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A computational inverse method for identification of
non-Gaussian random fields using the Bayesian
approach in very high dimensien

C. Soizé

Universi€ Paris-Est, Laboratoire Maglisation et Simulation Multi-Echelle, MSME UMR 8208
CNRS, 5 bd Descartes, 77454 Marne-la-¥allCedex 2, France

Abstract

This paper is devoted to the identification of Bayesian posteriors for the random
coefficients of the high-dimension polynomial chaos expansions of non-Gaussian
tensor-valued random fields using partial and limited experimental data. The ex-
perimental data sets correspond to an observation vector which is the response
of a stochastic boundary value problem depending on the tensor-valued random
field which has to be identified. So an inverse stochastic problem must be solved
to perform the identification of the random field. A complete methodology is
proposed to solve this very challenging problem in high dimension, which con-
sists in using the first four steps introduced in a previous paper, followed by the
identification of the posterior model. The steps of the methodology are the fol-
lowing: (1) introduction of a family of Prior Algebraic Stochastic Model (PASM),

(2) identification of an optimal PASM in the constructed family using the partial
experimental data, (3) construction of a statistical reduced-order optimal PASM,
(4) construction, in high dimension, of the polynomial chaos expansion with deter-
ministic vector-valued coefficients of the reduced-order optimal PASM, (5) substi-
tution of these deterministic vector-valued coefficients by random vector-valued
coefficients in order to extend the capability of the polynomial chaos expansion
to represent the experimental data and for which the joint probability distribu-
tion must be identified, (6) construction of the prior probability model of these
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random vector-valued coefficients and finally, (7) identification of the posterior
probability model of these random vector-valued coefficients using partial and
limited experimental data, through the stochastic boundary value problem. Two
methods are proposed to carry out the identification of the posterior model. The
first one is based on the use of the classical Bayesian method. The second one
is a new approach derived from the Bayesian method, which is more efficient in
high dimension. An application is presented for which several millions of random
coefficients are identified.

Key words: Inverse problem, non-Gaussian, random field, Bayes, Bayesian
method, identification.

1. Introduction

The problem related to the identification of vector-valued parameter of a system
modeled by a boundary value problem (BVP) (for instance, the coefficients of a
partial differential equation) using experimental data related to the vector-valued
observation of this system, is a difficult problem which has been studied a lot. In
general and in the deterministic context, there is not a unique solution because the
function which maps the vector-valued parameter to the vector-valued observation
is not an injection, and consequently, cannot be inverted. It is an ill-posed prob-
lem. However, such a problem can be reformulated in terms of an optimization
problem consisting in calculating an optimal value of the vector-valued parame-
ter which minimizes a certain distance between the observed experimental data
and the vector-valued observation which is computed with the BVP and which
depends on the vector-valued parameter (see for instance [54]). In many cases,
the analysis of such an inverse problem can have a unique solution in the frame-
work of statistics, that is to say when the vector-valued parameters is modeled
by a random quantity, with or without external noise on the observed output. In
such a case, the random vector-valued observation is completely defined by its
probability distribution which is the unique transformation of the probability dis-
tribution of the random vector-valued parameter. This transformation is defined
by the function which maps the vector-valued parameter to the vector-valued ob-
servation. With such a formulation which becomes a well-posed problem, there
is a unigue solution in the probability theory framework (see for instance [24] an
overview concerning the stochastic inverse problems).

The identification of non-Gaussian random fields solving stochastic inverse prob-



lems has already been addressed in many scientific and technical areas (see for
instance [13, 16, 27, 53, 23, 24, 28]).

