Sampled-data stabilization via Round-Robin scheduling: A direct Lyapunov-Krasovskii approach

Kun Liu 1 Emilia Fridman 1, * Laurentiu Hetel 2 Jean-Pierre Richard 2, 3, 4
* Corresponding author
2 SyNeR - Systèmes Non Linéaires et à Retards
CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
3 NON-A - Non-Asymptotic estimation for online systems
Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Abstract : This paper studies stabilization of networked control systems with communication constraints, variable sampling interval and delay. We focus on static output feedback controllers for linear systems. The system sensors nodes are supposed to be distributed over a network. Data transmission over the network is subject to the Round-Robin scheduling protocol. We present the closed-loop system as a switched system with multiple delayed samples. By constructing an appropriate time-dependent Lyapunov functional, which takes into account the switched system model and the sawtooth delays induced by sampled-data control, we derive the exponential stability conditions in terms of Linear Matrix Inequalities (LMIs). Polytopic uncertainties in the system model can be easily included in the analysis. The efficiency of the method is illustrated on the classical cart-pendulum benchmark problem.
Document type :
Conference papers
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00685179
Contributor : Jean-Pierre Richard <>
Submitted on : Wednesday, April 4, 2012 - 1:57:06 PM
Last modification on : Friday, March 22, 2019 - 1:35:46 AM

Identifiers

  • HAL Id : hal-00685179, version 1

Citation

Kun Liu, Emilia Fridman, Laurentiu Hetel, Jean-Pierre Richard. Sampled-data stabilization via Round-Robin scheduling: A direct Lyapunov-Krasovskii approach. IFAC'11, 18th IFAC World Congress, Aug 2011, Milano, Italy. pp.10.3182/20110828-6-IT-1002.02528, 2011. 〈hal-00685179〉

Share

Metrics

Record views

255