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Persistency of wellposedness of Ventcel’s boundary value

problem under shape deformations

M. Dambrine∗ and D. Kateb †

Abstract

Ventcel boundary conditions are second order differential conditions that appear in
asymptotic models. Like Robin boundary conditions, they lead to well-posed variational
problems under a sign condition of the coefficient. This is achieved when physical situ-
ations are considered. Nevertheless, situations where this condition is violated appeared
in several recent works where absorbing boundary conditions or equivalent boundary con-
ditions on rough surface are sought for numerical purposes. The well-posedness of such
problems was recently investigated : up to a countable set of parameters, existence and
uniqueness of the solution for the Ventcel boundary value problem holds without the sign
condition. However, the values to be avoided depend on the domain where the bound-
ary value problem is set. In this work, we address the question of the persistency of the
solvability of the boundary value problem under domain deformation.

1 Introduction and statement of the results

Let Ω be a smooth bounded domain of R
d with d ≥ 2. Let α and β denote two real numbers

and fix f ∈ L2(Ω). The Ventcel boundary value problem for the Laplace operator reads
as follows

{

−∆u = f in Ω,
∂nu+ αu+ β∆τu = 0 on ∂Ω,

(1)

where ∆τ stands for the Laplace-Beltrami operator on ∂Ω . The boundary condition ap-
pears in asymptotic models for coated structures: the second order term β∆τu represents
surface diffusion on the boundary which models the tangential effects of the diffusion in
the coating layer.

Surface and volume diffusion both induce similar effects, therefore the coefficient β is
naturally signed. In this case, β is nonpositive and a variational approach is available.
Define the bilinear form A and the linear form B by

A(u, v) =

∫

Ω
∇u(x) · ∇v(x)dx+

∫

∂Ω
αu(x)v(x) − β∇τu(x) · ∇τv(x)dσ(x),

B(v) =

∫

Ω
f(x)v(x)dx,

on the variational space

H(Ω) =
{

u ∈ H1(Ω), u|∂Ω ∈ H1(∂Ω)
}

.
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Endowed with the norm

‖u‖2
H(Ω) = ‖u‖2

H1(Ω) + ‖u‖2
H1(∂Ω),

the space H(Ω) is a Hilbert space. Then, the weak formulation of problem (1) is the
following:

Find u ∈ H(Ω) such that for all v ∈ H(Ω), A(u, v) = B(v).

When β < 0 and α > 0, the bilinear form A is coercive. The existence and uniqueness
of a solution to (1) is a consequence of the Lax-Milgram theorem. A large literature has
been devoted to that case of great importance: the condition β < 0 is generally satisfied
in the applications since the pioneering works of Feller and Ventcel, [6, 7, 15, 14]. For the
specific case of the Laplace operator, we refer to [1] and [5, 8, 10].

In the case β > 0, the quadratic form u 7→ A(u, u) is neither positive, nor negative.
Lax-Milgram’s theorem does not apply. To the best of our knowledge, the condition β > 0
appear ed for the first time in a recent work of D. Bresch and V. Milisic [3] on wall laws in
fluid mechanics. Marigo and Pideri also found such a boundary condition when studying
equivalent boundary conditions for a elastic body damaged on surface [12].

In the recent work [2], a first study of the case β > 0 has been performed. The main
idea is to study the boundary value problem (1) as a nonlocal equation on the boundary.
Take as new unknown w the trace of the previous unknown u on ∂Ω. After a lifting, (1)
is rewritten as a nonlocal equation on the boundary:

β∆τw + Λw + αw = ϕ, on ∂Ω, (2)

where Λ denotes the Dirichlet-to-Neumann map. This equation has a sense in the space
H1(∂Ω). The original unknown u is then recovered by solving a usual Dirichlet bound-
ary value problem. Applying Fredholm alternative to this pseudodifferential equation,
Bonnaillie-Noël and her coauthors obtained the following result:

Theorem 1.1 The operator Pα,β = −β∆τ − Λ − αId is an elliptic self-adjoint semi-

bounded from below pseudodifferential operator of order 2. Besides, for fixed β > 0, there

exists a sequence (αn(Ω))n∈N growing to infinity such that for any φ ∈ Hs(∂Ω) with s ∈ R,

we have

1. If α 6∈ {αn(Ω)}, then equation −Pα,βw = φ admits a unique solution in S ′(∂Ω)
which, in addition, belongs to Hs+2(∂Ω);

2. If α ∈ {αn(Ω)}, then there is either no solution or a complete affine finite dimen-

sional space of Hs+2(∂Ω) solutions.

