Effect of breakfast glycemic index on metabolic responses during rest and exercise in overweight and non-overweight adolescent girls
Keith Tolfrey, Julia Kirstey Zakrzewski, Emma Stevenson

To cite this version:

HAL Id: hal-00685383
https://hal.archives-ouvertes.fr/hal-00685383
Submitted on 5 Apr 2012
Effect of breakfast glycemic index on metabolic responses during rest and exercise in overweight and non-overweight adolescent girls

Julia K Zakrzewski (MSc)1, Emma J Stevenson (PhD)2 and Keith Tolfrey (PhD)1

1School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK

2School of Life Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST

Corresponding author:

Dr. Keith Tolfrey

School of Sport, Exercise and Health Sciences

Loughborough University

Loughborough

LE11 3TU

UK

k.tolfrey@lboro.ac.uk

Phone +44(0)1509 226355

Fax +44(0)1509 226301

Source of support: The study was funded by Tanita Grant In Aid.

Running title: Effect of glycemic index on metabolism in girls
Abstract

Background/Objectives: The metabolic responses to mixed breakfast meals with different glycemic indexes (GI) and their effects on substrate metabolism during exercise in adolescent girls have not been examined. The interaction with weight status also warrants investigation. The present study investigated the effect of mixed breakfast meals containing high GI (HGI) or low GI (LGI) carbohydrates on metabolic responses and fat oxidation during rest and exercise in overweight (OW) and non-overweight (NO) adolescent girls.

Subjects/Methods: Eight OW and 12 NO adolescent girls consumed an isoenergetic HGI (GI=73) or LGI (GI=44) breakfast 120 min before completing a 30-min treadmill walk at 50% \(\dot{V}O_2\) peak.

Results: Peak blood glucose concentration was higher for HGI compared with LGI in OW (P=0.023), but not NO (P>0.05) girls. Blood glucose total area under the curve (TAUC) was 13% higher in HGI compared with LGI in OW (P=0.006), but only 4% higher in NO (P=0.072) girls. Plasma insulin data were loge transformed (lninsulin). Plasma lninsulin concentrations were not different between HGI and LGI (P>0.05). Peak plasma lninsulin concentration (P=0.016) and TAUC (P=0.001) were greater in OW than NO girls. Fat oxidation during postprandial rest and exercise was not different between breakfasts (P>0.05).

Conclusions: The elevated glycemic response in HGI compared with LGI was more pronounced in OW girls, suggesting a reduced ability to cope with the metabolic demands of the HGI, but not LGI, breakfast. Manipulation of breakfast GI did not alter fat oxidation during rest or subsequent moderate intensity exercise in OW and NO adolescent girls.

Keywords: glycemic index, overweight, adolescents, females, metabolism, exercise
Introduction

Several lines of evidence have demonstrated benefits associated with regular breakfast consumption in children and adolescents, relating to academic performance (Lien, 2007), nutrition (Barton et al., 2005; Song et al., 2006), cardiorespiratory fitness and obesity (Sandercock et al., 2010). However, the relationship between breakfast and health benefits may not be due to consumption per se, but rather breakfast composition (Cho et al., 2003). There are concerns that ready-to-eat cereals commonly eaten by children and adolescents (Song et al., 2006) fail to meet national nutrition recommendations (Schwartz et al., 2008). In contrast, there has been considerable interest in potential health benefits of breakfasts containing low glycemic index (LGI) carbohydrates (Ludwig et al., 1999; Willet et al., 2002).

