = 0. The OLS estimate, β̂1, of β1 in

∆yt = β1y
2
t−1 + εt (16)

satisfies

β̂1
P→ E

(
∆yty

2
t−1

)

E
(
y4

t−1

) ,

and

E
(
∆yty

2
t−1

)
= ρ1E

(
(G1 + G3) y3

t−1

)
.

Remark that the function (G1 + G3) y3
t−1 is a odd function of yt−1. Therefore, if the

density of yt is symmetric around 05, we have E
(
(G1 + G3) y3

t−1

)
= 0, and then β̂1

P→ 0.

Hence F1 does not have much power against such a LSTAR. This is however a special

case, this lack of power is by no means the rule. F2 would have power in this example.

The higher the order i of the Taylor expansion, the larger the range of possible alter-

natives against which the test will have power. For instance, F2 has, in general, power not

only against LSTAR but also against ESTAR models (see Kapetanios et al. 2003). As

estimating parameters is costly, we choose to adopt F2 which is more parsimonious than

F3.

Proposition 4 Under H0, F2 has the nonstandard distribution given in (24) in Appendix

A, which is nuisance parameter free.
5This could be expected if the density of εt is itself symmetric around 0.
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It is expected that F2 will have less power than our sup test because F2 is not specif-

ically designed to test LSTAR. Note however that, because of the presence of nuisance

parameters that are not identified under the null, there is no uniformly most powerful test.

3.3 Empirical critical values of the unit-root tests

In this section, we compute the empirical critical values of tests described earlier, SupW,

SupLM, SupLR, F2, and another test, SupLRh. SupLRh is defined as

SupLRh ≡ sup
(β,λ)∈B×Λ

LRhT (β, λ) ,

where LRhT is the heteroskedasticity-robust version of the likelihood ratio test, which

exact expression is given in Appendix B.

In the empirical study below, we have found that p = 2, so that model (6) may be

rewritten as follows :

∆yt = a∆yt−1 + µ1(G3 −G1) + µ2G2

+ρ1yt−1(G1 + G3) + ρ2yt−1G2 + σεt, (17)

with εt iid N (0,1). This is the model we choose to retain under H1 in order to compute

the empirical power. Under H0, we generate the model

∆yt = a∆yt−1 + σεt, (18)

where the ε′ts are drawn from an iid N (0,1), a = 0.3, and σ = 0.02. This choice of the

parameters is dictated by the data. When fitting (18) on the real exchange rates, we

obtain, for most of the series, a close to 0.3 with a range 0.13 ≤ a < 0.4 and σ around

0.02. In Table 2, we report the empirical critical values from 10,000 replications of samples

of size 200, 300 and 400. The two-dimensional search grid in β and λ was performed for

the following sets of values : β ∈ {0.2, 0.3, 0.4, 0.5, 0.6} and λ ∈ [λ, λ] with λ and λ such

that 15% of the smallest and highest values of |yt−1| are excluded from the grid.

3.4 Size and power analysis of the unit-root tests

In order to examine the size and power of the proposed tests, we perform a small sample

study. For both Tables 3 and 4 and later when we analyze the data, we use the empirical

critical values obtained in Table 2. Hence, the power is actually a size-corrected power.

First, we generate the model under the null, i.e., model (18) for a = 0.3 and σ = 0.02 and

εt iid N (0,1) using a different seed for the random number generator from the one used

to compute the empirical critical values. In Table 3, we report the empirical rejection
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Table 2: Empirical critical values of the unit-root test (a=0.3, σ = 0.02)

20 % 15% 10% 5% 1%

n = 200
SupW 10.32 11.35 12.64 14.81 19.46
SupLM 10.02 10.96 12.13 14.07 18.09
SupLR 10.07 11.04 12.26 14.29 18.57
SupLRh 9.66 10.52 11.69 13.48 17.58

F2 7.02 7.75 8.71 10.33 14.33

n = 300
SupW 10.22 11.18 12.44 14.40 18.61
SupLM 10.02 10.93 12.11 13.92 17.76
SupLR 10.05 10.98 12.19 14.06 18.05
SupLRh 9.71 10.93 11.58 13.37 17.31

F2 7.01 7.77 8.79 10.35 13.61

n = 400
SupW 10.08 10.99 12.10 14.02 18.20
SupLM 9.94 10.81 11.86 13.68 17.59
SupLR 9.96 10.84 11.92 13.78 17.80
SupLRh 9.59 10.42 11.49 13.36 17.29

F2 6.99 7.70 8.74 10.21 13.60
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frequencies from 5,000 Monte Carlo replications with n = 200, 300 and 400 successively.

For comparison purpose, the empirical size of the Augmented Dickey-Fuller statistics is

also reported. Here and in the rest of the paper, we do not report the SupW and SupLM

tests because it is well-known that the Wald test exhibits important size distortions and

the LM test is usually very close to the LR test.

Table 3: Empirical size of the unit-root tests

Theoretical size ADF SupLR SupLRh F2

n = 200
1% 0.009 0.008 0.008 0.007
5% 0.048 0.045 0.045 0.035
10% 0.100 0.094 0.089 0.066

n = 300
1% 0.009 0.010 0.008 0.007
5% 0.048 0.053 0.047 0.032
10% 0.097 0.097 0.100 0.063

n = 400
1% 0.009 0.008 0.008 0.008
5% 0.050 0.053 0.048 0.032
10% 0.095 0.104 0.097 0.061

From Table 3, we see that the empirical size of our tests is quite accurate. Nevertheless,

the SupLRh and the F2 tests appear slightly more conservative than the SupLR.