Let us give an illustration of this result: consider the case of the unit ball in dimension
three. As proved in the annex, the Ventcell boundary value problem is uniquely solvable
if and only if

α /∈
{

βn2 + (β − 1)n, n ∈ N
}

. (3)

In this work, we consider α /∈ {αn(Ω)}, i.e., α is chosen in such a way that the
boundary value problem (1) has a unique solution. Deform Ω into another domain close
to Ω. We address the following question: does the boundary value Problem (1) also have
a unique solution on the perturbed domain?

Assume that Ω is a C2 domain of R
d, we prove that for small deformations of Ω the

Ventcel boundary value problem remains uniquely solvable. Precisely, our result is the
following.
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Theorem 1.2 Let Ω be a C3 domain of R
d and consider α /∈ {αn(Ω)}. Consider a C2

vector field h and the application Th : R
d → R

d defined by Th = IRd + h. Then, there

exists ε0 > 0 such that the Ventcel boundary value problem

{

−∆u = f in Ωh = Th(Ω),
∂nu+ αu+ β∆τu = 0 on ∂Ωh.

(4)

is uniquely solvable for all vector fields h satisfying ‖h‖C2 ≤ ε0.

This result is useful for numerical simulation when computations are made on a close
but distinct domain: it ensures that the boundary value problem remains solvable on the
approximating domain. It is also required to prove that the solution of (1) is differentiable
with respect to the shape. Such a differentiability result is interesting for optimization
purposes. In the particular case of the sphere, this theorem implies the existence of a
neighborhood of the sphere in which the Ventcel boundary value problem is uniquely
solvable.

Our strategy to prove Theorem 1.2 is the following. First, we transport the boundary
value problem (4) defined on Ωh onto the fix domain Ω. We obtain a new boundary value
problem written now on ∂Ω, this modified problem is not of the type of (1). Differential
operators are modified by the change of variable. However, the key is the following: if the
geometric deformation is sufficiently small, then the new operators are perturbations of
the original one and we use a perturbation argument around the configuration on Ω.

The main difficulties are directly connected with the transport of Ω. First, the trans-
port on ∂Ω of the Laplace-Beltrami operator on ∂Ωh has to be derived and linked to the
Laplace-Beltrami operator on ∂Ω. Second, orthogonality is not preserved in the transport
and once transported the Dirichlet-to-Neumann map on ∂Ωh is not a usual Dirichlet-to-
Neumann map on ∂Ω.
The paper is organized as follows. After introducing some definitions and notations, we
present in section 3 preliminary results on the transport for the Laplace-Beltrami opera-
tor.After, we consider the transport of the Dirichlet-to-Neumann map. The last section is
devoted to the proof of Theorem 1.2.

Let us introduce some notations. We denote by Hs the usual Lebesgue and Sobolev
spaces. The transpose and the determinant of a matrix A is denoted respectively by A∗

and det(A). The space of real-valued square matrices of size N is denoted by MN×N . We
denote in bold the vectorial quantities: for example, n and nh stand respectively for the
unit normal vector field on ∂Ω and ∂Ωh. The notation a ·b stands for the Euclidian scalar
product of the vectors a and b. The tangential differential operators will be denoted by
the subscript τ : for functions ϕ and V defined in a neighborhood of ∂Ω. We recall that

• ∇τϕ := ∇ϕ − ∂nϕ n is the tangential gradient of the scalar function ϕ. As usual,
we have set ∂nϕ = ∇ϕ · n,

• divτ V := div V − (DV n) n is the tangential divergence of the vector field V ,

• ∆τϕ := divτ (∇τϕ) is the Laplace-Beltrami operator on ∂Ω.

These quantities are only defined on the boundary ∂Ω. As the deformed domain Ωh

depends on a parameter h, the operators related to ∂Ωh also depend on h, and are
denoted by ∇τ,h, divτ,h and ∆τ,h. Through the paper, we will use the notation DTh for
the Jacobian matrix of the transformation Th. Here, DTh = I +Dh since Th = IRd + h.
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2 Boundary perturbations and transported problem

In this section, h is fixed so that Th is a diffeomorphism from R
d into itself. We aim to

transport Equation (2) set on the perturbed domain’s boundary ∂Ωh into a new equation
set on the boundary ∂Ω of the reference domain. Therefore we have to compute the
transport of both the Laplace-Beltrami operator and the Dirichlet-to-Neuman map under
the deformation Th.