Manipulation of the GI of a mixed breakfast meal affects postprandial glycemic and insulinemic responses (Ludwig et al., 1999; Stevenson et al., 2009). Evidence that breakfasts rich in LGI carbohydrates promote satiety in obese adolescents (Ball et al., 2003; Ludwig et al., 1999) suggest that LGI breakfast consumption could have direct implications for pediatric weight management. In adults, the reduced glucose and insulin response to a LGI compared with HGI breakfast has also been shown to result in increased fat oxidation during rest (Stevenson et al., 2009) and subsequent exercise (Stevenson et al., 2006; 2009; Wee et al., 2005). However, breakfast GI does not affect fat oxidation during rest or exercise when comparing a moderate GI and HGI breakfast (Backhouse et al., 2007) or when exercise is preceded by two LGI meals rather than breakfast alone (Stevenson et al., 2005). A recent study even reported higher fat oxidation during a cycling time trial following a HGI compared with LGI breakfast (Moore et al., 2010). Therefore, the influence of carbohydrate GI on postprandial fat oxidation remains unclear.
Reductions in fat oxidation (Zunquin et al., 2009), glucose tolerance (Sinha et al., 2002), and insulin sensitivity (Weiss et al., 2004) have been shown in overweight and obese young people. Substituting a HGI breakfast for a LGI breakfast may, therefore, be particularly beneficial for overweight individuals through increased glycemic control (Willet et al., 2002), fat oxidation (Stevenson et al., 2009) and satiety (Ludwig et al., 1999). However, the majority of studies investigating the impact of GI on fat oxidation have included endurance trained or recreationally active adults as participants (Stevenson et al., 2006; Wu et al., 2003) and we are unaware of similar studies including overweight individuals or young people, despite well recognised differences in metabolism between adolescents and adults (Riddell et al., 2008). Therefore, we examined the effect of mixed breakfast meals providing HGI or LGI carbohydrates on metabolic responses and substrate utilization during rest and exercise in overweight and non-overweight adolescent girls.
Subjects and Methods

Subjects

After gaining approval from the University Ethical Advisory sub-Committee, eight overweight (OW) and twelve non-overweight (NO) girls aged 11-13 y participated in the study. Overweight status was defined using age and sex specific body mass index (BMI) reference points (Cole et al., 2000). Written informed consent was obtained from the primary carer and the subjects provided their “willingness to participate”. Subjects were screened using a health history questionnaire. Exclusion criteria included: known congenital heart disease, musculoskeletal problems, uncontrolled exercise-induced asthma, diabetes and epilepsy. Stature was measured to the nearest 0.01 m using a stadiometer (Holtain, Holtain Limited, Dyfed, UK) and body mass (BM) to the nearest 0.1 kg using a beam balance scale (Seca Model 888, Hamburg, Germany). Skinfold thickness was measured over the triceps, subscapular and medial calf sites to the nearest 0.2 mm (Harpenden, Baty International, England). Each site was measured three times and median values were used to estimate percentage body fat (Slaughter et al., 1988); fat free mass (FFM) was estimated subsequently.

Waist circumference was measured midway between the 10th rib and the iliac crest (McCarthy et al., 2005) using a Gulick tape measure (Creative Health Products, Plymouth, MI). With the assistance of a primary home-based carer, the girls provided a self-assessment of their physical maturation using pubic hair (Tanner, 1962).

Preliminary measurements

Subjects completed two preliminary tests on a treadmill (RunRace, TechnoGym, Gambettola, Italy) to determine 1) the relation between running speed and oxygen uptake ($\dot{V}O_2$) and 2) peak oxygen uptake ($\dot{V}O_2$peak). The speed eliciting 50% of each subject’s $\dot{V}O_2$peak was determined subsequently.
Test breakfasts

Subjects were provided with a breakfast consisting of either HGI or LGI foods and containing 1.5 g CHO·kg BM⁻¹ (Table 1). The breakfasts were matched for energy, macronutrients and fluid, but the LGI breakfast contained more fibre. The GI values for individual foods were taken from the International Table of GI and Glycemic Load Values (Atkinson et al., 2008) and breakfast GI was calculated from the weighted means of the GI values for the component foods (Wolever and Jenkins, 1986). The calculated GI for the breakfasts were 73 (HGI) and 44 (LGI).

Experimental protocol

Subjects completed two experimental trials (HGI and LGI) in a counter-balanced order. Trials were conducted a maximum 48 h apart for the girls who had irregular menstruation to minimise the potential influence of menstrual cycle phase on within-subject comparisons (Oosthuyse and Bosch, 2010). Due to the sporadic nature of the menstrual cycle in young adolescent girls, other studies have not accounted for menstrual cycle phase (Timmons et al., 2007). The girls consumed the same diet and minimised physical activity in the 24 h prior to experimental trials.