Next, we explore the power of the tests by generating 1,000 series under the alternative,

(17), for various parameter values. In all the following experiments, we normalize σ to

unity. We also set a = 0.3, µ2 = ρ2 = 0 and µ1 = λρ1, which is consistent with our

MR-LSTAR estimates (see next section). In Table 4, we report the size-corrected power

of the sup tests described in Subsection 3.1, the test F2 described in Subsection 3.2, the

Adjusted Dickey Fuller test, and the test proposed by Kapetanios et al. (denoted KSS).

The theoretical size of these tests is α = 5%. The power of the sup tests is increasing in

λ, |ρ1| and n. In most of the MR-LSTAR estimates reported in the next section, the λ/σ

ratio is greater than eight, which is close to the case with λ = 10 in Table 4. In those

cases, our SupLR test clearly outperforms the ADF one. As expected, SupLR clearly

dominates the tests based on auxiliary models: KSS and F2. Although the KSS test has

been developed to test against ESTAR alternative, it seems to have comparable power to
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Table 4: Size-corrected power of the unit root tests

(ρ1, λ/σ, γ/σ) n SupLR SupLRh F2 K.S.S ADF

(-0.05,2,10) 200 52.7 51.6 54.9 50.4 82.1
300 88.0 86.4 74.8 72.1 99.2
400 98.8 98.5 89.3 87.4 100.0

(-0.10,2,10) 200 99.0 98.1 93.5 91.0 99.9
300 100.0 100.0 99.0 98.0 100.0
400 100.0 100.0 99.6 99.4 100.0

(-0.30,2,10) 200 100.0 100.0 100.0 100.0 100.0
300 100.0 100.0 100.0 100.0 100.0
400 100.0 100.0 100.0 100.0 100.0

(-0.05,10,10) 200 55.4 25.4 37.0 17.1 16.9
300 83.3 44.8 67.7 69.0 19.3
400 95.7 64.6 92.9 95.2 28.0

(-0.10,10,10) 200 83.2 24.7 57.3 48.9 16.8
300 96.8 41.5 90.0 92.1 21.4
400 99.6 61.9 99.5 99.4 35.6

(-0.30,10,10) 200 97.2 19.6 95.7 95.3 31.8
300 99.6 34.2 99.7 99.8 66.4
400 99.9 56.1 100.0 100.0 93.2

(-0.05,2,200) 200 52.0 52.1 54.5 50.5 82.2
300 88.0 86.4 74.6 71.8 99.2
400 98.9 98.1 89.4 87.4 100.0

(-0.10,2,200) 200 98.6 98.0 93.4 90.8 99.9
300 100.0 100.0 99.0 98.0 100.0
400 100.0 100.0 99.6 99.6 100.0

(-0.30,2,200) 200 100.0 100.0 100.0 100.0 100.0
300 100.0 100.0 100.0 100.0 100.0
400 100.0 100.0 100.0 100.0 100.0

(-0.05,10,200) 200 56.5 26.0 37.1 19.1 17.2
300 82.2 44.3 70.3 71.6 19.1
400 96.6 65.9 94.2 96.4 28.7

(-0.10,10,200) 200 85.6 22.5 62.0 56.1 16.3
300 97.8 39.4 92.9 95.0 21.7
400 99.8 59.5 99.9 99.8 39.3

(-0.30,10,200) 200 98.7 19.9 97.8 97.9 40.7
300 100.0 35.7 99.9 99.9 82.1
400 100.0 98.4 100.0 100.0 98.6
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F2. We also performed some power simulations (not reported here) on the tests F1 and

F3 described in Subsection 3.2. The performance of F1 is very poor, while that of F3 is

comparable to that of F2. Finally, the SupLRh test outperforms the KSS test for a small

value of λ but its power deteriorates a lot for large threshold values, even when ρ1 is large

in absolute value. For instance, with n = 100 and ρ1 = −0.30, its power is 100% for λ = 2

but drops to around 35% for λ = 10, no matter the value of γ. Motivated by these results,

the unit root tests retained in the following empirical study are the SupLR and SupLRh,

the former being privileged in presence of large threshold values.

4 The empirical results

The data set comprises monthly observations6 spanning 1973:09 to 2009:12 for eight coun-

tries : United-States, Germany, United-Kingdom, Italy, Canada, France, Belgium and

Finland. The corresponding currencies are denoted USD, DEM, GBP, ITL, CAD, FRF,

BEF, FIM. The nominal exchange rate data are monthly averages, and the nominal price

data are consumption price indices. Overall, we have twenty-eight real exchange rates.

For the pairs of currencies involving a country belonging to the Euro zone, we used data

up to December 1998, since the Euro was introduced in January 1999. So, the sample size

is only 304 for these pairs, whereas it is 466 for the remainders.

4.1 Standard unit root tests

First, we check the order of integration of the real exchange rates in the linear autoregres-

sive model using three statistics, namely ADF (Dickey and Fuller [1981]), PP (Phillips

and Perron [1988]) and KPSS (Kwiatkowski, Phillips, Schmidt and Shin [1992])7. The

corresponding results are reported in Table 58. These tests fail to reject the unit root

for every pair, except for gbp/usd and frf/dem. The bef/dem pair is the only one for

which a deterministic time trend is significant in the ADF regression. When allowing for

this trend, we find that ADF and PP statistics are respectively -3.59 and -3.51, which

are both significant at the 5% level. Since the following analysis is not suited to handle

that case, the further results obtained from this pair should be interpreted with caution.

