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The design of cars is mainly based on the use of computational models to analyze structural
vibrations and internal acoustic levels. Considering the very high complexity of such structural-
acoustic systems, and in order to improve the robustness of such computational structural-acoustic
models, both model uncertainties and data uncertainties must to be taken into account. In this
context, a probabilistic approach of uncertainties is implemented in an adapted computational
structural-acoustic model. The two main problems are the experimental identification of the pa-
rameters controlling the uncertainty levels and the experimental validation. Relevant experiments
have especially been developed for this research in order to constitute an experimental database
devoted to structural vibrations and internal acoustic pressures. This database is used to perform
the experimental identification of the probability model parameters and to validate the stochastic

computational model.

I. INTRODUCTION

In the automotive industry, computational structural-
acoustic models are nowadays intensively used to analyze
the structural-acoustic behavior of vehicles in terms of
structural vibrations and internal acoustic levels mainly
for the low-frequency range. The present evolution is
to extend such computational models to the medium-
frequency range. In this paper, we are interested in
the booming noise consisting in studying the acoustic
response at passengers’ ears induced by engine structure-
borne excitations in the low-frequency band but also in
the lower part of the medium-frequency band. Note that
a very few papers have been published concerning the
booming noise prediction in this frequency band using a
computational model with or without experimental com-
parisons (Sol and Van-Herpe, 2001; Sung and Nefske,
2001; Hamdi et al., 2005; Hayashi et al., 2000). In ad-
dition, structural-acoustic analyses of cars in the high-
frequency band are of a great importance for automo-
tive engineering and can generally be treated by using
statistical energy analysis and diffuse field methods for
which numerous papers have been published in the last
decade (see for instance Lyon and DeJong, 1995; Le Bot,
2002; Gagliardini et al., 2005; Shorter and Langley, 2005;
Langley, 2007). Considering the very high complexity
of such structural-acoustic systems, the mean computa-
tional structural-acoustic models do not allow sufficiently
good predictions to be obtained and consequently, must
be improved in implementing a model of uncertainties in
order to increase the robustness of predictions. In this
context, it is necessary to validate such computational
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structural-acoustic models with experiments. It should
be noted that a very few complete and documented ex-
perimental databases are available in the literature. Only
some elements concerning two databases can be found in
the literature (Wood and Joachim, 1987 ; Kompella and
Bernhard, 1996). Nevertheless, these two experimental
databases cannot easily be used because there are no
available computational structural-acoustic models asso-
ciated with these databases. In order to get round this
difficulty, a complete experimental campaign devoted to
structural vibrations and internal acoustic pressures has
been done for this research (Durand, 2007). This exper-
imental database is presented in this paper and is used
to perform an experimental identification and to validate
the computational model. The problem related to such
predictions with computational structural-acoustic mod-
els is extremely difficult due to the over-sensitiveness of
structural dynamical responses with respect to manufac-
turing processes and due to small variabilities induced by
the presence of optional extra around a main configura-
tion. Note that automotive engineering requires to pre-
dict the structural-acoustic responses of a car of the same
type with optional extra using only one computational
structural-acoustic model. This over-sensitiveness may
be seen by computation when applying design changes,
but also experimentally when monitoring vehicle disper-
sions (Wood and Joachim, 1987; Kompella and Bern-
hard, 1996; Hills et al., 2004). Concerning the computa-
tional structural-acoustic models, many uncertainties are
introduced by the mechanical-acoustical-mathematical
modeling process due to the high complexity of the struc-
ture and of the internal acoustic cavity in terms of geom-
etry, boundary conditions, material properties, etc. Even
if a sophisticated structural-acoustic model is developed,
model uncertainties and data uncertainties are inherent
in such a computational structural-acoustic model. One



objective of this paper is to use a representative compu-
tational structural-acoustic model developed by an au-
tomotive industry (Sol and Van Herpe, 2001; Durand et
al., 2005a). In such a finite element model, (1) the struc-
ture is discretized with a reasonable fine scale, (2) the
internal acoustic cavity is discretized with a coarse scale
adapted to the frequency band of analysis and (3) the
sound-proofing schemes located at the interface between
the structure and the acoustic cavity is taken into account
by a very simplified model. Clearly, the sound-proofing
schemes could be discretized with a fine scale using the fi-
nite element method and formulations for porelastic ma-
terials (Attala et al., 2001; Hamdi et al., 2005). Such
an approach has not been retained in this research. It
seems that there is no paper available in the literature de-
voted to the development of a computational structural-
acoustic model for cars including a model of uncertain-
ties and associated with an experimental validation per-
formed with a complete experimental database. In this
paper, we present such a complete computational model
including uncertainties modeling, experimental identifi-
cation and experimental validation (Durand et al., 2004,
2005a and 2005b; Durand, 2007). It is known that several
approaches can be used to take into account uncertainties
in computational models of complex structural-acoustic
systems for the low-frequency band (interval method,
fuzzy sets approach, probabilistic approach, etc). In this
paper, we have chosen to use the most efficient mathe-
matical tool adapted to model uncertainties as soon as
the probability theory can be used, i.e., the probabilistic
approach. The mean computational structural-acoustic
model is constructed from the designed system (concep-
tual system) using a mathematical-mechanical-acoustical
modeling process. The mean computational model which
is considered as a predictive model of the real system de-
pends on parameters (or data). There are two types of
uncertainties which are data uncertainties and model un-
certainties. Data uncertainties are related to the param-
eters of the mean computational vibracoustic model and
model uncertainties are induced by the modeling process.
The ”parametric probabilistic approach” is the most ef-
ficient and powerful method to address ”data uncertain-
ties” in predictive models (see for instance Schueller, 1997
and 2007, and Ghanem and Spanos, 2003 for stochas-
tic finite element methods) as soon as the probability
theory can be used but cannot address "model uncer-
tainties”. The ”nonparametric probabilistic approach”
recently proposed (Soize, 2000, 2001, 2003, 2005a and
2005b) is a way to address both model uncertainties and
data uncertainties. The use of the parametric probabilis-
tic approach of data uncertainties for structural-acoustic
analysis of cars generally requires to introduce a very
large number of random variables. This is due to the
fact that the structural-acoustic responses are very sen-
sitive to many parameters related to the geometry (such
as plate and shell thicknesses, panels curvatures, etc.),
to the spot welding points, to the boundary conditions,
etc. Typically, several ten thousands parameters must