Subjects reported to the laboratory at 08:00 following a 12 h fast. Following fasted measures, the girls consumed a HGI or LGI breakfast (Table 1) within 15 min. Blood, expired air samples and subjective ratings of hunger were collected at regular intervals during the 120 min postprandial period. Subsequently, the girls completed a 30 min treadmill walk at 50% $\dot{V}O_2_{\text{peak}}$. Water was available ad libitum throughout the first trial and the girls drank the same volume during the second trial.
Blood sampling and analysis

Capillary blood samples were obtained from a pre-warmed hand by finger prick (Unistik 2, Owen Mumford, UK) into collection tubes (Microvette CB300 EDTA, Sarstedt Ltd, UK). Capillary rather than venous blood sampling is preferred for reliable GI testing (Wolever et al., 2003). Duplicate 25 µl aliquots of whole blood were deproteinised in 250 µl of ice cooled perchloric acid (PCA; 2.5%), centrifuged for 4 min at 2415 x g and stored at -20°C for blood glucose analysis. The remaining whole blood was centrifuged for 4 min at 2415 x g. Plasma was extracted and stored at -20°C for insulin analysis.

Blood glucose concentration was determined spectrophotometrically using the glucose oxidase method (GOD-PAP, Randox, Ireland). Plasma insulin was measured using an enzyme-linked immunosorbent assay (ELISA, Mercodia. Sweden). Total 2-h area under the curve (TAUC) for blood glucose and plasma insulin was calculated using the trapezium rule (Wolever and Jenkins, 1986). Homeostasis model assessment-insulin resistance (HOMA-IR) was calculated (Mathews et al., 1985). The intra-assay coefficient of variation was 2.4% for blood glucose and 6.3% for plasma insulin.

Expired air and indirect calorimetry

Expired air was sampled continuously during exercise tests and for 10 min periods for resting measurements. Breath-by-breath data were displayed online using a portable metabolic cart (K4 b², Cosmed, Rome, Italy) and interpolated into 1 sec intervals for subsequent analyses. Calibration procedures were carried out prior to each experimental test, as described previously (Zakrzewski and Tolfrey, 2011). Fat oxidation rates were calculated using stoichiometric equations, with the assumption that the urinary nitrogen excretion rate was
negligible and a physiological steady-state had been attained (Frayn, 1983). The total area under the fat oxidation versus time curve (TAUC) for the 120 min rest period was calculated using the trapezium rule and included in subsequent analyses.

Perceived hunger

Perceptions of hunger, satisfaction, fullness, prospective food consumption and breakfast palatability were assessed using 100 mm visual analogue scales.

Statistical analyses

Statistical analyses were completed using SPSS (v16 SPSS Inc, Chicago, IL, USA). The insulin data were transformed using a natural logarithm (lninsulin) to normalize them and homogenize the variances between the groups. Breakfast by time (2 x 7) repeated measures ANOVA were used to examine differences between HGI and LGI over time for glucose and lninsulin; these were conducted separately for OW and NO girls. Breakfast by group (2 x 2) mixed measures ANOVA with breakfast as the repeated factor were used to compare the two groups directly for glucose and lninsulin TAUC. For resting and exercise fat oxidation, breakfast by group (2 x 2) mixed measures ANCOVA with estimated FFM as the covariate were used. Homogeneity of regression slopes was confirmed prior to each ANCOVA. Paired sample t-tests with Bonferroni correction were used to compare glucose and lninsulin concentrations at different time points and to follow-up significant two-way interactions. Values are expressed as mean(SD), unless stated otherwise, and effect sizes (ES) were calculated. Statistical significance was accepted at P≤0.05.
Results

Subject characteristics

Complete data for 8 OW and 12 NO girls were available for analyses. Body fat, BMI, body mass, fat free mass, waist circumference and hip circumference were higher in OW compared with NO girls ($P \leq 0.05$), whereas $\dot{V}O_2_{peak}$ (mL·kg$^{-1}$·min$^{-1}$) was higher in NO girls ($P \leq 0.0005$) (Table 2).