Since ADF and PP tests were shown to have low power against nonlinear alternatives by

Pippenger and Goering [2000] among others, these results can not constitute evidence.
6The data were obtained from Datastream.
7We include at most a constant term in the deterministic component under the null.
8The lag length for the ADF (k) is chosen according to the Ljung-Box statistic. It is always equal to 1.

The size of the Bartlett windows for PP and KPSS tests (resp. ` and m) is obtained following Andrews
[1991].
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Table 5: Tests of I(1) or I(0) for yt

currency ADF(k) PP(`) KPSS(m) ADF(k) PP(`) KPSS(m)

versus USD versus DEM
DEM -1.68 -1.33 0.58
GBP -3.24∗ -2.95∗ 0.24∗ -2.12 -1.82 1.39
ITL -1.75 -1.28 0.76 -1.93 -1.66 1.75
CAD -0.48 -0.36 4.06 -1.99 -1.65 1.58
FRF -1.51 -1.14 0.48 -2.98∗ -2.62 0.67
BEF -1.40 -1.20 0.70 -2.17 -2.07 2.64
FIM -1.24 -0.80 0.55 -2.04 -1.84 0.94

versus GBP versus ITL
ITL -2.19 -1.77 0.73
CAD -2.51 -2.48 0.95 -2.27 -1.83 3.22
FRF -2.06 -1.60 1.92 -1.85 -1.58 2.21
BEF -1.61 -1.22 2.05 -1.49 -1.24 2.31
FIM -0.84 -0.52 2.04 -2.44 -2.10 2.13

versus CAD versus FRF
FRF -2.07 -1.73 1.36
BEF -1.95 -1.58 0.90 -2.48 -2.03 1.51
FIM -2.57 -2.19 1.32 -2.23 -1.77 0.81

versus BEF
FIM -1.69 -1.29 1.12

The critical values at the 5 % level are -2.88 for ADF and PP, and 0.463
for KPSS.
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4.2 Testing for unit-root and for linearity against MR-LSTAR

Before proceeding to the supLR test, we test the homoskedasticity of the residuals in

the linear model. According to the tests of homoskedasticity proposed by White, Engle

and Pagan9, the null of homoskedasticity is rejected for the following pairs : gbp/usd,

cad/gbp, itl/gbp, bef/gbp, frf/dem, itl/dem, bef/dem, frf/itl, bef/itl and

bef/frf. For these series, we will also consider the heteroskedasticity-robust version of

the LR tests and the standard-errors of the parameters estimates will be corrected using

White [1980]’s consistent estimator of the covariance matrix.

Table 6 reports the results of unit-root and linearity tests calculated from the MR-

LSTAR models, (17), for which the unit root hypothesis can be rejected. The real exchange

rate data used for the MR-LSTAR estimation are demeaned because model (17) implies

symmetrical behavior around zero.

According to the unit-root tests’ statistics given in the first two columns of Table 6,

eleven real exchange rates reject the null of random walk against our MR-LSTAR alterna-

tive, namely gbp/usd, gbp/frf, gbp/dem, cad/gbp, frf/dem, itl/dem, bef/dem,

frf/itl, fim/itl, bef/frf and fim/dem. In this table, exponents −, ∗ and ∗∗, respec-

tively, denote the 15, 10 and 5 percent significance levels. The conclusions arising from

Table 6: SupLR Unit-root, and LM linearity tests

SupLR SupLRh LML

gbp/usd 12.99∗ 7.89 3.87−

gbp/dem 13.55∗ 7.86 6.25∗∗

gbp/frf 12.69∗ 10.86 6.05∗∗

cad/gbp 10.63− 7.08 1.54
frf/dem 25.45∗∗ 4.83 74.87∗∗

itl/dem 27.26∗∗ 4.53 73.16∗∗

bef/dem 12.32∗ 9.44 8.84∗∗

frf/itl 19.07∗∗ 3.47 91.62∗∗

fim/itl 16.56∗∗ 4.93 12.94∗∗

bef/frf 16.02∗∗ 2.99 95.10∗∗

fim/dem 11.75∗ 5.70 5.47∗

Note : Data are centered.

the SupLRh statistics are more conservative of the unit root null than the ones of the

SupLR. Nevertheless, as will be seen in the next table, our MR-LSTAR estimates of λ

9In order to save space, these results are not reported but are available upon request.
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and γ parameters are typically large and hence correspond to the cases where the power

of the SupLRh statistics may fall under 40%. For this reason, we decide to keep the series

rejecting the null according to the SupLR in the subsequent analysis.

Before performing the corresponding MR-LSTAR maximum likelihood estimations, it

is necessary to test linearity against the MR-LSTAR representation. To this end, we pro-

ceed along the lines suggested by Luukkonen et al. [1988], which consist in approximating

the transition function G(.) by a suitable Taylor series expansion. Accordingly, Model (6)

is rewritten by replacing the transition functions by their second-order approximations,

which are preferred to the first-order ones in order to capture the possible nonlinearity

arising from the intercepts :

∆yt = a∆yt−1 + β0 + β1yt−1 + β2y
2
t−1 + β3y

3
t−1 + et,

where the βi’s, i = 0, 1, 2, 3 are functions of the parameters φ1, φ2, γ, and λ. We use

a Lagrange Multiplier test (denoted LML) to test H0 : β2 = β3 = 0 in the regression

above. This test follows a χ2(2) distribution under H0 and diverges under the MR-LSTAR

alternative. We report the values of this statistic in the third column of Table 6. For the

pairs displaying heteroskedasticity, the LM statistic is corrected along the lines described

in Appendix B. The null of linearity is rather strongly rejected for all these pairs, except

for the cad/gbp one.