be modeled by random variables. First, it should be
noted that the construction of the probabilistic model
of this large number of parameters is not so easy to carry
out. The experimental identification of a very large num-
ber of probability distributions using measurements of
the response of a structural-acoustic system (solving an
inverse stochastic problem and consequently, solving an
optimization problem) is completely unrealistic. In ad-
dition, as explained above, the parametric probabilistic
approach does not allow model uncertainties to be taken
into account and it is known that model uncertainties are
significant in computational structural-acoustic models
of cars. This is a reason why we propose to use the non-
parametric probabilistic approach of uncertainties which
allows data uncertainties but also model uncertainties to
be taken into account. In addition, the nonparametric
approach introduces a very small number of parameters
(typically 7 parameters) which controls the level of un-
certainties. In this condition, the experimental identifica-
tion of these parameters is realistic and can be performed
by solving the stochastic inverse problem using adapted
mathematical-statistical tools. In this paper, we present
such an approach. It should be noted that the nonpara-
metric probabilistic approach of uncertainties has been
used in the five last years for linear and nonlinear struc-
tural dynamical problems. Nevertheless, this approach
has not yet been used for complex structural-acoustic
systems and is presented in this paper.

In Section II, we present the experimental database
which has specially been constructed for this research.
Section III deals with the mean computational structural-
acoustic model and Section IV is devoted to the stochas-
tic reduced computational model. Finally, in Section V,
we present the structural-acoustic response of the vehi-
cle for which the experimental database has been carried
out, the experimental identification of the probabilistic
model of uncertainties and the experimental validation
of the stochastic computational model.

Il. EXPERIMENTS

Experiments which are described in this section have
been performed in PSA Peugeot-Citroén facilities. The
system under consideration is a given vehicle for which
two sets of experiments have been defined. The first set is
made up of structural vibration and structural-acoustic
measurements. The second set is devoted to the acoustic
measurements inside the internal acoustic cavity.

A. Structural-vibration and structural-acoustic
measurements

The first set of experiments consists (1) of measure-
ments of the structural Frequency Response Functions
(FRFs) between one DOF for a given excitation force
(vertical component of the force at one support of the
engine) and normal accelerations to the structure at six



given points and (2) of measurements of the structural-
acoustic FRFs between nine DOF's of excitation corre-
sponding to three given point forces at supports of the
engine and the acoustic pressure at the driver ears lo-
cated inside the internal acoustic cavity. For structural-
vibration measurements, the excitation is performed by
means of a hammer and the responses are identified
with accelerometers. For the structural-acoustic mea-
surements, the reciprocity method in acoustics is used.
This means that the excitation is produced by an acoustic
source located at the driver ears inside the internal acous-
tic cavity and the acceleration responses are measured at
the nine DOFs introduced above. The frequency band
of analysis is [20, 220] Hz. The experimental database
has been constructed using 20 cars of the same type with
different optional extras. The measurements have been
realized at the exit of the assembly plant. Fig. 1 shows
the car body, the structural driving point (vertical excita-
tion) and the two structural observation points (denoted
by Obs4 and Obs6) for which we present experimental re-
sults and for which comparisons with the computational
structural-acoustic model is carried out. Fig. 2 shows
the front of the car body and the three components of
the three forces applied to the points shown on this figure
and corresponding to the nine DOFs of excitation. Figs.

FIG. 1. Car body, structural excitation and structural obser-
vations.

3 and 4 display the experimental structural FRFs intro-
duced above for observations Obs4 and Obs6 and for the
20 cars. The left figures display the moduli of the FRFs
in dB and the right figures display the corresponding ex-
perimental coherence functions. It should be noted that
the coherence is not really good in the frequency band
[20, 70] Hz and consequently, the level of the moduli of
the experimental FRF's contain experimental errors. This
experimental difficulty is mainly induced by the hammer
technique used for the excitation when the direct method
is used to perform the experimental identification of the

FIG. 2. Front of the car body and structural excitations for
the internal acoustic response.

structural FRFs. Note that this technique is not used to
perform the experimental identification of the structural-
acoustic FRFs which are identified with the reciprocal
acoustic method and for which the experimental identifi-
cation is correct in the frequency band [20, 70] Hz. With
the reciprocal acoustic method, we have not obtained any
difficulties with respect to the coherence functions and
then the measurements are validated in the frequency
band [20, 220] Hz. The strategy used is then the follow-
ing. The experimental structural FRFs is only used in
the frequency band [70, 220] Hz in order to identify the
dispersion parameters of the nonparametric probabilistic
model of uncertainties in the structure (and consequently,
is not used in the frequency band [20, 70] Hz). The ex-
perimental structural-acoustic FRFs identified with the
reciprocal acoustic method is used to validate the com-
putational structural-acoustic model in all the frequency
band [20, 220] Hz including the frequency band [50, 183]
Hz of the booming noise. Figs. 3 and 4 show the exper-
imental dispersion on the structural responses obtained
for the 20 cars of the same type. This experimental dis-
persion is due to the variability induced by the optional
extras and induced by the manufacturing process. This
dispersion is increasing with the frequency which is in
coherence with the expected results. The experimental
dispersion varies between 5 and 10 dB in the regions close
to the resonances and varies from 15 to 30 dB in the
neighborhood of the antiresonances. The experimental
results concerning the structural-acoustic FRFs between
the nine DOF's of the three given excitation forces and
the acoustic pressure at the driver ears are not presented
here in order to limit the number of figures. Nevertheless,
these experimental results are directly used to construct



the experimental booming noise synthesis which is pre-
sented below.