Let fix some notations: we set

ωh(x) = det(DTh)(x)‖(DTh(x)∗)−1n(x)‖.

The density ωh is the surface jacobian. It can be easily checked that ωh is a smooth
function of h satisfying

ω|h=0(x) = 1 and (Dωh)|h=0.ξ = divτ ξ. (5)

We also set

Ah(x) = (DTh(x))−1(DTh(x)∗)−1 and Ch(x) = ωh(x)Ah(x).

We first prove a useful technical lemma.

Lemma 2.1 Let Ω be a C3 smooth bounded domain of R
d and let Ψ be a function in

C2(∂Ω), then there is a extension ψ of Ψ in C2(Rd) such that n · ∇ψ = 0 on ∂Ω.

Proof of Lemma 2.1:

By assumption, ∂Ω is a compact C2 manifold, then its cut locus ρ is non negative. Any
x ∈ R

d such that the distance d(x, ∂Ω) from x to the boundary ∂Ω is strictly less than
ρ has a unique orthogonal projection on ∂Ω denoted by p∂Ω(x). Let d∂Ω be the signed
distance function to ∂Ω and fix χ : R → R+ a C∞ cutoff function such that:

χ(t) = 1 if |t| < ρ/3 and χ(t) = 0 if |t| > ρ/2.

The function ψ(x) = χ ◦ d∂Ω(x)Ψ ◦ p∂Ω(x) satisfies the requirements since the functions
x 7→ d∂Ω(x) and x 7→ p∂Ω(x) are respectively C3 and C2 in the tubular neighborhood of
∂Ω of radius ρ. This is a consequence of the implicit functions theorem, see for example
Theorems 4-2 & 4-3 in Chapter 5 of [4] for precise statements and detailled proofs.

To describe the transport of the Laplace-Beltrami operator ∆τ , we first tackle the
transport on the manifold ∂Ω of the tangential gradient of a function defined on ∂Ωh.

Transport of the tangential gradient. Let y be a point on ∂Ωh and x := T−1
h

(y)
be the corresponding point on ∂Ω. Given ϕ ∈ C2(Rd), we give an explicit formula of
(∇τ,hϕ) ◦ T−1

h
, that is the back transport on ∂Ω of the tangential gradient of a quantity

defined on ∂Ωh. By definition, the tangential gradient on ∂Ωh is

∇τ,hϕ(y) = ∇ϕ(y) − nh(y) · ∇ϕ(y) nh(y)

for all y ∈ ∂Ωh, that is to say for all x ∈ ∂Ω

(∇τ,hϕ) ◦ Th(x) = (∇ϕ) ◦ Th(x) − nh ◦ Th(x) · (∇ϕ) ◦ Th(x) nh ◦ Th(x).

Let ϕb = ϕ ◦ Th be the back transport of ϕ on ∂Ω. By the chain rule, one has

(∇ϕ) ◦ Th(x) = (DTh(x)∗)−1(∇(ϕ ◦ Th)(x)) that is to say ∇ϕ(y) = (DTh(x)∗)−1∇ϕb(x).
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Let us point out that the normal fields are linked with each other through the relation

nh(y) = nh ◦ Th(x) =
(DT ∗

h
)−1(x)n(x)

‖(DT ∗
h
)−1(x)n(x)‖

.

Plugging the expression of the transported fields in the equation defining the tangential
gradient, we obtain the expression of the transported tangential gradient at a point of ∂Ω
as

(∇τ,hϕ) ◦ Th(x) = (DT ∗
h)−1(x)∇ϕb(x) −

Ah(x)n(x) · ∇ϕb(x)

‖(DT ∗
h
)−1(x)n(x)‖2

(DT ∗
h)−1(x)n(x). (6)

Note that if ∇ϕ.nh = 0, then this expression simplifies since

(DT ∗
h)−1(x)n(x) · (DT ∗

h)−1(x)∇ϕb(x) = ‖(DT ∗
h)−1(x)n(x)‖nh(y) · ∇ϕ(y).

To summarize, we have proved the following lemma.

Lemma 2.2 For a function φ ∈ C2(∂Ωh), we consider any extension ϕ ∈ C2(Rd) such

that ∇ϕ.nh = 0. Then we have

(∇τ,hφ) ◦ Th(x) = (DT ∗
h)−1(x)∇ϕb(x).