4.3 The constrained maximum likelihood estimation

The estimation of the MR-LSTAR representation given in (17) was performed using the

constrained maximum likelihood method10. We imposed the constraints γ > 0 and λ ∈
[λ, λ], with λ and λ such that 10% of the observations, in absolute value, are below λ and

10% are above λ. Following van Dijk et al. [2002], we simplify the estimation problem

by concentrating the sum of squares function to be minimized. Indeed, for known and

fixed γ and λ, our MR-LSTAR model is linear in the other parameters. So, conditional

upon γ and λ, the estimates of the other parameters can be obtained by ordinary least

squares. This property allows us to reduce the nonlinear estimation problem, since the

sum of squared residuals has to be minimized with respect to γ and λ only. The starting

values are then obtained from a two-dimensional grid over these two parameters. The set

of grid values for the threshold λ is [λ, λ] as defined above. The choice of a grid for γ is less

obvious. Once again, we follow the advice given by van Dijk et al. [2002] which consists
10We used the CML library of Gauss, with the Newton-Raphson optimization algorithm.
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in reparameterizing the transition function as follows:

G (st, γ, λ) =
[
1 + exp

(
− γ

σ̂yt−1

(st − λ)
)]−1

,

where σ̂yt−1 is the sample standard deviation of the switching variable, so as to make γ

approximately scale-free. Then, the grid for γ was arbitrarily set to {2.5, 5, 7.5, 10, ..., 25}.
The MR-LSTAR estimates for these eleven pairs are reported in Table 7. The standard

error estimates of γ̂ are not reported. Indeed, due to an identification problem, this param-

eter estimate does not have a standard asymptotic distribution. Moreover, this parameter

cannot be accurately estimated when it is large, since in that case, the transition function

is close to a step function, and one would need many observations in the neighborhood

of λ to estimate it accurately. In fact, outside of this area, large changes in γ have only

small effects on the shape of the transition function.

Table 7: MR-STAR estimates

â µ̂1 µ̂2 ρ̂1 ρ̂2
γ̂

σ̂yt−1
λ̂ σ̂ε

GBP/USD 0.351 0.006 -0.002 -0.062 -0.071 157.1 0.073 0.024
(n = 436) (0.045) (0.005) (0.002) (0.028) (0.070) (0.021) [0.25,0.47]
GBP/FRF 0.358 0.046 0.001 -0.299 -0.023 4358.0 0.131 0.020
(n = 304) (0.053) (0.016) (0.001) (0.098) (0.018) (0.006) [0.16,0.69]
GBP/DEM 0.354 0.048 -0.001 -0.255 -0.014 1891.2 0.176 0.021
(n = 304) (0.060) (0.016) (0.001) (0.077) (0.012) (0.014) [0.08,0.77]
CAD/GBP 0.280 0.046 0.001 -0.168 -0.028 987.8 0.229 0.025
(n = 436) (0.052) (0.022) (0.001) (0.077) (0.011) (0.005) [0.10,0.84]
FRF/DEM 0.345 0.045 0.000 -0.549 -0.025 4884.2 0.071 0.010
(n = 304) (0.075) (0.015) (0.001) (0.163) (0.017) (0.001) [0.06,0.89]
ITL/DEM 0.374 0.076 0.000 -0.438 -0.019 4243.1 0.142 0.015
(n = 304) (0.104) (0.023) (0.001) (0.127) (0.014) (0.11) [0.14,0.69]
BEF/DEM 0.152 0.003 0.001 -0.060 -0.209 1035.0 0.028 0.008
(n = 304) (0.102) (0.002) (0.001) (0.029) (0.062) (0.005) [0.27,0.37]
FRF/ITL 0.294 0.076 0.000 -0.466 -0.004 517.1 0.152 0.015
(n = 304) (0.105) (0.044) (0.001) (0.257) (0.011) (0.010) [0.03,0.90]
FIM/ITL 0.307 0.075 -0.001 -0.447 -0.027 2056.4 0.138 0.017
(n = 304) (0.079) (0.038) (0.001) (0.206) (0.015) (0.004) [0.06,0.87]
BEF/FRF 0.341 0.020 0.000 -0.187 -0.02 698.6 0.085 0.010
(n = 304) (0.081) (0.020) (0.001) (0.159) (0.025) (0.009) [0.11,0.87]
FIM/DEM 0.351 0.165 0.000 -0.773 -0.012 125.5 0.201 0.016
(n = 304) (0.054) (0.087) (0.001) (0.387) (0.011) (0.019) [0.07,0.90]
Notes: Data are centered. The numbers in parentheses are the standard errors. The
figures in brackets in the last column are the percentages of observations below −λ̂ and
between −λ̂ and λ̂, respectively.

The estimated parameters for these eleven pairs share a lot of common features.
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Firstly, the estimates of γ̂
σ̂yt−1

are very large, ranging from 125.5 for fim/dem to 4884.2

for frf/dem, thus providing support for a SETAR specification. This is confirmed by

the plots of the transition functions: in Appendix C, we report the G2 function of model

(17) corresponding to the smallest ratio γ̂
σ̂yt−1

obtained for the fim/dem pair, and to the

largest one which is obtained for the frf/dem pair. Actually, most of the series exhibit

an almost discontinuous adjustment. Secondly, the parameter estimates always have the

expected sign, and relative size. Indeed, in every case µ1 is positive while µ2 is negative

or null, and ρ1 is rather strongly negative — ranging from -0.062 for the gbp/usd pair to

-0.773 for the fim/dem pair — while ρ2 is never significantly different from zero, except

for the cad/gbp and bef/dem pairs.