B. Acoustic measurements inside the internal acoustic
cavity

The sec;,)nd set of experiments con81sts of measure-
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FIG. 3. Observation Obs4: Graphs of the modulus in dB
scale of the experimental structural FRFs as a function of
the frequency in Hertz for the 20 cars (left figure). Graphs
of the corresponding experimental coherence functions (right
figure).
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C. Experimental synthesis of booming noise

As explained above, the measurements presented in
Subsections A and B will be used to identify the proba-
bility model of uncertainties. Below we present the mea-
surements which is used to validate the computational
structural-acoustic model allowing the booming noise to
be predicted in the frequency range [50, 183] Hz corre-
sponding to [1500, 5500] rpm (rotation per minute of the
engine). In this paper, the booming noise is defined as the
modulus of the acoustic pressure in dB[A] at the driver
ears for structural excitation induced by the forces deliv-
ered by the engine at its 4 supports when the frequency
of rotation varies in the frequency band of analysis. This
function is denoted by f +— dB¢*P[A](f). Note that the
forces delivered by the engine at its supports correspond
to the second harmonic of rotation (for instance 1500 rpm
corresponds to a frequency equal to 50 Hz). The scale
used is the dB[A] scale which corresponds to the weight-
ing of the usual dB scale by the A-weighting. Fig. 6
displays the graph of f — dB“*P[A](f) related to the ex-
perimental synthesized booming noise and defined above.
In this figure, it can be seen a very large experimental dis-
persion induced by the variability (optional extras) and
by the manufacturing process. As for the experimental
structural FRF's, the experimental dispersion varies be-
tween 5 and 10 dB in the regions close to the resonances
and varies from 15 to 30 dB in the neighborhood of the
antiresonances. These experimental results are in coher-
ence with the experimental structural FRFs and can be
explained by the fact that the experimental dispersion in-
duced by uncertainties inside the internal acoustic cavity
is relatively small with respect to structural uncertainties
(see Fig. 5).

11l. REDUCED MEAN COMPUTATIONAL
STRUCTURAL-ACOUSTIC MODEL

The mean computational structural-acoustic model is
developed in the context of 3D linear elastoacoustics, is
formulated in the frequency domain and is discretized by
using the finite element method. The structural-acoustic
system is made up of a damped elastic structure cou-
pled with a closed internal acoustic cavity filled with a
dissipative acoustic fluid. The external acoustic fluid is
air and its effects on the structural-acoustic system are
assumed to be negligible in the low-frequency band of
analysis which is considered in the paper and which is
devoted to the booming noise prediction. The linear
responses of the structural-acoustic system are studied
around a static equilibrium state which is taken as the
natural state at rest. The reduced mean computational
structural-acoustic model is derived from the mean model
using a modal analysis.

Rpm (rotation per minute)
1000 2000 3000 4000 5000 6000

10 dB

Modulus, dB[A]

50 100 150 200
Frequency, Hz

FIG. 6. Graph of f — dB®"P[A](f) related to the experimen-
tal synthesized booming noise.

A. Description of the structural-acoustic system

We then consider linear vibrations of a fixed damped
structure € (the car body) subjected to external loads
(engine excitations), coupled with its internal cavity Q,
(passenger compartment and trunk) filled with a dis-
sipative acoustic fluid (air). We are mainly interested
in predicting the frequency responses of the structural-
acoustic system in the frequency band of analysis B =
[Wimin s Wmaa| Tad/s corresponding to Bf = [fmin » fmaz)
Hz with wimin = 27 finin and Wz = 27 finaz. The phys-
ical space R3 is referred to a cartesian system and the
generic point of R? is denoted by = (w1, 72, 73). The
system is defined in Fig. 7. Let 0005 = I'sUT'gUT', be the
boundary of €. The outward unit normal to 92 is de-
noted by ns = (ns,1,Ms,2,ns3). The displacement field in
O, is denoted by u(z, w) = (u1(x,w), uz(x,w), uz(x,w)).
The structure is assumed to be fixed on the part I'g of
the boundary 9€)5. The internal acoustic cavity €2, is the
bounded domain filled with a dissipative acoustic fluid.
The boundary 012, of Q, is I'. The outward unit nor-
mal to 99, is denoted by 1, = (14,1, 74,2, Nq,3) and we
then have n, = —n, on 99Q,. The pressure field in Q, is
denoted by p(z,w).



21

ﬁg“”(x,m) @

FIG. 7. Scheme of the structural-acoustic system.

B. Mean boundary value problem for the
structural-acoustic system

The equation of the structural part is written (e.g.,
Trusdell, 1960; Ohayon and Soize, 1998) as

0oi; .

—w?pgu; — %Zj =g in Q, , (1)

with the convention for summations over repeated Latin

indices, in which p, is the mass density, o;; is the stress

tensor, u = (u1,ue,us) is the displacement field of the

structure and g = (g¥°!, gv°!, g°!) is the body force

field applied to the structure. The boundary conditions

are

oij(wns; =g;"" on Ty |
(2)
in which g**"/ = (g5 g5mf | g5urTY is the surface force

field applied to the structure. The damped structure
is made up with a linear non homogeneous anisotropic
viscoelastic material without memory. In the frequency
domain, the constitutive equation is written as o;; =
Qijkh€kh + iwbijkhekh, in which the tensor Qjjkh of the
elastic coefficients and the tensor b;;,, of the damping
coefficients of the material depend on «, are indepen-
dent of w and have the usual properties of symmetry and
positive definiteness. The strain tensor ey is related to
displacement field w by ek, = (Qug/Oxp, + Qup/Oxy)/2.
Concerning the internal dissipative acoustic fluid, we use
the w — p formulation. The equation governing the vi-
bration of the dissipative acoustic fluid occupying domain
), is written as (Ohayon and Soize, 1998; Pierce, 1989;
Lighthill, 1978)

2

1
P 62p+inLV2p+p—V2p=plciVQS—ipis in Q. ,
aCq a a a a

for which the boundary conditions are

1 o) 20
(1 iwr) g :wQu.naH;—aa: on T, , (4)

where p, is the mass density of the acoustic fluid at equi-
librium, ¢, is the speed of sound, 7 is the coefficient due
to the viscosity of the fluid (the coefficient due to thermal
conduction is neglected) and where s(x,w) is the acoustic
source density.