Blood glucose concentration

Following breakfast, blood glucose concentrations increased and peaked at a median (interquartile range) time of 30(0) min for all trials, except in the OW HGI trial where it peaked at 45 min in 4 girls (median 37.5(15) min) (Figure 1). Breakfast by time interactions were found for OW ($P \leq 0.001$) and NO ($P=0.001$); concentrations were higher in HGI compared with LGI at 45 ($P=0.004$) and 60 ($P \leq 0.001$) min in OW girls and at 90 ($P=0.006$) and 120 ($P=0.001$) min in NO girls.

There were no differences in fasting or postprandial glucose between OW and NO girls at any time points ($P>0.05$). However, breakfast by group interactions for peak blood glucose ($P=0.053$, ES: 0.44) and TAUC ($P=0.026$, ES: 0.50) were found. Peak blood glucose was higher for HGI compared with LGI in OW (6.1 vs. 5.5 mmol·L$^{-1}$; $P=0.023$, ES: 0.74), but similar between breakfasts in NO (5.8 vs. 5.9 mmol·L$^{-1}$; $P=0.741$). There were no between group differences in peak blood glucose after the HGI ($P=0.404$) or LGI ($P=0.122$) breakfasts.

Blood glucose TAUC was 13% higher in HGI compared with LGI in OW ($P=0.006$, ES: 0.82) but only 4% higher in NO ($P=0.072$, ES: 0.51). Moreover, HGI TAUC was 9% higher in OW compared with NO ($P=0.070$, ES: 0.41), but LGI TAUC was similar between the groups.
Similarly, the pattern of blood glucose over time differed between the OW and NO girls for HGI (P=0.047, ES: 0.24), but not LGI (P=0.119).

Plasma insulin concentration

Following breakfast, plasma lninsulin concentration increased and peaked at a median (interquartile range) time of 30(15) and 30(0) min for HGI and LGI in NO and 30(15) min in the OW LGI trial, but 45(15) min in the OW HGI trial (Figure 2). Breakfast by time interactions were found for OW (P=0.012) and NO (P≤0.005); however, pairwise comparisons only revealed a single significant difference in NO girls at 120 min (P=0.001). Furthermore, neither the main effect for breakfast nor the breakfast by group interaction for lninsulin TAUC were significant (P>0.05).

Although a strong statistical trend in fasting lninsulin between the OW and NO girls was found (P=0.054, ES: 0.45), pairwise analyses were not significant (P>0.025). Peak lninsulin (P=0.016) and TAUC (P=0.001) were higher in OW than NO. Whilst Bonferroni follow-up indicated that peak lninsulin was only significantly different following the HGI breakfast (P≤0.025), it was clear that both breakfasts led to significant differences in TAUC (P≤0.025) between OW and NO. HOMA-IR was higher in OW compared with NO (3.2 vs. 2.9, P=0.054).

Fat oxidation

The resting and exercise fat oxidation results by group and breakfast are in Table 3. During both postprandial rest and subsequent exercise, absolute and ANCOVA FFM adjusted fat oxidation were not different between HGI and LGI breakfast conditions in either group of girls (P>0.05).
During the postprandial rest period, absolute fat oxidation was higher in the OW compared with NO girls in HGI (P=0.004, ES: 0.61) and LGI (P=0.005, ES: 0.60). However, once between group differences in FFM were accounted for, resting fat oxidation was similar in the two groups of girls (P>0.05). During subsequent exercise, absolute and ANCOVA FFM adjusted total fat oxidation were not different when comparing the OW and NO girls for the HGI and LGI conditions (P>0.05).

Hunger

Perceptions of hunger, satisfaction, fullness, prospective food consumption and breakfast palatability were similar between trials (P>0.05).
Discussion

The main finding of the present study was that the higher glycemic response in HGI compared with LGI was more pronounced in OW than NO girls, possibly reflecting a reduced ability to cope with the metabolic demands of a HGI breakfast in OW girls. Breakfast GI did not affect fat oxidation during the 120 min postprandial rest period or subsequent moderate intensity exercise in OW and NO adolescent girls.