The results obtained for the cad/gbp pair are amazingly similar to the other ones,

although we were not able to reject the linearity hypothesis in that case. Its parameter

estimates appear to be significantly different across regimes, the threshold estimate is

significantly different from zero and the smoothness parameter is not close to zero. Finally,

the only striking result is the one obtained for bef/frf, for which no other parameter

than â and λ̂ seems to be significantly different from zero, even at the 10% level.

4.4 Half-lives

One of the PPP puzzle is the high degree of persistence in the real exchange rate (Rogoff

[1996]). In this subsection, we compute the half-lives resulting from the MR-LSTAR model

in order to compare them with existing results.

First we compute the impulse response function following the Monte Carlo method

described in Gallant, Rossi and Tauchen [1993] and Taylor et al. [2001]. We set the initial

values of yt−1 and yt−2 to the value given in the column labelled “starting value”. Then,

we generate two series of length T = 100 with identical errors except that the first series

has an extra additive shock at time t of the form ln (1 + k/100) with k = 40, 20, 5, and

1. This corresponds to shocks of k percent. Then, we compute the difference between

the two series and repeat this procedure 5000 times. We average out the differences to

obtain an estimate of the impulse response function. This function is used to compute the

half-lives reported below.

As the model is nonlinear, the impulse response function and hence the half-lives

depend crucially on the amplitude of the shock and on the starting values. We consider

a set of four starting values. One corresponds to the sample mean of the data, 0, as

suggested by Gallant et al. [1993]. The other ones have been chosen to get some insights

on the impact of a shock if the starting values are on the edge of the band. As we consider
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only positive shocks, we also investigate a starting value far below the left boundary,

namely -2λ. Table 8 reports half-lives (in months) for three representative real exchange

rates: gbp/usd, fim/dem, and frf/dem11.

Table 8: Half-lives (in months)

shock size (%)
starting value 40 20 5 1

gbp/usd
−2λ 24 27 22 19
−λ 23 29 25 24
0 21 28 30 26
λ 18 24 33 35

fim/dem
−2λ 35 50 12 2
−λ 44 55 46 24
0 4 41 59 56
λ 2 2 2 4

frf/dem
−2λ 5 27 5 1
−λ 4 27 34 33
0 2 4 33 33
λ 1 1 2 14

It is also informative to compute the half-lives associated with the outside regime.

They are obtained from the formula given by Hamilton (1994, page 10) by doing as if the

model were an AR(2) with autoregressive coefficients φ1 = 1 + a + ρ1 and φ2 = −a. We

find the following half lives: 12 months for gbp/usd and only 1 month for fim/dem and

frf/dem. These values provide a lower bound for the half-lives. Such values will result

either from a very large shock that brings the real exchange rate into the outside regime

(see frf/dem, cell (λ, 40)), or from a small shock in the outside regime so that the real

exchange rate remains in this regime (see frf/dem, cell (−2λ, 1)).

Note that the dissymmetry of the results between the case where the starting value is

λ and the case where it is -λ is due to the fact that the shock is positive. Starting from λ,

the shock pushes toward the outside regime and hence dies out faster than starting from
11gbp/usd has been selected because it also appears in Taylor et al. [2001]. fim/dem, and frf/dem

correspond to the series exhibiting the smoothest and most discountinuous adjustments, respectively.
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-λ. For the same reason, a large shock may be very persistent if it occurs below the left

boundary and it pushes the real exchange rate into the middle regime (see cell (−2λ, 40)

of fim/dem).

When the starting value is set at the mean (0), we clearly see that the mean reversion

for large shocks is stronger than for small shocks. This is consistent with the presence

of transaction costs. The half-lives we obtain for gbp/usd range from 18 to 35 months,

which are comparable to those obtained by Taylor et al. [2001] using a ESTAR model.

While most empirical studies based on a linear model agree on a half life for gbp/usd

of about 4.6 years (see Rogoff [1996]), our results suggest a much shorter half-life. In a

recent paper, Taylor [2001] finds half-lives equal to 1.7 years for gbp/usd using an AR(2)

model. These different results can be reconciled in the following manner. In a linear

model, the half life is computed for a shock of size 1 and is independent of the starting

values. This half-life can be thought of as a weighted average of the half-lives obtained for

various starting values.

5 Conclusion

This paper explores the possibility that, in presence of transaction costs, a nonlinear

MR-LSTAR representation is more relevant for the real exchange rate than a linear speci-

fication. While most linear models predict a half-life for PPP deviations ranging from 3 to

5 years, our model shows that large shocks adjust much faster than small shocks, resulting

in a half-life as short as two months for frf/dem.

Whereas the classical tests (PP, ADF) fail to reject the null of a unit-root for all of

the real exchange rates but gbp/usd and frf/dem, our SupLR unit-root test rejects the

null of a unit-root in favor of a three-regime MR-LSTAR model for eleven pairs. For

these series, the estimation results support the PPP hypothesis by exhibiting strong mean

reversion for large PPP departures. Seven out of these eleven pairs involve currencies of

the European Monetary System member states. This finding may indeed be related to the

close trade links developed by the European Economic Community. The European build

up has probably made international arbitrage in goods markets easier inside the EEC.