C. Mean computational structural-acoustic model

The finite element method (Zienkiewicz and Taylor,
2000) is used to solve numerically the above boundary
value problem. We consider a finite element mesh of
the structure €2, and of the internal acoustic fluid €,.
Let u® = (uf,...,u; ) be the complex vector of the n
degrees of freedom (DOFs) of the structure according
to the finite element discretization of the displacement

field u. Let p* = (Q‘ll, s ) be the complex vector of
the n, DOFSs of the acoustic fluid to the finite element
discretization of the pressure field p. The finite element
discretization of the boundary value problem in terms of
u and p (Ohayon and Soize, 1998), defined by Eqgs.(1) to
(4) with the Dirichlet condition on I'g yields the mean
computational structural-acoustic model,

A ] Bo)=[FS) e

where [A), (w)] is the dynamical stiffness matrix of the
damped structure in vacuo which is a symmetric (s xny)
complex matrix such that

45, ()] = —w’[M;, ] +iw[D; ]+ (K]

“ing

oij(u)nsj = —pns; on T whichu[MHY)) |,dh) Ty[K;) | are the mass, damping and

stiffness matrices of the structure which are positive-
definite symmetric (ns X ng) real matrices. In Eq.(5),
[A% (w)] is the dynamical stiffness matrix of the dissipa-
tive acoustic fluid which is a symmetric (n, X n,) complex
matrix such that
[A%, (W)] = —w?[M], ] +iw[Dy ]+ [K3 ]

in which [M7 |, [D;, ], [K; ] are the "mass”, "damp-
ing” and ”stiffness” matrices of the acoustic cavity with
fixed coupling interface. The matrix [M, | is a positive-
definite symmetric (nq x ny) real matrix, [D% ] and [K? ]
are positive-semidefinite symmetric (n, X ny) real matri-
ces whose ranks are n, —1 . The matrix [Cy, »,] is the
structural-acoustic coupling matrix which is a (ns x ng,)
real matrix.

D. Reduced mean computational structural-acoustic model

The projection of the mean computational structural-
acoustic model on the structural modes in vacuo and
on the acoustic modes of the acoustic cavity with fixed
coupling interface yields the reduced mean computa-
tional structural-acoustic model. The structural modes



in vacuo and the acoustic modes of the cavity with fixed
coupling interface are calculated by solving the two gen-
eralized eigenvalue problems

(K5 % =AM, [ (6)

(K5, ]¢ = MM 1o (7)

The eigenvectors verify the usual orthogonal properties
(Bathe and Wilson, 1976; Géradin and Rixen, 1994;
Ohayon and Soize; 1998). The structural displacement is
written as

w(w) = [¥g*(w) (8)

in which [¥] is the (ns xn) real matrix whose columns are
constituted of the n structural modes associated with the
n first positive eigenvalues (the n first structural eigenfre-
quencies). The internal acoustic cavity has one constant
pressure mode and m — 1 acoustic modes. The internal
acoustic pressure is written as

p'(w) =[2]g"(w) , 9)

in which [®] is the (n, x m) real matrix whose columns
are constituted (1) of the constant pressure mode asso-
ciated with the zero eigenvalue and (2) of the acous-
tic modes associated with the positive eigenvalues (the
m — 1 first acoustical eigenfrequencies). It should be
noted that the constant pressure mode is kept in order
to model the quasi-static variation of the internal fluid
pressure induced by the deformation of the coupling in-
terface (Ohayon and Soize, 1998). Using Egs. (8) and
(9), the projection of Eq. (5) yields the reduced mean
matrix model of the structural-acoustic system

A wio] [#0)

Conm q°(w)

-]

where [C, ] = [¥]T[C, ., ][2], [£°(w)] = [¥]"[f*(w)]
and [F*(w)] = [@]T[f*(w)]. The generalized dynamical
stiffness matrix [A; (w)] of the damped structure is writ-
ten as

(4, (W)] = M) +iw[D5] + [K5]

in which [M3] = [9)T[M3 ][¥] and [KC3] = (@7 K ][9]
are positive-definite diagonal (n x n) real matrices and
where [D;] = [¥]T[D; ][¥] is, in general, a positive-
definite full (n x n) real matrix. The generalized dynam-
ical stiffness matrix [A;, (w)] of the dissipative acoustic
fluid is written as

(A7 ()] = —w? M7 ]+ iw[D5 ] + (K]

in which [M;,] = [®]T[M}. ][®] is a positive-definite
diagonal (m x m) real matrix and where [D5] =
@] (D5, ][2] and [K5] = [2]T[KS ][®] are positive-

semidefinite diagonal (m xm) real matrices of rank m—1.

IV. STOCHASTIC REDUCED COMPUTATIONAL
STRUCTURAL-ACOUSTIC MODEL

As explained in the Introduction, both data uncertain-
ties and model uncertainties can be taken into account by
using the nonparametric probabilistic approach of uncer-
tainties. Such an approach (Soize, 2000, 2001 and 2005a)
has been used in linear and non linear structural dynam-
ics. Nevertheless, this approach has not yet been used for
complex structural-acoustic systems which requires the
use of extended results concerning random matrix the-
ory in order to take into account model uncertainties for
the structural-acoustic coupling operator. Such extended
results have been recently proposed by (Soize, 2005b).