A novel finding was that the higher glycemic response in HGI compared with LGI was exaggerated in the OW girls, mainly due to the delayed decline in blood glucose following the postprandial peak. This may indicate a delayed blood glucose uptake up to 60 min following HGI breakfast consumption in OW girls. Previous work has reported higher glycemic responses to HGI compared with LGI breakfasts in obese adolescents, but these studies did not include non-overweight participants for direct comparison (Ball et al., 2003; Ludwig et al., 1999). Furthermore, higher and more sustained postprandial glucose responses have been reported in obese compared with non-obese children (Sinha et al., 2002). However, we were unable to locate another study that has investigated whether these differences between OW and NO young people are dependent on the GI of the consumed carbohydrate. Perälä et al. (2011) recently reported that the higher glycemic response to a HGI compared with LGI meal was similar in OW and NO 62 to 72 year olds. However, the meals only contained 50 g CHO and were not scaled to body mass. It is, therefore, difficult to compare our findings directly with those of Perälä et al. (2011) due to differences in study design and participants.

It is possible that the combination of readily absorbed glucose from the HGI (but not LGI) breakfast and higher insulin resistance (HOMA-IR) in the OW girls contributed to the larger glycemic response in the OW HGI trial. Furthermore, plasma insulin peaked earlier and
returned towards baseline values for LGI, but remained elevated for HGI in the OW girls. The earlier peak in plasma insulin may have contributed to the more rapid decline in blood glucose in LGI, as suggested previously in adults (Schenk et al., 2003).

Collectively, these findings indicate that LGI breakfasts may be beneficial for blood glucose control in OW girls. Furthermore, the elevated glycemic response in the OW HGI trial may also increase voluntary food intake later in the day (Ludwig et al., 1999). Encouragingly, adults with higher postprandial glycemic responses have a greater postprandial reduction when changing from HGI to LGI foods (Høstmark, 2007) and lowering breakfast GI for 21 days reduced fasting glucose and satiety in obese adults (Pal et al., 2008). Moreover, the similar palatability between breakfasts in our study indicates LGI breakfast promotion for OW girls may be feasible. As the higher fibre content in the LGI breakfast may have contributed to the lower glycemic response to this breakfast (Pi-Sunyer, 2002), it may be more appropriate to recommend LGI high-fibre breakfasts (rather than LGI breakfasts) for OW girls. This is feasible since LGI foods typically contain more fibre than HGI foods. Nevertheless, confirmation of these results in larger groups of young people, including boys, is required.

Breakfast GI did not affect postprandial fat oxidation during rest or exercise in either group of girls. However, it is noteworthy that LGI resulted in 12% higher exercise fat oxidation (ANCOVA adjusted for FFM) in both groups on average, a finding that may have meaningful health-related implications since higher rates of fat oxidation may ameliorate the development of obesity and type 2 diabetes (Holloway et al., 2009). During exercise, studies in adults have reported higher fat oxidation following LGI breakfasts (Stevenson et al., 2009; Wee et al., 2005), no effect of GI (Backhouse et al., 2007; Stevenson et al., 2005) or even higher fat
oxidation following a HGI breakfast (Moore et al., 2010). During rest, most have reported no

effect of breakfast GI on fat oxidation (Díaz et al., 2005; Stevenson et al., 2005; Wee et al.,
2005), although higher fat oxidation following LGI breakfasts has been shown (Stevenson et
al., 2009). Discrepancies between studies may be due to differences in breakfast size or
composition, exercise mode, intensity and duration, postprandial time period and subject
characteristics. However, higher exercise fat oxidation following LGI breakfasts has been
reported 45 min to 3 h (Sparks et al., 1998; Stevenson et al., 2009) following breakfasts
containing 1 to 2.5 g CHO·kg BM\(^{-1}\) during exercise lasting 60 or 30 min at 50-71% \(\dot{V}O_2\text{peak}\)
(Stevenson et al., 2009; Wee et al., 2005). It is, therefore, difficult to ascertain which factors
contribute specifically to the higher fat oxidation following LGI breakfasts in some adult
studies. It is possible that the 1.5 g CHO·kg BM\(^{-1}\) breakfast, 120 min postprandial period and
30 min exercise duration at 50% \(\dot{V}O_2\text{peak}\) used in the present study was a sub-optimal
combination to induce differences in fat oxidation between HGI and LGI. Furthermore,
differences in fat metabolism between adolescents and adults (Riddell et al., 2008) may have
resulted in discrepancies between our study and some of the adult literature. Therefore, further
examination of the relationship between breakfast GI and fat oxidation in young people is
warranted.