The transport of the Laplace-Beltrami operator. Let us also recall from [9] how
to integrate by parts on ∂Ω the boundary of a domain Ω. Let ϕ be a function in H2(Rd)
and V be a vector field supposed to be sufficiently regular, then
∫

∂Ω
(∇ϕ(x) ·V (x) +ϕ(x) divτ V (x))dσ(x) =

∫

∂Ω

(

∂ϕ

∂n
(x) +H(x)ϕ(x)

)

Vn(x)dσ(x). (7)

whereH denotes the mean curvature of ∂Ω. We now are in position to derive the expression
of the transported Laplace-Beltrami operator for a function defined only on ∂Ωh.

Lemma 2.3 For all functions φ ∈ H2(∂Ωh), it holds

∆τ,hφ(y) =
1

ω(h)(x)
divτ

(

Ch(x)∇τϕ
b(x)

)

on ∂Ω. (8)

Proof of Lemma 2.3:

Fix φ in H2(∂Ωh) and an extension ϕ such that ∇ϕ · nh = 0. We seek to compute the
quantity ℵ such that for any ψ ∈ H2(∂Ωh), it holds

∫

∂Ωh

∆τ,hϕ(y) ψ(y)dσ(y) =

∫

∂Ω
ℵ(x)ψb(x)ωh(x)dσ(x).

Here, the exponent b denotes the back transport on ∂Ω. To compute ℵ, we use the
variational characterization of the Laplace-Beltrami operator. We fix a test function ψ in
H2(∂Ωh) and an extension Ψ such that ∇Ψ · nh = 0.

By the variational definition of the Laplace-Beltrami operator, we get

∫

∂Ωh

∆τ,hϕ(y) ψ(y)dσ(y) = −

∫

∂Ωh

∇τ,hϕ(y) · ∇τ,hψh(y)dσ(y)

= −

∫

∂Ω
(DTh(x)∗)−1∇ϕb(x) · (DTh(x)∗)−1∇Ψb(x) ωh(x)dσ(x) (by Lemma 2.2)

= −

∫

∂Ω
Ch(x)∇ϕb(x) · ∇Ψb(x)dσ(x).
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Integrating (7) by parts, we obtain that

∫

∂Ω
Ch(x)∇ϕb(x).∇Ψb(x)dσ(x) =

∫

∂Ω

(

∂nΨb(x) +H(x)Ψb(x)
)

Ch(x)∇ϕb(x)·n(x)dσ(x)

−

∫

∂Ω
Ψbdivτ

(

Ch(x)∇τϕ
b(x)

)

dσ(x).

Let us simplify the formula by eliminating the first term of the right hand side: the
symmetry of Ch enables to get

Ch(x)∇ϕb(x)·n(x) = ∇ϕb(x)·Ch(x)n(x) = 0

Thus, we have obtained the announced expression for the transported Laplace-Beltrami
operator.

In the application we are interested in, the function φ is defined as the trace of a
Sobolev function ϕ defined in Ωh. The choice of a specific extension (such as in the proof
of Lemma 2.3) cannot be done since ϕ is already given. Thus, Lemma 2.3 cannot be
applied in our case and we need to adapt it to a function defined on Ωh. Before we state
our result, we need to introduce the operator L(h) defined by

L(h) [ϕ ◦ Th] (x) (9)

=
1

ωh(x)
divτ

{

Ch(x)∇τ [ϕ ◦ Th] (x) −
Ch(x)∇ [ϕ ◦ Th] (x).n(x)

Ah(x)n(x).n(x)
Ah(x)n(x)

}

for ϕ ∈ H5/2(Ωh). We have

Lemma 2.4 The identity

[∆τ,hφ] ◦ Th = L(h) [ϕ ◦ Th] (10)

holds for all functions ϕ belonging to H5/2(Ωh).

Proof of Lemma 2.4:

Let ϕ ∈ H5/2(Ωh), its trace also denoted by ϕ belongs to H2(∂Ωh). We follow the proof of
Lemma 2.3: we fix a test function ψ ∈ H2(∂Ωh) and an extension Ψ such that ∇Ψ.nh = 0.

By the variational definition of the Laplace-Beltrami operator, we get

∫

∂Ωh

∆τ,hϕ(y) ψh(y)dσ(y) = −

∫

∂Ωh

∇τ,hϕ(y).∇τ,hψh(y)dσ(y).