A. Constructing the stochastic model

The use of the nonparametric probabilistic approach
(Durand, 2007) of both model uncertainties and data un-
certainties for the structure, the acoustic cavity and the
structural-acoustic coupling consists (1) in modeling the
generalized mass [M ], damping [D; ] and stiffness [} ]
matrices of the structure by random matrices [M} ], [D;]
and [K | whose dispersion parameters are denoted by
dnrs, 0ps and 0= respectively; (2) in modeling the gener-

alized mass [M? ], damping [D% ] and stiffness [ ] ma-
trices of the acoustic cavity by random matrices [M7,],

[Dy,] and [K;, ] whose dispersion parameters are denoted
by dpra, dpe and dxa respectively; (3) in modeling the
generalized structural-acoustic coupling matrix [C,, ,,,] by
a random matrix [C), ] whose dispersion parameter is
denoted by dc. The explicit construction of the proba-
bility distribution of these random matrices is given by
(Soize 2000, 2001 and 2005b; Durand, 2007) for random
matrices [My], [Dy], [Ky], [M7,], [Dy,], [KG,] and [C].
Let [H] be anyone of these random matrices. The proba-
bility distribution of such a random matrix [H| depends
on its mean value [H] = E{[H]} where FE is the mathe-
matical expectation and depends on its dispersion param-
eter g which must be taken independent of the matrix
dimension. An algebraic representation of random ma-
trix [H| has been developed and allows independent re-
alizations to be constructed for a stochastic solver based
on the Monte Carlo numerical simulation. This algebraic
representation is recalled below. For random matrices
(M), (D3], (K3, [M5), [D2] and [K2,], random ma-
trix [H] is then a symmetric positive-definite (or positive-
semidefinite) real-valued random matrix and [H] is writ-
ten as [H] = [Lyy]" [Gn] [Ly] in which [H] = [Ly]” [Lg]
and where [Gg] is the random matrix germ. Note that if
[H] is positive-semidefinite than the factorization is not
a Cholesky factorization and is obtained by another al-
gebraic algorithm. When [H] is the rectangular matrix
[Ch,m] (see Soize 2005b), using the following polar de-
composition [C,, ] = [U][T] with [U]" [U] = [I] where
[T] is a positive-definite matrix which can then be factor-
ized as [I'] = [Lo]" [Le], the random matrix [C), ] can



then be written as [C), ] = [U][Lo]T [G 1] [Le] in which
[G ] is another random matrix germ. The stochastic re-
duced model of the uncertain structural-acoustic system
for which the reduced mean model is defined by Egs. (8)
to (10) is written, for all w fixed in the frequency band
of analysis as

Ub(w) =¥ Q°w) , P'w)=1[2]Q%w) , (11)

in which the C"-valued random variable Q*(w) =
(Q5(w), ..., Q% (w)) and the C™-valued random variable
Q% (w) = (QF(w),...,Q% (w)) are the solution of the fol-

lowing random matrix equation

A& )] [§0) - Y] 0

in which the random complex matrices [A; (w)] and
[A% (w)] are defined by [A] (w)] = —w?[M;] +iw[D3] +
[K?] and where [AY, (w)] = —w?[M2,] +iw[D% ]+ [K%].
Let Gy be the positive-definite symmetric (v X v) ran-
dom matrix representing [G ], [Gps], [Gks], [Guma ],
[Gpa], [Gka] or [Gc, ,.]. The following algebraic rep-
resentation of random matrix [G ] allows independent
realizations of [Gg] to be constructed. Random matrix
[Gy) is written [Gy] = [Ly|"[Ly] in which [Ly] is a
random upper triangular (v X v) real matrix whose ran-
dom elements are independent random variables defined
as follows:

(1) For j < j', the real-valued random variable [L];; is
written as [Ly];; = 0,U;j in which o, = 6 (v+1)"1/2
and where Uy is a real-valued Gaussian random variable
with zero mean and variance equal to 1. The parameter
dp controlling the dispersion level of random matrix [H]|
is such that 6y = /E{||[Gx] — [I]||%}/v in which [I]
is the identity matrix and where the subindex F' corre-
sponds to the Frobenius norm.

(2) For j = j’, the positive-valued random variable
[Lylj; is written as [Lylj;» = 0,4/2V; in which o, is
defined above and where V; is a positive-valued gamma
random variable whose probability density function py;,
with respect to dv is written as ‘

1 (u+1_1—]

D(4L + ﬂ)

)
262, 2 e~V
267, 2

pv; (v) = L+ (v)

B. Confidence region of the random responses

Let w — W(w) from B into R be a random ob-
servation of the structural-acoustic system in the fre-
quency domain for which n, independent realizations
w — W(w,0),...,w — W(w,0,,) are computed us-
ing the stochastic model presented in Subsection IV.A
with the Monte Carlo numerical simulation. The con-
fidence region associated with the probability level «
for the random function {W(w),w € B} is constructed
by using the method of quantiles (Serfling, 1980). For
fixed w in B, let Fyy(,) be the cumulative distribution

function (continuous from the right) of random variable
W(w) which is such that Fy ) (w) = P(W(w) < w).
For 0 < p < 1, the p-th quantile or fractile of Fyy () is
defined as ((p) = inf{w : Fyy(,)(w) > p}. Then the up-
per envelope w™ (w) and the lower envelope w™ (w) of the
confidence region are defined by wt(w) = ¢((1 + «)/2)
and w™ (w) = (((1—a)/2). The estimation of w*(w) and
w™ (w) is performed by using the sample quantiles.

V. STRUCTURAL-ACOUSTIC RESPONSE OF THE
VEHICLE

In this section, we present the experimental identifi-
cation of the dispersion parameters of the nonparamet-
ric probabilistic approach of uncertainties for vibroa-
coustic analysis of the vehicle for which the experi-
mental database has been presented in Section II. We
then present the validation of the structural-acoustic
model including uncertainties in comparing the identified
stochatic computational model with experiments (Du-
rand, 2007).