The similar insulin response between HGI and LGI in our study may have underpinned the
similarity in fat oxidation (Horowitz et al., 1997). Furthermore, fructose has a lower GI than
glucose, but results in higher blood lactate concentrations (Moore et al., 2000). It is possible
that higher lactate concentrations compromised fat oxidation following the LGI breakfast
through direct inhibition of adipose tissue free fatty acid release (Boyd et al., 1974). Indeed,
resting fat oxidation was lower after high fructose compared with high glucose meals in obese
adults, despite lower glycemic and insulinemic responses to the high fructose meal (Tittelbach
et al., 2000). Although we did not measure blood lactate, higher postprandial lactate concentrations have been reported following LGI compared with HGI breakfasts (Stevenson et al., 2006). In addition, blood lactate can affect the validity of indirect calorimetry for fat oxidation estimations (Rowlands, 2005). However, it is unlikely that this was a factor in the present study since the girls exercised at a moderate intensity (50% \(\dot{VO}_2_{\text{peak}}\)) and additional steps were taken to increase the validity of indirect calorimetry (e.g. removing individual \(\dot{VO}_2\) and \(\dot{VCO}_2\) values \(\geq 3 \text{ SD's} \) from the mean and verifying a steady state in \(\dot{VO}_2\) and \(\dot{VCO}_2\)).

Although we found no difference in perceptions of hunger between breakfasts, the 120 min postprandial period may have been too short for differences to emerge (Anderson and Woodend, 2003; Stevenson et al., 2009). Furthermore, prolongation of satiety based on time to request food was found \(>3 \text{ h} \) following LGI compared with HGI foods in obese adolescents, despite no difference using hunger scales (Ball et al., 2003).

In summary, the higher glycemic response in HGI compared with LGI was more pronounced in OW girls, suggesting a reduced ability to cope with the metabolic demands of a HGI breakfast in this population. This provides further evidence for potential health benefits of LGI foods and suggests LGI breakfast promotion for OW girls is warranted. Breakfast GI did not affect fat oxidation during rest or exercise in OW and NO adolescent girls, although further examination of this relationship young people is required.
Acknowledgments

We thank Tanita Grant In Aid for funding the research, all of the participants and their parents for their commitment to our study, and Professor Clyde Williams for his advice. We also thank Mr Graham Bett, Mr Ian Smith, and Mrs Sophie Diaper from Woodbrook Vale High School, Loughborough for their support with the study.

Conflict of interest

The authors declare no conflict of interest.
References

Figure legends

Figure 1 Blood glucose concentration response to the HGI and LGI breakfasts for the overweight (OW; figure 1a) and non-overweight (NO; figure 1b) girls. Breakfast was consumed between 0 and 15 min. Breakfast x time interactions were significant for OW (P≤0.001) and NO (P=0.001) girls.

* a significant difference between HGI and LGI (Bonferroni correction; significance was P≤0.025).

Figure 2 Plasma insulin concentration response to the HGI and LGI breakfasts for the overweight (OW) and non-overweight (NO) girls. Breakfast was consumed between 0 and 15 min. Breakfast x time interactions were significant for OW (P=0.012) and NO (P≤0.005) girls.

* a significant difference between HGI and LGI in NO girls (Bonferroni correction; significance was P≤0.025).
Table 1 Composition of test breakfasts for a 45 kg girl

<table>
<thead>
<tr>
<th>Breakfasts</th>
<th>Description</th>
<th>Macronutrient content</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGI</td>
<td>45 g Cornflakes(^a) + 135 g skimmed milk, 44 g white bread, 4 g jam, 5 g margarine(^a), 124 g water (total weight = 356 g)</td>
<td>1498 kJ energy, 68 g CHO, 4.2 g fat, 11.6 g protein, 2.7 g fibre</td>
</tr>
<tr>
<td>LGI</td>
<td>41 g muesli(^a) + 90 g skimmed milk, 107 g apple, 169 g apple juice, 87 g yoghurt (total weight = 493 g(^c))</td>
<td>1498 kJ energy, 67 g CHO, 4.3 g fat, 11.7 g protein, 5.3 g fibre</td>
</tr>
</tbody>
</table>

\(^a\) Cornflakes, Kellogg’s; Flora original margarine spread, Unilever; Alpen no added sugar, Weetabix Ltd.