By the change of variables y = Th(x), we get integrals defined on the fixed boundary ∂Ω.
Thanks to the chain rule (see formula (6)), we obtain

∫

∂Ω
((∆τ,hϕ) ◦ Th) (x)Ψb(x) ωh(x)dσ(x) =

= −

∫

∂Ω
(DTh(x)∗)−1∇ϕb(x) · (DTh(x)∗)−1∇Ψb(x) ωh(x)dσ(x)

+

∫

∂Ω

Ah(x)n(x).∇ϕb(x)

‖(DT ∗
h
)−1(x)n(x)‖2

(DT ∗
h)−1(x)n(x) · (DTh(x)∗)−1∇Ψb(x) ωh(x)dσ(x)
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Since ∇Ψ(y) · nh(y) = 0 : we have

(DT ∗
h
)−1(x)n(x)

‖(DT ∗
h
)−1(x)n(x)‖

· (DTh(x)∗)−1∇Ψb(x) = ∇Ψ(y) · nh(y) = 0

hence
∫

∂Ω
((∆τ,hϕ) ◦ Th) (x)Ψb(x) ωh(x)dσ(x) = −

∫

∂Ω
Ch(x)∇ϕb(x).∇Ψb(x)dσ(x).

We focus on the right side of the equation : we have to make some computations in order
to get a formula depending only on Ψb. Integrating (7) by parts, we obtain

∫

∂Ω
Ch(x)∇ϕb(x)·∇Ψb(x)dσ(x) =

∫

∂Ω

(

∂nΨb(x) +H(x)Ψb(x)
)

Ch(x)∇ϕb(x)·n(x)dσ(x)

−

∫

∂Ω
Ψbdivτ

(

Ch(x)∇τϕ
b(x)

)

dσ(x). (11)

It remains to deal with the term involving ∂nΨb(x). From the property ∇Ψ · nh = 0
satisfied by the extended test function, we back transport it on ∂Ωh and decompose ∇Ψb:

0 = Ah(x)∇Ψb(x) · n(x) = Ah(x)
(

∇τΨ
b(x) + ∂nΨb(x)n(x)

)

· n(x).

Hence, it comes that

∂nΨb = −
Ah(x)n(x) · ∇τΨ

b(x)

Ah(x)n(x) · n(x)
.

Then we inject this expression in the right hand side of (11) and integrate by parts:

∫

∂Ω
∂nΨb(x)Ch(x)∇ϕb(x) · n(x)dσ(x)

=

∫

∂Ω
−
Ch(x)∇ϕb(x) · n(x)

Ah(x)n(x) · n(x)
Ah(x)n(x) · ∇τΨ

b(x)dσ(x)

=

∫

∂Ω

[

divτ

{

Ch(x)∇ϕb(x) · n(x)

Ah(x)n(x) · n(x)
Ah(x)n(x)

}

Ψb(x) −H(x)Ch(x)∇ϕb(x) · n(x)

]

dσ(x).

Gathering the terms, we obtain

∫

∂Ω
((∆τ,hϕ) ◦ Th) (x) ωh(x) Ψb(x)dσ(x) =

∫

∂Ω
divτ

{

Ch(x)∇τϕ
b(x) −

Ch(x)∇ϕb(x) · n(x)

Ah(x)n(x) · n(x)
Ah(x)n(x)

}

Ψb(x)dσ(x).

This achieves the proof.

Transport of the Dirichlet-to-Neuman map. Let us consider the Dirichlet-to-Neu-
mann operator defined on its natural space Λh : H1/2(∂Ω) → H−1/2(∂Ω). It maps a
function φ in H1/2(∂Ωh) onto the normal derivative of its harmonic expansion in Ωh, i.e.,
Λh(φ) = ∂nh

u, where u solves the boundary value problem:

{

−∆u = 0 in Ωh,
u = φ on ∂Ωh.

(12)
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To compute the quantity ℵ such that ℵ(φb) = [Λh(φ)] ◦ Th, we back transport the
boundary value problem (12) on the domain Ω. Setting uh = u ◦ Th, we check from the
variational formulation, that the function vh is the unique solution of the transported
boundary value problem:

{

−div (Ãh∇uh) = 0 in Ω,
uh = φb on ∂Ω,

(13)

where Ãh = det(Th)Ah. Hence, we get formally

Λh(φ)(y) = ∇u(y) · nh(y) = (DTh(x)∗)−1∇uh(x) ·
(DT ∗

h
)−1(x)n(x)

‖(DT ∗
h
)−1(x)n(x)‖

=
1

‖(DT ∗
h
)−1(x)n(x)‖

Ah(x)n(x) · ∇uh(x).