A. Description of the mean computational
structural-acoustic model and experimental comparisons

The mean computational structural-acoustic model of
the vehicle is a finite element model with 978, 733 struc-
tural dofs and 8,139 acoustic pressure dofs in the inter-
nal acoustic cavity. Fig. 8 displays the finite element
mesh of the structure and Fig. 9 shows the finite element
mesh of the acoustic cavity. Finally, Fig. 10 deals with
the finite element mesh of the computational structural-
acoustic model. The reduced mean computational model
is constructed using n = 1, 723 elastic modes of the struc-
ture in vacuo and m = 57 acoustic modes of the inter-
nal acoustic cavity with rigid walls. These values of n
and m have been deduced from a mean-square conver-
gence analysis of the random response. Concerning the
damping of the mean computational structural-acoustics
model, the generalized damping matrix of the structure
and of the internal acoustic cavity are assumed to be di-
agonal matrices for all frequencies in B. Note that such
a diagonal assumption introduces model uncertainties in
the mean computational model which are taken into ac-
count by the nonparametric probabilistic approach. Con-
sequently, the damping part in the mean model is de-
scribed in terms of damping rates which have been fixed
to their nominal values. As it can be seen on the ex-
perimental frequency response functions, the structural
damping is significant and the internal acoustic cavity
damping is relatively high due to the presence of absorb-
ing materials. For the structural FRFs, Figs. 11 and
12 display the comparisons between the mean computa-
tional structural-acoustic model predictions and the ex-
periments for the moduli of the FRFs in dB concern-
ing observations Obs4 (Fig. 11) and Obs6 (Fig. 12) and



FIG. 8. Finite element mesh of the structure: 978,733 struc-
tural dofs.

FIG. 9. Finite element mesh of the acoustic cavity: 8,139
acoustic pressure dofs.

for the 20 cars. For the root mean square of the acous-
tic pressures averaged on the 32 microphones inside the
internal acoustic cavity (see Subsection I1.B), Fig. 13
displays the graphs of f +— dB&ZP (f) for the 30 con-
figurations of the internal acoustic cavity and the cor-
responding graph f +— dBy;,s(f) calculated with the
mean computational model. Fig. 14 displays the graph
of f +— dB®*P[A](f) related to the experimental synthe-
sized booming noise (see Subsection II.C) and the corre-
sponding graph f — dB[A](f) calculated with the mean
computational model. Figs. 11 to 14 show that there are
significant differences between measurements and numer-
ical simulations which are not due to the variabilities of
experiments (optional extras and manufacturing process)
but are mainly due to model uncertainties. As explained
in Section I, these figures clearly show that both data un-
certainties and model uncertainties have to be taken into
account in the mean computational structural-acoustic
model in order to improve the predictability and the ro-

FIG. 10. Finite element mesh of the computational
structural-acoustic model.

bustness of the predictions.
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FIG. 11. Comparisons of the mean computational model re-
sults with the experiments. Graphs of the modulus in dB scale
of the structural FRF for observation Obs4: experiments for
the 20 cars (grey lines), mean computational model (thick
solid line).

B. Methodology and assumptions for the experimental
identification of the dispersion parameters

The methodology and the assumptions used to identify
the dispersion parameters dyss, dps, dxs for the struc-
ture, dpsa, Opa, dxa for the internal acoustic cavity and
d¢ for the structural-acoustic coupling interface are the
following.

(1) The dispersion parameters dpa, dpa and dxa of
the internal acoustic cavity are identified using the ex-
perimental database defined in Subsection I1.B. For this
identification it is assumed that dp7e = dpe = dxa. First
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FIG. 12. Comparisons of the mean computational model re-
sults with the experiments. Graphs of the modulus in dB scale
of the structural FRF for observation Obs6: experiments for
the 20 cars (grey lines), mean computational model (thick
solid line).
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FIG. 13. Comparisons of the mean computational model re-
sults with the experiments. Graphs of the root mean square
of the acoustic pressures averaged in the cavity in dB scale:
experiments for the 30 configurations (grey lines), mean com-
putational model (thick solid line).

this hypothesis allows the computational cost to be de-
creased. Secondly, different analyses have shown that the
confidence regions are not very sensitive to the value of
dispersion parameter dpa. This is due to the fact that
the modal density is relatively high in the frequency band
of analysis and in addition, the internal acoustic cavity
has a large dissipative factor due to the presence of the
absorbing materials as explained above. Finally, a sensi-
tivity analysis of the responses has been carried out with
respect to dp« and dx« and has shown that the confi-
dence regions were very sensitive to the values of the dis-
persion parameters but that dy;« = dga« could be written.

Rpm (rotation per minute)
1000 2000 3000 4000 5000 6000

10dB

Modulus, dB[A]

50 100 150 200
Frequency, Hz

FIG. 14. Comparisons of the mean computational model re-
sults with the experiments. Graphs of the modulus of the
synthesized booming noise in dB[A] scale: experiments for
the 20 cars (grey lines), mean value of the experiments (thin
solid line), mean computational model (thick solid line).

The method used to identify the dispersion parameter §,
such that 6, = dpr« = dpa = 0ke is the maximum likeli-
hood method (Spall, 2003 ; Walter and Pronzato, 1997).