Another contribution of the paper lies in the modeling of the real exchange rate.

While former empirical studies focused on either the SETAR or ESTAR models, our paper

uses a MR-LSTAR specification, which is able to mimic both the abrupt adjustments of

the SETAR and the smooth adjustments of the ESTAR. It is worth noting that in the

case of frf/dem, the shape of the estimated transition functions is very close to the

shape of the indicator function characterizing the SETAR model. Consequently, this more
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parsimonious model may be considered for this particular series as a good approximation

of the more general MR-LSTAR model we have studied in this paper.
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Appendix A: Proofs

Proof of Proposition 1. Denote X the T × 2 matrix with rows (yt−1, y
2
t−1) and A the

1 × 2 vector [0 1] . Let β̂1 and σ̂2 be the OLS estimators of β1 and σ2 in (10). The Wald

test is equal to

WL =
β̂2

1

σ̂2A (X ′X)−1 A′

=

{(∑
y2

t−1εt

) (∑
y2

t−1

)− (
∑

yt−1εt)
(∑

y3
t−1

)}2

σ̂2
(∑

y2
t−1

) {(∑
y2

t−1

) (∑
y4

t−1

)− (∑
y3

t−1

)2
} .

The result follows from the following limits (see Hamilton [1994]):
∑

y2
t−1

T 2

L→ σ2

∫ 1

0
B (r)2 dr,

∑
y3

t−1

T 2
√

T

L→ σ3

∫ 1

0
B (r)3 dr,

∑
y4

t−1

T 3

L→ σ4

∫ 1

0
B (r)4 dr,

∑
yt−1εt

T

L→ σ2

2

(
B (1)2 − 1

)
,

∑
y2

t−1εt

T
√

T

L→ σ3

3
B (1)3 ,

σ̂2 P→ σ2.

¥

Proof of Proposition 2.

Denote θ = (a1, ..., ap, µ1, µ2, ρ1, ρ2)
′ ≡ (a1, ..., ap, α

′)′ . We want to test H0 : µ1 = µ2 =

ρ1 = ρ2 = 0. We will denote [1 + exp (−βyt−d/λ− β)]−1 as G3 and [1 + exp (βyt−d/λ + β)]−1

as G1, in the following. The dependence on t is omitted for ease of notation. We are in a

case close to Case 2 of Hamilton [1994, page 518]. Using his notation, Model (6) can be

rewritten as

ut = x′tθ + εt, (19)

where ut = yt − yt−1, xt = (ut−1, ..., ut−p, G3 −G1, G2, yt−1 (G1 + G3) , yt−1G2)′. We have

θ̂ − θ0 =
[∑

xtx
′
t

]−1 ∑
xtεt. (20)



31

∑
xtx

′
t =

[
M11 M ′

21

M21 M22

]
,

M11 =




∑
u2

t−1

∑
ut−1ut−2 . . .

∑
ut−1ut−p∑

ut−2ut−1
∑

u2
t−2 . . .

∑
ut−2ut−p

...
... . . .

...∑
ut−put−1

∑
ut−put−2 . . .

∑
u2

t−p


 ,

M21 =




∑
(G3 −G1)ut−1 . . .

∑
(G3 −G1) ut−p∑

G2ut−1 . . .
∑

G2ut−p∑
yt−1 (G1 + G3) ut−1 . . .

∑
yt−1 (G1 + G3) ut−p∑

yt−1G2ut−1 . . .
∑

yt−1G2ut−p


 ,

and M22 is the symmetric matrix such that

M22 =




∑
(G3 −G1)

2

∑
G2 (G3 −G1)

∑
G2

2∑
yt−1

(
G2

3 −G2
1

) ∑
yt−1G2 (G1 + G3)

∑
y2

t−1 (G1 + G3)
2

∑
yt−1G2 (G3 −G1)

∑
yt−1G

2
2

∑
y2

t−1G2 (G1 + G3)
∑

y2
t−1G

2
2


,

∑
xtεt =




∑
ut−1εt∑
ut−2εt

...∑
ut−pεt∑
(G3 −G1) εt∑
G2εt∑
yt−1 (G1 + G3) εt∑
yt−1G2εt




.

We use as the scaling matrix the following (p + 4)×(p + 4) diagonal matrix ΓT with

diagonal elements
(√

T , · · · ,
√

T , T, T
)
. Premultiplying (20) by ΓT , we obtain:

ΓT

(
θ̂ − θ0

)
=

[
Γ−1

T

[∑
xtx

′
t

]
Γ−1

T

]−1 {
Γ−1

T

[∑
xtεt

]}
. (21)

We have

T−1
∑

ut−iut−j
P−→ γ|i−j|

by the Law of Large Numbers where γ|i−j| = E [ut−iut−j ] . Under H0, yt =
∑

ut−j is a

random walk and yt/
√

T converges to δB(r), r = t/T , where B(.) is a standard Brownian

motion on [0,1]. On the other hand 1√
T

∑Tr
t=1 εt converges to σB(r). Denote

G̃1 (r) =
[
1 + exp

(
β

λ̃
δB (r) + β

)]−1

,

G̃3 (r) =
[
1 + exp

(
−β

λ̃
δB (r)− β

)]−1

,

G̃2 (r) = 1− G̃1 (r)− G̃3 (r) .
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The continuous transformations of F
(
x, β, λ̃

)
=

[
1 + exp

(
−β

λ̃
x + β

)]−1
are themselves

continuous in x and in
(
β, λ̃

)
∈ Π and therefore regular, we can apply Theorem 3.1. of

Park and Phillips [2001]:

1
T

∑
(G3 −G1)

2 P−→
∫ 1

0

(
G̃3 (r)− G̃1 (r)

)2
dr,

1
T

∑
G2

2
P−→

∫ 1

0
G̃2 (r)2 dr,

1
T

∑ y2
t−1

T
(G3 −G1)

2 P−→ δ2

∫ 1

0
B2(r)

(
G̃3 (r)− G̃1 (r)

)2
dr,

1
T

∑ y2
t−1

T
G2

2
P−→ δ2

∫ 1

0
B2(r)G̃2 (r)2 dr,

1
T

∑ yt−1√
T

G2
2

P−→ δ

∫ 1

0
B(r)G̃2 (r)2 dr,

uniformly in π =
(
β, λ̃

)
∈ Π. We have also

1√
T

∑
(G3 −G1) εt

L−→ σ

∫ 1

0

(
G̃3 (r)− G̃1 (r)

)
dB (r) ,

1√
T

∑ yt−1√
T

(G1 + G3) εt
L−→ σδ

∫ 1

0

(
G̃1 (r) + G̃3 (r)

)
B (r) dB (r) ,

similar results hold for the other terms of M22 and
∑

xtεt. These limits are also uniform

in π, see Theorem 2 of Bec et al. [2008].

Using again Park and Phillips, it can be shown that

T−1
∑

G1ut−j
P−→ 0,

T−1
∑

G3ut−j
P−→ 0,

T−3/2
∑

yt−1G1ut−j
P−→ 0,

T−3/2
∑

yt−1G3ut−j
P−→ 0.

Therefore, we have [
Γ−1

T

[∑
xtx

′
t

]
Γ−1

T

]
L−→

[
V 0
0 Q

]
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with

V =




γ0 γ1 · · · γp−1

γ1 γ0 · · · γp−2
...

...
...

γp−1 γp−2 · · · γ0


 ,

Q = ΛQ̃Λ,

D =




1 0 0 0
0 1 0 0
0 0 δ 0
0 0 0 δ


 ,

Q̃ =
[

Q11 Q′
21

Q21 Q22

]
,

Q11 =




∫ 1
0

(
G̃3 (r)− G̃1 (r)

)2
dr

∫ 1
0 G̃2 (r)

(
G̃3 (r)− G̃1 (r)

)
dr

∫ 1
0 G̃2 (r)

(
G̃3 (r)− G̃1 (r)

)
dr

∫ 1
0 G̃2 (r)2 dr


,

Q22 =




∫ 1
0

(
G̃1 (r) + G̃3 (r)

)2
B2(r)dr

∫ 1
0 G̃2 (r)

(
G̃3 (r)− G̃1 (r)

)
B2(r)dr

∫ 1
0 G̃2 (r)

(
G̃3 (r)− G̃1 (r)

)
B2(r)dr

∫ 1
0 G̃2 (r)2 B2(r)dr


 ,

Q21 =

[ ∫ 1

0

(
G̃3 (r)2 − G̃1 (r)2

)
B (r) dr

∫ 1

0
G̃2 (r)

(
G̃1 (r) + G̃3 (r)

)
B (r) d (r)

∫ 1

0
G̃2 (r)

(
G̃3 (r)− G̃1 (r)

)
B (r) dr

∫ 1

0
G̃2 (r)2 B (r) dr

]
.

One can decompose Γ−1
T [

∑
xtεt] into two pieces. By Hamilton (page 520), the top

part has the following asymptotic distribution




1√
T

∑
ut−1εt

1√
T

∑
ut−2εt

...
1√
T

∑
ut−pεt




L−→ h1 ∼ N (
0, σ2V

)
.

And the second part follows asymptotically



1√
T

∑
(G3 −G1) εt

1√
T

∑
G2εt

1
T

∑
yt−1 (G1 + G3) εt

1
T

∑
yt−1G2εt




L−→ h2

h2 = σDh̃2.

with

h̃2 ∼




∫ 1
0

(
G̃3 (r)− G̃1 (r)

)
dB(r)∫ 1

0 G̃2 (r) dB(r)∫ 1
0

(
G̃1 (r) + G̃3 (r)

)
B (r) dB(r)∫ 1

0 G̃2 (r) B(r)dB(r)




.
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Substituting into (21), we get

ΓT

(
θ̂ − θ0

)
L−→

[
V −1h1

Q−1h2

]
.

H0 can be rewritten as Aθ = α = 0 where A is the appropriate selection matrix and

α = (µ1, µ2, ρ1, ρ2)
′. The Wald test is given by

WT =
(
Aθ̂

)′ [
σ̂2A

[∑
xtx

′
t

]−1
A′

]−1

Aθ̂ = α̂′
[
σ̂2

[∑
x̃tx̃

′
t

]−1
]−1

α̂,

where α̂ is the estimator of α, x̃t are the regressors associated with α, and σ̂2 is a consistent

estimator of σ2. Hence the asymptotic distribution of WT is given by

h′2Q
−1h2/σ2 = σ2h̃′2D

(
DQ̃D

)−1
Dh̃2/σ2 = h̃′2Q̃

−1h̃2 ≡ D (k) . (22)

Note that this distribution is nuisance parameter free. By equivalence between the test

statistics, the limiting distribution of LMT and LRT is the same as that of WT .

Under the alternative of a stationary LSTAR model, α̂ converges at the
√

T−rate of

convergence to a pseudo true value αa which is in general not equal to the true α (unless

β and λ are the right values). However αa will be different from 0 and the test statistics

diverge. ¥

Proof of Proposition 3.