Here again, we can give a sense to the conormal derivative Ahn.∇v thanks to the
boundary value problem (13). This quantity is defined in a weak sense as the previous
Dirichlet-to-Neumann operator Λh. To be more precise, we have the following result

Lemma 2.5 For φ ∈ H1/2(∂Ω), we define Dhφ as the element of H−1/2(∂Ω) such that

f ∈ H1/2(∂Ω) 7→ 〈Dhφ, f〉H−1/2(∂Ω)×H1/2(∂Ω) :=

∫

Ω
Ãh(x)∇uh(x) · ∇E(f)(x)dx,

where E is a continuous extension operator from H−1/2(∂Ω) to H1(Ω). Then, for all

functions ϕ ∈ H1/2(Ωh), it holds

Λhϕ = Dh [ϕ ◦ Th] . (14)

Now, we consider the restriction of the operator Dh to H1(∂Ω). It will still be denoted by
Λh and is now to be considered as a linear continuous operator in L(H1(∂Ω),H−1(∂Ω)).
We can now state the main result of this section.

Proposition 2.6 Let w be a function on ∂Ωh. One has

β∆τw + Λw + αw = ϕ on ∂Ωh (15)

if and only if wh = w ◦ Th its back transport on ∂Ω satisfies

βLhwh + Dhwh + αwh = ϕ ◦ Th on ∂Ω. (16)

3 The transported problem seen as a perturbation.

Let us introduce the operator Lh defined on H1(∂Ω) with values in H−1(∂Ω) :

Lhw = βLhw + Dhw + αw.

Our goal is to prove that Lh is a perturbation of L0. To that end, we now want to
express that the operator Lh (resp. Dh) is a perturbation of the Laplace-Beltrami operator
∆τ (resp. of the Dirichlet-to-Neumann map Λ). The persistency of the existence and
uniqueness result under shape deformation is deduced from these two results.
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Study of Lh

Lemma 3.1 There exists a constant C > 0 such that

‖Lh − ∆τ‖L(H1(∂Ω),H−1(∂Ω)) ≤ C ‖h‖C2

holds for all h ∈ C2,∞(Rd; Rd) with ‖h‖C2 sufficiently small.

Proof of Lemma 3.1:

Let φ ∈ H1(∂Ω), we write

Lhϕ = Lh,1ϕ+ Lh,2ϕ+ Lh,3ϕ+ Lh,4ϕ,

where

Lh,1ϕ :=
1 − ωh

ωh
divτ {Ch(x)∇τϕ} , (17)

Lh,2ϕ := divτ {(Ch(x) − I)∇τϕ} , (18)

Lh,3ϕ := divτ {∇τϕ} = ∆τϕ, (19)

and

Lh,4ϕ := −
1

ωh(x)
divτ

{

Ch(x)∇τϕ(x) · n(x)

Ah(x)n(x) · n(x)
Ah(x)n(x)

}

. (20)

Hence
(Lh − ∆τ )ϕ = Lh,1ϕ+ Lh,2ϕ+ Lh,4ϕ.

We point out that if Th is a small perturbation of the identity in the norm of W 1,∞,
then DTh and DT−1

h
belong to L∞(∂Ω,MN×N ). It follows that Ch belongs also to

L∞(∂Ω,MN×N ).
Let ψ ∈ H1(∂Ω). After integration by parts, we get

∫

∂Ω
Lh,1ϕ ψ dσ = −

∫

∂Ω
Ch∇τϕ · ∇τ

(

1 − ωh

ωh
ψ

)

dσ;

hence there exists a strictly positive constant C > 0 such that when ‖h‖ is small:

∣

∣

∣

∣

∫

∂Ω
Lh,1ϕ ψ dσ

∣

∣

∣

∣

≤

∥

∥

∥

∥

1

ωh
− 1

∥

∥

∥

∥

W 1,∞

‖Ch‖L∞(∂Ω,MN×N ) ‖ϕ‖H1(∂Ω)‖ψ‖H1(∂Ω)

≤ C ‖divτ h‖W 1,∞(∂Ω) ‖ϕ‖H1(∂Ω)‖ψ‖H1(∂Ω)

≤ C ‖h‖2 ‖ϕ‖H1(∂Ω)‖ψ‖H1(∂Ω).

Here, we used the fact that the derivative of the surface jacobian is the tangential diver-
gence as stated in (5).