(2) The dispersion parameters dpss, dps and dx= for
the structure are identified using the structural frequency
response functions (and not the structural-acoustic fre-
quency response functions) of the experimental database
defined in Subsection II.A. Therefore, the stochastic
computational structural-acoustic model must be used.
Then, for the identification of these dispersions parame-
ters, dispersion parameters d e, dpe and di« are fixed to
the identified experimental value §, and the value of d¢ is
fixed to a nominal value. This last hypothesis is reason-
able because the confidence regions of the random struc-
tural responses are not sensitive to the acoustic coupling
(note that the structural acoustic responses are sensitive
to dc, but we are presently speaking about the identi-
fication of dpss, dps and dxs using only the structural
responses). Concerning dp- the situation is similar to
the case of the internal acoustic cavity, but for the struc-
ture, dps has been fixed to a nominal value which results
from previous studies. In addition, it should be noted
that the confidence regions of the structural responses
are a little sensitive to dps compared with the high sen-
sitivity of these responses with respect to dpss and dxs.
Concerning the experimental identification of §pss and

10



dxs the assumption ds = dprs = dx= (similarly to the as-
sumption used for the internal acoustic cavity) has been
replaced by the following one 6, = +/d3,, + 8%.. This
choice results from computational tests and is much more
efficient and more representative than the other one. For
computational cost reasons (see below), the maximum
likelihood method could not be used and consequently,
has been substituted by the mean-square method with
a differentiable objective function (Spall, 2003 ; Walter
and Pronzato, 1997).

(3) For the identification of the dispersion param-
eter dc of the structural-acoustic coupling interface,
the structural-acoustic frequency response functions of
the experimental database defined in Subsection II.C
are used. Therefore, the stochastic computational
structural-acoustic model must be used. Then, for the
identification of §¢, dispersion parameters dpsqe, dpa, dxa,
Onrs, Ops and O are fixed to their identified values (see
above). For similar reasons to those given above, the
maximum likelihood method cannot be used and should
then be substituted by the mean-square method. Un-
fortunately, the corresponding objective function is not
sufficiently sensitive to the value of §¢ and the maximum
likelihood method is not efficient. So we have identified
the value of d¢ using a trial method.

C. Experimental identification of the dispersion parameters
of the internal acoustic cavity

As explained above, the maximum likelihood method
is used to identify the dispersion parameter §, introduced
in Subsection V.B(1). The random observation Y and its
corresponding experimental quantity Y ¢*P used for this
identification is defined by

Y = dByms (f) df ) Yerr = dBﬁfnps (f) df )
By By

in which dB,.,,s(f) corresponds to dBEEP (f) defined in

™ms
Subsection I1.B for the experiments and which is written

as

32 a
3% Ze=1 |Pje (27Tf)|2

dBrms(f) = 201ogyg Pres )
re

in which ji,...,js2 are the DOFs corresponding to the
measurement points. Let Y (1), ..., Y**P(n30) be the
independent experimental realizations corresponding to
the 30 configurations of the internal acoustic cavity. Let
dq — L(d4) be the log-likelihood function defined by

30
L(ba) =) logig Py (80, Y (m))

v=1

in which y — py (da,y) is the probability density func-
tion of random variable Y. For all fixed d,, the right-
hand side of the above equation is estimated by the

Monte Carlo method with the stochastic computational
structural-acoustic model presented in Subsection IV.A.
The maximum likelihood method consists in solving the
following optimization problem
5Pt = arg max L(04)

This method needs an accurate estimation of
py (0a, Y*P(n,)) which has been estimated with
20,000 independent realizations for the Monte Carlo
simulation. Instead of using an optimization algorithm
to solve the above optimization problem, the values of
the log-likelihood function have directly calculated in
8 values of §, in order to construct an approximation
of its graph on the interval of interest. Fig. 15 displays
the approximation of the graph of é, — L(4,) allowing
the optimal value §%P! to be estimated. For this opti-

-

ﬁ \\_\_ |

Function £ (8 a )

opt Parameter
) ap 8a

FIG. 15. Graph of §, — L(da)

mal value of §%7%, Fig. 16 compares the experimental
measurements with the computational results for the
root mean square dBEZP (f) of the acoustic pressures
averaged on the 32 microphones inside the internal
acoustic cavity. In this figure, (1) the 30 grey lines
represent the experimental measurements, (2) the upper
and lower thick solid lines represent the upper and
lower envelopes of the confidence region calculated for
a probability level of 0.96, (3) the mid thin solid line
represents the mean value of the random response of
the stochastic reduced computational model, and (4)
the dashed line represents the response of the reduced
mean computational model. It can be seen that the
the experiments belongs to the confidence region with a
probability level of 0.96 that validates the acoustic part
of the stochatic computational model.

D. Experimental identification of the dispersion parameters
of the structure

As explained in Subsection V.B(2), the mean-square
method with differentiable objective function is used.

11
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FIG. 16. Comparisons of the stochastic computational model
results with the experiments. Graphs of the root mean square
of the acoustic pressures averaged in the cavity in dB scale:
experiments for the 30 configurations (grey lines), mean com-
putational model (dashed line), mean value of the random

response (mid thin solid line), confidence region: upper and
lower envelopes are the upper and lower thick solid lines.

The dispersion parameters dpse, dpa, dxa, dps and d¢
are fixed to the values identified above (see V.B(1) and
(2)). Consequently, we have to solve the optimization
problem defined by

5P = arg Irgin J(0s)

s

in which the objective function J(d,) depends only on d
and is defined by

J(8:) = 2(1=7) [[|2(8:)=m(8,)[|[*+2 ||m(0:)— Z°"7|

with v = 0.5. In this equation, the random observa-
tion Z(w,0s) = (Z1(w, ds), ..., Zs(w, ds)) of the stochas-
tic computational model related to the six structural ob-
servations (see Subsection II.A) is such that

Zj(w,05) = logyo(w? [UR, (w,85)])

and its mean value m(w, d5) = (m1(w, ds), ..., mg(w, ds))
is

m(w,ds) = BE{Z(w,d)}

The corresponding experimental observation is denoted

by Z°P(w) = (Z7""(w), ..., Z5""(w)) and its mean value
is
| 20
Z3w) = 55 0 27" @)
=1

Finally, the norms are defined by

6
112 (85)—m(:)|II* = E{Z/B |Z(w, 85)=m;(w, 6,)[* dw}

)

