The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction

Abstract : We consider reaction-diffusion systems which, in addition to certain slow reactions, contain a fast irreversible reaction in which chemical components A and B form a product P. In this situation and under natural assumptions on the RD-system we prove the convergence of weak solutions, as the reaction speed of the irreversible reaction tends to infinity, to a weak solution of a limiting system. The limiting system is a Stefan-type problem with a moving interface at which the chemical reaction front is localized.
Type de document :
Article dans une revue
Discrete and Continuous Dynamical Systems - Series S, American Institute of Mathematical Sciences, 2012, 5 (1), pp.49-59. 〈10.3934/dcdss.2012.5.49〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00685755
Contributeur : Marie-Annick Guillemer <>
Soumis le : jeudi 5 avril 2012 - 17:45:16
Dernière modification le : jeudi 15 novembre 2018 - 11:56:36

Lien texte intégral

Identifiants

Citation

Dieter Bothe, Michel Pierre. The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction. Discrete and Continuous Dynamical Systems - Series S, American Institute of Mathematical Sciences, 2012, 5 (1), pp.49-59. 〈10.3934/dcdss.2012.5.49〉. 〈hal-00685755〉

Partager

Métriques

Consultations de la notice

379