We focus now on Lh,2. A straightforward calculation shows that h ∈ W 1,∞ 7→
(DTh)−1 ∈ L∞(∂Ω,MN×N ) is C∞ when ‖h‖ is sufficiently small (see [9], p 184). Hence,
there exists a strictly positive constant C > 0 such

∣

∣

∣

∣

∫

∂Ω
Lh,2ϕ ψ dσ

∣

∣

∣

∣

≤ ‖Ch − I‖L∞(∂Ω,MN×N ) ‖∇τϕ‖L2(∂Ω) ‖∇τψ‖L2(∂Ω)

≤ C |ωh − 1|L∞(∂Ω) ‖∇τϕ‖L2(∂Ω) ‖∇τψ‖L2(∂Ω)

≤ C ‖divτ h‖W 1,∞(∂Ω) ‖ϕ‖H1(∂Ω)‖ψ‖H1(∂Ω)

≤ C ‖h‖2 ‖ϕ‖H1(∂Ω)‖ψ‖H1(∂Ω).
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Concerning Lh,4ϕ, we use the fact that n.∇τφ = 0 and rewrite Lh,4ϕ as

Lh,4ϕ = −
1

ωh(x)
divτ

{

(Ch(x) − I)∇τϕ(x) · n(x)

Ah(x)n(x) · n(x)
Ah(x)n(x)

}

. (21)

We then obtain
∫

∂Ω
Lh,4ϕ ψ dσ =

∫

∂ω

(Ch(x) − I)∇τϕ(x) · n(x)

Ah(x)n(x) · n(x)
Ah(x)n(x) · ∇τ

( 1

ωh(x)
ψ

)

dσ,

and following the same arguments as before, we get

∣

∣

∣

∣

∫

∂Ω
Lh,2ϕ ψ dσ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

∂Ω

(Ch(x) − I)∇τϕ(x).n(x)

Ah(x)n(x) · n(x)
Ah(x)n(x) · ∇τ

( 1

ωh(x)
ψ

)

dσ

∣

∣

∣

∣

∣

≤ C ‖(Ch − I‖L∞(∂Ω,MN×N ) ‖∇τϕ‖L2(∂Ω) ‖ψ‖H1(∂Ω)

≤ C ‖(Ch − I‖L∞(∂Ω,MN×N ) ‖ϕ‖H1(∂Ω) ‖ψ‖H1(∂Ω)

≤ C ‖h‖2 ‖ϕ‖H1(∂Ω)‖ψ‖H1(∂Ω).

Study of Dh Our aim is to prove the following result stating that the perturbed D i
richlet-to-Neumann map depends continuously on the perturbation on the natural space
for the Laplace-Beltrami operator .

Lemma 3.2 There is a modulus of continuity ω2 such that for all h with ‖h‖C2 < 1, one

has

‖Dh − Λ‖L(H1(∂Ω),H−1(∂Ω)) ≤ ω2(‖h‖C2).

Proof of Lemma 3.2:

Take φ and f two functions in H1(∂Ω). Let us notice (see [11]) that H1(∂Ω) is the trace
space of H3/2(Ω) and that the normal derivative of an element of H3/2(Ω) is not defined
in general except under regularity properties of its Laplacian. Hence, the Dirichlet-to-
Neumann map is still defined by the weak formulation and we will prove the estimation
first in the norm of L(H1/2(∂Ω),H−1/2(∂Ω)). The passage to L(H1(∂Ω),H−1(∂Ω)) is then
a consequence of the hierarchy of the norms.

By definitions of the operators Dh and Λ, one has

〈(Dh − Λ)φ, f〉H−1/2(∂Ω)×H1/2(∂Ω) =

∫

Ω
(Ah(x)∇uh(x) −∇u(x)) · ∇Eh(f)(x) dx

=

∫

Ω
[(Ah − I)(x)∇uh(x) + ∇(uh(x) − u(x))] · ∇Eh(f)(x) dx,

where uh and u are the respective solutions of the boundary value problem
{

−div (Ah∇uh) = 0 in Ω,
uh = φ on ∂Ω.

and

{

−∆u = 0 in Ω,
u = φ on ∂Ω.

It remains to estimate the variations Ah − I = Ah −A0 and uh − u = uh − u0.
To that end, the key arguments are the two following continuity results. First, the

application h 7→ Ah is continuous from W2,∞(RN ) in L∞(RN ). Second, we claim that
there exists a modulus of continuity ω such that

‖uh − u0‖H1(Ω) ≤ ω(‖h‖C2).

10



Let us sketch the proof of that classic claim by reductio ad absurdum. We define

ω(δ) = sup
‖h‖≤δ

‖uh − u0‖H1(Ω).

