T. W. Anderson, Introduction to multivariate statistical analysis, 1958.

S. Das and R. Ghanem, A Bounded Random Matrix Approach for Stochastic Upscaling, Multiscale Modeling & Simulation, vol.8, issue.1, pp.296-325, 2009.
DOI : 10.1137/090747713

J. Dattorro, Convex Optimization & Euclidean Distance Geometry, 2005.

X. Du and M. Ostoja-starzewski, On the size of representative volume element for Darcy law in random media, Proc. R. Soc. A, pp.2949-2963, 2006.
DOI : 10.1098/rspa.2006.1704

R. Ghanem and P. Spanos, Stochastic finite elements: a Spectral Approach, 1991.
DOI : 10.1007/978-1-4612-3094-6

J. Guilleminot and C. Soize, A stochastic model for elasticity tensors with uncertain material symmetries, International Journal of Solids and Structures, vol.47, issue.22-23, pp.22-233121, 2010.
DOI : 10.1016/j.ijsolstr.2010.07.013

URL : https://hal.archives-ouvertes.fr/hal-00684310

S. Hazanov and C. Huet, Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume, Journal of the Mechanics and Physics of Solids, vol.42, issue.12, pp.1995-2011, 1994.
DOI : 10.1016/0022-5096(94)90022-1

R. Hill, Elastic properties of reinforced solids: Some theoretical principles, Journal of the Mechanics and Physics of Solids, vol.11, issue.5, pp.357-372, 1963.
DOI : 10.1016/0022-5096(63)90036-X

C. Huet, Application of variational concepts to size effects in elastic heterogeneous bodies, Journal of the Mechanics and Physics of Solids, vol.38, issue.6, pp.813-841, 1990.
DOI : 10.1016/0022-5096(90)90041-2

R. L. Iman and W. Conover, A distribution-free approach to inducing rank correlation among input variables, Communications in Statistics - Simulation and Computation, vol.13, issue.4, pp.311-334, 1982.
DOI : 10.1080/00401706.1962.10490011

M. Jardak and R. G. Ghanem, Spectral stochastic homogenization of divergence-type PDEs, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.6-8, pp.429-447, 2004.
DOI : 10.1016/j.cma.2003.05.001

E. T. Jaynes, Information Theory and Statistical Mechanics, Physical Review, vol.106, issue.4, pp.620-630, 1957.
DOI : 10.1103/PhysRev.106.620

E. T. Jaynes, Information Theory and Statistical Mechanics, Physical Review, vol.106, issue.4, pp.171-190, 1957.
DOI : 10.1103/PhysRev.106.620

J. Löfberg, Yalmip: A toolbox for modeling and optimization in MAT- LAB, Proceedings of the IEEE Conference on Computer Aided Control Systems Design (CACSD), 2004.

T. Mura, Micromechanics of defects in solids The Hague, The Netherlands, 1987.

D. K. Nagar and A. K. Gupta, Matrix-variate Kummer-Beta distribution, Journal of the Australian Mathematical Society, vol.73, issue.01, pp.11-25, 2002.
DOI : 10.1023/A:1008645531911

R. M. Neal, Slice sampling. The annals of Statistics, pp.705-767, 2003.
DOI : 10.1214/aos/1056562461

S. Nemat-nasser and M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials, Journal of Applied Mechanics, vol.63, issue.2, 1993.
DOI : 10.1115/1.2788912

A. Okabe, Spatial tessellations : concepts and applications of Voronoi diagram. Wiley series in probability and statistics, 2000.

M. P. Garcia, C. Luo, A. Noshadravan, A. Keck, R. Teale et al., Microstructure representation and material characterization for multiscale finite element simulations of local mechanical behavior in damaged metallic structures, Proceedings of SPIE, the International Society for Optical Engineering, pp.10-12, 2008.

S. I. Ranganathan and M. Ostoja-starzewski, Scaling function, anisotropy and the size of RVE in elastic random polycrystals, Journal of the Mechanics and Physics of Solids, vol.56, issue.9, pp.2773-2791, 2008.
DOI : 10.1016/j.jmps.2008.05.001

K. Sab, On the homogenization and the simulation of random materials. European journal of mechanics A/Solids, pp.585-607, 1992.

S. Sankaran and N. Zabaras, A maximum entropy approach for property prediction of random microstructures, Acta Materialia, vol.54, issue.8, pp.2265-2276, 2006.
DOI : 10.1016/j.actamat.2006.01.015

T. H. Scheike, Anisotropic growth of voronoi cells Advances in applied probability, pp.43-53, 1994.

A. J. Schwartz, Electron backscatter diffraction in materials science, Kluwer Academic, 2000.

R. J. Serfling, Approximation Theorems of Mathematical Statistics, 1980.

C. E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, vol.27, issue.3, pp.379-423, 1948.
DOI : 10.1002/j.1538-7305.1948.tb01338.x

M. Shinozuka, Simulation of Multivariate and Multidimensional Random Processes, The Journal of the Acoustical Society of America, vol.49, issue.1B, pp.357-367, 1971.
DOI : 10.1121/1.1912338

C. Soize, A nonparametric model of random uncertainties for reduced matrix models in structural dynamics, Probabilistic Engineering Mechanics, vol.15, issue.3, pp.277-294, 2000.
DOI : 10.1016/S0266-8920(99)00028-4

URL : https://hal.archives-ouvertes.fr/hal-00686293

C. Soize, Maximum entropy approach for modeling random uncertainties in transient elastodynamics, The Journal of the Acoustical Society of America, vol.109, issue.5, pp.1979-1996, 2001.
DOI : 10.1121/1.1360716

URL : https://hal.archives-ouvertes.fr/hal-00686287

C. Soize, Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.1-3, pp.26-64, 2006.
DOI : 10.1016/j.cma.2004.12.014

URL : https://hal.archives-ouvertes.fr/hal-00686157

C. Soize, Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size, Probabilistic Engineering Mechanics, vol.23, issue.2-3, pp.307-323, 2008.
DOI : 10.1016/j.probengmech.2007.12.019

URL : https://hal.archives-ouvertes.fr/hal-00685154

C. Soize, Generalized probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions, International Journal for Numerical Methods in Engineering, vol.80, issue.21-26, pp.939-970, 2010.
DOI : 10.1002/nme.2712

URL : https://hal.archives-ouvertes.fr/hal-00684322

Q. A. Ta, D. Clouteau, and R. Cottereau, Modeling of random anisotropic elastic media and impact on wave propagation, Revue europ??enne de m??canique num??rique, vol.19, issue.1-3, pp.241-253, 2010.
DOI : 10.3166/ejcm.19.241-253

URL : https://hal.archives-ouvertes.fr/hal-00709537

M. Tootkaboni and L. Graham-brady, A multi-scale spectral stochastic method for homogenization of multi-phase periodic composites with random material properties, International Journal for Numerical Methods in Engineering, vol.196, issue.2, pp.59-90, 2010.
DOI : 10.1002/nme.2829

S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Applied Mechanics Reviews, vol.55, issue.4, 2002.
DOI : 10.1115/1.1483342

L. Vandenberghe and S. Boyd, Semidefinite Programming, SIAM Review, vol.38, issue.1, pp.49-95, 1996.
DOI : 10.1137/1038003

C. Zener, Elasticity and Anelasticity of Metals., The Journal of Physical and Colloid Chemistry, vol.53, issue.9, 1948.
DOI : 10.1021/j150474a017