\(^b\) Calculated according to Wolever and Jenkins (1986) with GI values taken from Atkinson et al. (2008).

\(^c\) Total weight of LGI breakfast higher than HGI breakfast (P<0.005).
Table 2 Subject characteristics

<table>
<thead>
<tr>
<th></th>
<th>OW</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=8</td>
<td>n=12</td>
</tr>
<tr>
<td>Age (y)</td>
<td>12.6(0.5)</td>
<td>13.1(0.4)</td>
</tr>
<tr>
<td>Body mass (kg) a</td>
<td>70.9(19.4)</td>
<td>45.5(8.4)</td>
</tr>
<tr>
<td>Stature (m)</td>
<td>1.61(0.08)</td>
<td>1.56(0.09)</td>
</tr>
<tr>
<td>Body mass index (kg·m⁻²) a</td>
<td>27.0(5.8)</td>
<td>18.5(2.0)</td>
</tr>
<tr>
<td>Body fat (%) a</td>
<td>35.7(6.0)</td>
<td>19.2(3.9)</td>
</tr>
<tr>
<td>Fat free mass (kg) a</td>
<td>45(9)</td>
<td>37(6)</td>
</tr>
<tr>
<td>Waist circumference (cm) a</td>
<td>84.6(13.5)</td>
<td>63.0(4.7)</td>
</tr>
<tr>
<td>Hip circumference (cm) a</td>
<td>99.5(12.3)</td>
<td>82.1(8.2)</td>
</tr>
<tr>
<td>Tanner Stage (pubic hair) b</td>
<td>3(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>Treadmill $\dot{V}O_2$ peak (mL·kg⁻¹·min⁻¹) a</td>
<td>32(7)</td>
<td>45(6)</td>
</tr>
</tbody>
</table>

Tanner stage is an estimation of secondary sexual characteristics (Tanner, 1962).

$\dot{V}O_2$ peak – peak oxygen uptake.

a significantly different between OW and NO.

b median (interquartile range).
Table 3
Resting and exercise fat oxidation (area under curve over time): comparisons between breakfasts and groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Breakfast</th>
<th>Rest (g·120 min⁻¹)</th>
<th></th>
<th>Exercise (g·30 min⁻¹)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Absolute</td>
<td>FFM¹</td>
<td>Absolute</td>
<td>FFM¹</td>
</tr>
<tr>
<td>OW</td>
<td>HGI</td>
<td>0.25(0.10)ᵃ</td>
<td>0.20(0.05)</td>
<td>5.05(1.53)</td>
<td>4.49(1.71)</td>
</tr>
<tr>
<td></td>
<td>LGI</td>
<td>0.26(0.13)ᵇ</td>
<td>0.18(0.07)</td>
<td>6.03(3.49)</td>
<td>5.08(2.38)</td>
</tr>
<tr>
<td>NO</td>
<td>HGI</td>
<td>0.15(0.04)</td>
<td>0.16(0.09)</td>
<td>4.76(1.83)</td>
<td>5.14(1.66)</td>
</tr>
<tr>
<td></td>
<td>LGI</td>
<td>0.13(0.05)</td>
<td>0.14(0.07)</td>
<td>5.23(1.63)</td>
<td>5.86(2.31)</td>
</tr>
</tbody>
</table>

All values are mean(SD)

- OW – overweight girls; NO – non-overweight girls; HGI – high glycemic index; LGI – low glycemic index
- ¹ANCOVA adjusted values with FFM (fat free mass) as the covariate
- ᵃSignificantly higher in OW compared with NO girls after consuming the HGI breakfast (P=0.004)
- ᵇSignificantly higher in OW compared with NO girls after consuming the LGI breakfast (P=0.005)