Let us define `T = λ/(
√

Tδ). Note that k = (β, `T ) . Now define

W̃T (k) = WT

(
β, λ

√
Tδ

)
.

Hence we have

supW = sup
k∈B×[`T ,¯̀T ]

W̃T (k) .

We have shown before

1) W̃T (k) L→ D (k)

2)
[
`T , ¯̀

T

] L→ [
`, ¯̀]

where the distribution of
(
`, ¯̀) does not depend on any parameter.

We need to show

sup
k∈B×[`T ,¯̀T ]

W̃T (k) L→ sup
k∈B×[`,¯̀]

D (k) .

We can not apply the continuous mapping theorem directly because
[
`, ¯̀] is random and

its support is not bounded. This result can be established using a similar proof to that of

Theorem 3 in Bec et al. [2004].
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Then , it is easy to see that the distribution is nuisance parameter free because D (.)

does not depend on unknown parameters and neither does B × [
`, ¯̀].¥

Proof of Proposition 4.

We adopt the same reparametrization as in Kapetanios and al. (2003). Let ∆y−j =

(∆y1−j , ...,∆yT−j)
′ . Define the T × (p− 1) matrix Z = (∆y−1, ...,∆y−p+1), the T ×

T−idempotent matrix MT = IT−Z (Z′Z)−1 Z′, and ε =(ε1, ..., εT )′. Let yj
−1 =

(
yj
0, ..., y

j
T−1

)′
,

j = 2, 3. Model (15) can be rewritten as

∆y =
p−1∑

j=1

aj∆y−j + β1y2
−1 + β2y3

−1 + ε, (23)

which itself is equivalent to

MT ∆y =β1MTy2
−1 + β2MTy3

−1 + MT ε.

Let θ = (β1, β2)
′. Let X be the T × 2−matrix, X =

[
y2
−1 y3

−1

]
and

ΓT =
[

T 3/2 0
0 T 2

]
.

We have

ΓT θ̂ =
(
Γ−1

T

(
X ′MT X

)
Γ−1

T

)
Γ−1

T X ′MT ε.

To establish the limiting distribution, we apply Theorem 3.1 of Park and Phillips [2001]:

Γ−1
T X ′MT ε =

(
y2′
−1MT ε

T 3/2

y3′
−1MT ε

T 2

)
=

(
y2′
−1ε

T 3/2

y3′
−1ε

T 2

)
+ op (1)

L→ σ

(
δ2

∫ 1
0 W (r)2 dW (r)

δ3
∫ 1
0 W (r)3 dW (r)

)
≡ σ

[
δ2 0
0 δ3

]
h,

where δ = σ/ (1− a1...− ap−1) .

Γ−1
T

(
X ′X

)
Γ−1

T =

(
y2′
−1MT y2

−1

T 3

y2′
−1MT y3

−1

T 7/2

y3′
−1MT y2

−1

T 7/2

y3′
−1MT y3

−1

T 4

)

=

(
y2′
−1y

2
−1

T 3

y2′
−1y

3
−1

T 7/2

y3′
−1y

2
−1

T 7/2

y3′
−1y

3
−1

T 4

)
+ op (1)

L→
(

δ4
∫ 1
0 W (r)4 dr δ5

∫ 1
0 W (r)5 dr

δ5
∫ 1
0 W (r)5 dr δ6

∫ 1
0 W (r)6 dr

)

≡
[

δ2 0
0 δ3

]
Q

[
δ2 0
0 δ3

]
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with

h =

( ∫ 1
0 W (r)2 dW (r)∫ 1
0 W (r)3 dW (r)

)
,

Q =

( ∫ 1
0 W (r)4 dr

∫ 1
0 W (r)5 dr∫ 1

0 W (r)5 dr
∫ 1
0 W (r)6 dr

)
.

Let ε̂ be the least-squares estimate of ε in (23), the least-square estimate of σ2 satisfies

σ̂2 =
ε̂′MT ε̂

T
=

ε̂′ε̂
T

+ op (1) P→ σ2.

The Wald test statistic is given by

F2 = θ̂′
[
σ̂2

(
X ′MT X

)−1
]−1

θ̂

=
1
σ̂2

ε′MT XΓ−1
T

[
Γ−1

T

(
X ′MT X

)
Γ−1

T

]−1 Γ−1
T X ′MT ε

L→ h′Q−1h. (24)

Note that h′Q−1h does not depend on σ or any other nuisance parameter.¥

Appendix B: Expressions of the test statistics

Below, we detail the expression of the heteroskedasticity-robust test statistic LRh. For γ

and λ fixed, Model (6) can be rewritten as

∆yt = x′tθ + εt

using the notation of Appendix A. It can be estimated by OLS. Denote s̃c the T × (p + 4)

matrix with tth element s̃ct = xt (∆yt − x′tθ), where θ has been replaced by the restricted

OLS estimator,
−
s̃c the (p + 4) × 1 vector of the average of the s̃ct. The estimator of the

covariance matrix is given by

ṼT = s̃c′s̃c/T.

We call LRh the statistic

LRh = T
−
s̃c
′
Ṽ −1

T

−
s̃c.

This statistic along with others was suggested by Newey and West [1987], it is also a LM

type test statistic because when the model is exactly identified, heteroskedastic-robust

versions of LR, LM and Wald tests are identical (Newey and West [1987], Section 3).
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Appendix C: Estimated G2 transition functions