We assume by contradiction that limδ→0 ω(δ) 6= 0. Then, there exists a sequence hn such
that ‖hn‖ ≤ 1/n and ‖uhn − u0‖H1(Ω) ≥ α > 0 for all n ∈ N. Using the classical elliptic

estimates, we check that the sequence uhn is bounded in H3/2(Ω) . Then, by the compact
imbedding of H3/2(Ω) into H1(Ω), this sequence has to converge, up to an extraction, to a
limit u∞ in H1(Ω). Noting that

div (Ahn∇uhn) − ∆u∞ = div ([Ahn − I]∇uhn) − ∆[uhn − u∞],

and passing to the limit n→ +∞, we check that u∞ satisfies

{

−∆u = 0 in Ω,
u = φ on ∂Ω.

By uniqueness of the solution of this boundary value problem, u0 = u∞ that contredicts
‖uhn − u0‖H1(Ω) ≥ α > 0 for all n ∈ N.

Conclusion Gathering Lemmas 3.1 and 3.2, we have shown that there is a modulus of
continuity ω such that

‖Lh − L0‖L(H1(∂Ω),H−1(∂Ω)) ≤ ω(‖h‖).

We are now in position to prove our main result Theorem 1.2.

Proof of Theorem 1.2.:

We place ourselves under the assumptions and notations of Theorem 1.2. For a given
deformation field h, we have shown in Proposition 2.6 that the boundary value problem
(4) is equivalent to the nonlocal equation (16). To prove that this equation has a unique
solution, it suffices to prove that Lh is invertible.

Now, we remark that L0 being invertible by assumption, we can write

Lh = L0[I + L−1
0

(Lh − L0)].

Then, for ‖h‖ small enough, the operator Lh is invertible and its inverse can be written
in terms of the Neumann’s series

L−1
h

=
∞

∑

n=0

(I − L−1
0
Lh)nL−1

0
,

expression that provides a uniform bound for the norm of the inverse.

A Case of the ball: justification of (3).

We denote by r the radius which is the distance from the point to the origin, by θ and ϕ
the Euler angles. Since u is harmonic, we write it as a sum of spherical harmonics

u(r, ϕ, θ) =
+∞
∑

l=0

rl
m

∑

m=−l

um
l Y

m
l (ϕ, θ),

11



where the spherical harmonics (Y m
l ) are defined as

Y m
l (ϕ, θ) = (−1)m

√

(2l + 1)(l −m)!

4π(l +m)
Pm

l (cos θ)eimϕ, (22)

where Pm
l (cos θ) are the sequence of the associated Legendre functions. We recall [13]

that both the Laplace-Beltrami operator ∆τ and the Dirichlet-to-Neuman operator Λ are
diagonal on the basis of spherical harmonics, i.e., one has

{

∆τY
m
l = −l(l + 1)Y m

l

ΛY m
l = lY m

l .

To solve the Ventcel boundary value problem, we begin first to expand φ ∈ L2(S) into a
series of spherical harmonic functions

φ(ϕ, θ) =

∞
∑

l=0

l
∑

m=−l

φm
l Y

m
l (ϕ, θ),

where

φm
l =

∫

S
φ(ϕ, θ)Y m

l (ϕ, θ) dS.

In the next step, we have to solve the decoupled projected equations for the Fourier
coefficient um

l of u : it comes obviously that

[

− βl(l + 1) + l + α
]

um
l = φm

l , l ∈ N, − l ≤ m ≤ l.

Since each projected equation should have a unique solution in order to obtain a unique
solution to the original problem, we obtain that

−βl(l + 1) + l + α 6= 0, ∀l ∈ N

or equivalently (3).
Concerning the regularity of the found solution, we recall the caracterisation of Sobolev

spaces on the sphere in terms of Fourier’s coefficients: for an arbitrary f ∈ D′(S) we have
when t ∈ R

f ∈ Ht(S) ⇔ ‖f‖2
Ht(S) =

∞
∑

l=0

l
∑

m=−l

(l + 1)2t|fm
l |2.

Hence, for the admissible values of α, Fourier coefficients um
l of the solution u satisfy

| um
l |≤

C

l2
| φm

l | .

We obtain for φ ∈ Hs(S):

‖u‖2
Hs+2(S) =

∞
∑

l=0

l
∑

m=−l

(l + 1)2s+4|um
l |2 ≤ C

(

∞
∑

l=1

l
∑

m=−l

(l + 1)2s+4

l2
|φm

l |2 +
1

|α|2
|φ0

0|
2
)

≤ C ′
∞

∑

l=0

l
∑

m=−l

(l + 1)2s|φm
l |2s = C ′‖φ‖2

Hs(S).
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