Im(d,) — Z°7|I3

6
3 /B (@, 65) — ZP ()2 dw
=1

The first norm represents the variance of the computa-
tional model due to uncertainties and the second norm
represents the bias between the experiments and the
stochastic model. In this objective function, B = 27 By
with By = [100,180] Hz and the frequency resolution is
0.5H z. For each evaluation of the objective function, the
stochastic reduced computational model is solved using
the Monte Carlo method with 1000 independent realiza-
tions and corresponding to a mean-square convergence of
the second-order stochastic solution. Since each evalua-
tion of the objective function requires about 500 hours of
CPU time (the computations have been realized with 20
CPU yielding an elapsed time of 25 hours for each eval-
uation of the objective function), we have used a trial
method consisting in computing the cost function for 10
values of the couple (dpr,,dk.). It can then be deduced
the approximation of the graph of 5 — J(ds) for the 10

values of 0, = /03, + 0%, . Fig. 17 displays this approx-

imation of the graph of §; — J(d,) allowing the optimal
value §%P' to be estimated. From 6P, it can then be
deduced the optimal values (5%’: and (5‘;25 of dpr, and g, .

For this optimal values 5]0\/’[’: and 5%’? of 6, and 0k, and
(,Om
=t i
= |
.2
s | |
g
= |
u‘ . o
opt
S P Parameter 55

S

FIG. 17. Graph of 65 — J(ds)

for the values of the other dispersion parameters fixed to
their values previously identified, Figs. 18 and 19 com-
pare the experimental measurements with the computa-
tional results for the moduli of the FRFs in dB concern-
ing observations Obs4 (Fig. 18) and Obs6 (Fig. 19) and
for the 20 cars. In these figures, (1) the 20 grey lines
represent the experimental measurements, (2) the upper
and lower thick solid lines represent the upper and lower
envelopes of the confidence region calculated for a prob-
ability level of 0.96, (3) the mid thin solid line represents
the mean value of the random response of the stochastic
reduced computational model, and (4) the dashed line
represents the response of the reduced mean computa-
tional model. It can be seen that the experiments belong
to the confidence region with a probability level of 0.96
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that validates the structural part of the stochatic com-
putational model.
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FIG. 18. Comparisons of the stochastic computational model
results with the experiments for observation Obs4. Graphs of
the moduli of the FRFs in dB scale: experiments for the 20
cars (grey lines), mean computational model (dashed line),
mean value of the random response (mid thin solid line), con-
fidence region: upper and lower envelopes are the upper and
lower thick solid lines.
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FIG. 19. Comparisons of the stochastic computational model
results with the experiments for observation Obs6. Graphs of
the moduli of the FRF's in dB scale: experiments for the 20
cars (grey lines), mean computational model (dashed line),
mean value of the random response (mid thin solid line), con-
fidence region: upper and lower envelopes are the upper and
lower thick solid lines.

E. Experimental validation of the stochastic computational
structural-acoustic model for the booming noise

In this subsection, we compare the experiments for the
synthesized booming noise of the database (see Subsec-

tion II.C) with the predictions given by the stochastic
computational structural-acoustic model. For the calcu-
lation, the dispersion parameters dpja, dpa, dxa, Oprs,
dps, 0is and d¢ are fixed to their optimal values which
are either fixed or experimentally identified as explained
in the previous subsections. The Monte Carlo stochas-
tic solver is used with 1500 realizations. A mean-square
convergence analysis of the stochastic response has been
carried out (Durand, 2007) and convergence is reached
for this number of realizations. Fig. 20 compares the
experimental measurements with the computational re-
sults for the booming noise in dB[A] scale. The 20 thin
grey lines represent the experimental measurements of
the booming noise for the 20 cars and the thick grey
line the mean value of the experiments. The upper and
lower thick solid lines represent the upper and lower en-
velopes of the confidence region calculated for a proba-
bility level of 0.96. The mid thin solid line represents
the mean value of the random response of the stochastic
reduced computational model. The mid dashed line rep-
resents the response of the reduced mean computational
model. Taking into account the complexity of the vibroa-
coustic model, the obtained results validate the stochas-
tic computational model and demonstrate its capability
to predict experimental measurements knowing that the
dispersion parameters of model uncertainties have been
identified.
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FIG. 20. Comparisons of the stochastic computational model
results with the experiments for the booming noise. Graphs of
the moduli of the FRFs in dB[A] scale: experiments for the 20
cars (thin grey lines), mean value of the experiments (thich
grey line), mean computational model (dashed line), mean
value of the random response (mid thin solid line), confidence
region: upper and lower envelopes are the upper and lower
thick solid lines.
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VI. CONCLUSION

In this paper, we have presented and validated a
methodology to analyze a very complex structural-
acoustic system in the low- and medium-frequency
ranges. Both data uncertainties and model uncertain-
ties have been taken into account in the computational
model. The nonparametric probabilistic approach intro-
duces a small number of dispersion parameters which can
then be experimentally identified in solving optimization
problems. In the context of the automative industry, a
large experimental database has been constructed and
has been presented in this paper. This database has
been used for the identification of the probabilistic model.
An experimental validation has been proposed for each
step of the identification. The global experimental val-
idation of the stochastic computational model has been
obtained. The comparisons are good enough taking into
account the complexity of the system and taking into ac-
count that the mean computational model is unique to
represent all the variabilities induced by optional extras
and manufacturing process. In addition, this mean com-
putational model has voluntary not been updated with
the measurements (this is the practical situation encoun-
tered by engineering in such an automative industry).
With respect to the real structural-acoustic system, the
dynamical behavior of the sound-proofing schemes (in-
sulation materials) existing in the real cars (and in par-
ticular in the cars for which the experimental database
has been constructed) has not been taken into account in
the mean computational model (but has been taken into
account as pure mass subsystems). Such a model could
be improved in including such a dynamical model of the
sound-proofing schemes.
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