The present paper is a companion work of the recent paper published in [48]
and which was devoted to the identification of the random Vector-Valued Coef-
ficients (VVC) of the high-dimension Polynomial Chaos Expansion (PCE) of a
non-Gaussian tensor-valued random field using partial and limited experimental
data. These experimental data are related to an observation vector which is the
response of a stochastic boundary value problem depending on the tensor-valued
random field which has to be identified. A complete new methodology has been
proposed to solve this challenging problem in high dimension, in particular new
algorithms have been proposed to identify the construction, in high dimension,
of the PCE with deterministic VVC of the reduced-order optimal prior algebraic
stochastic model of the tensor-valued random field. In order to extend the capa-
bility of the PCE to represent the experimental data, the deterministic VVC have
been replaced by random VVC for which the joint probability distribution has to
be identified. In [48], we have proposed a first approach to construct the prior
probability model of these random VVC and then, to identify the posterior prob-
ability model of these random VVC using partial and limited experimental data.
Nevertheless, an alternative approach seemed to have to be investigated, based on
the Bayesian method, as it was indicated in the conclusion of this work. In this
paper, we thus present the identification of the Bayesian posteriors of the random
VVC of the high-dimension PCE of a non-Gaussian tensor-valued random field
using partial and limited experimental data. As we will see, two methods will
be developed to perform the identification of the posterior model in high dimen-
sion. The first one will be based on the use of the classical Bayesian method. The
second one is a new approach derived from the Bayesian method, which is more
efficient in high dimension. An application will be presented for which several
millions of random coefficients must be identified.

Let us recall that the methodology used to construct the PCE of a random field has
been introduced in [17]. The methodologies relative to the PCE of stochastic pro-
cesses and random fields, and application to stochastic boundary value problems,
have generated many works in the last decade (see for instance [12, 18, 21, 22, 25,
29, 30, 34, 35, 36, 38, 39, 41, 45, 47, 55, 56]). The stochastic inverse methods and
the Bayesian inference approach to inverse problems have received a particular
attention (see for instance [8, 19, 31, 32, 33, 57, 58, 59]). The problem relative
to the identification, with experimental data, of the deterministic VVC of the PCE
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of a non-Gaussian real-valued random field using the maximum likelihood has
been introduced in [14, 15] and more recently, has been revisited in [11]. In [10],
the authors propose to construct the probability model of the random VVC of the
PCE by using the asymptotic sampling Gaussian distribution constructed with the
Fisher information matrix. Such an approach has been used for model validation
[20, 37]. Recently, in [1], as a continuation of [46], the identification of Bayesian
posteriors for the random VVC of PCE has been proposed. Nevertheless, this
interesting approach is not perfectly adapted to high-dimension problems (case
for which several millions of random variables have to be identified). This is the
reason why we propose to explore in this paper, as a continuation of [48], another
way for the high-dimension case in the field of the Bayesian inverse method.

2. Definition of the problem to be solved

In this section, we recall the challenging problem introduced and solved in [48],
for which the last step of the methodology which is devoted to the identification
of the posterior probability model, is revisited in this paper. We propose to use
the Bayesian method to identify the posterior probability model. We then have
to identify the Bayesian posteriors of high-dimension PCE with random VVC for
non-Gaussian tensor-valued random fields using partial and limited experimental
data.

(1) Stochastic boundary value problefe consider a boundary value problem

for a vector-valued fieldu(x) = (u1(X), ua(X), uz(X)),x € Q} defined on an

open bounded domain of rR?3, with generic poin = (xy, zo, x3). This bound-

ary value problem depends on a non-Gaussian fourth-order tensor-valued random
field {c(x),x € Q} in whichc(X) = {C;ke(X) }ijxe, Which is unknown and which

has to be identified solving an inverse stochastic problem. The bounfaof
domain2 is written asl’y U I'ops U I'. Fieldu is only experimentally observed on

I'obs Which means that the system is partially observed with respect to the avail-
able experimental data.

(2) Stochastic finite element approximation of the stochastic boundary value prob-
lem The stochastic boundary value problem (introduced in (1) above) is dis-
cretized by the finite element method. LBt= {x!,... ,x} C Q be the finite
subset of2 made up of all the integrations points of the finite elements used in
the mesh of2. For allx fixed inZ C €, the fourth-order tensor-valued random
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variablec(x) is represented by a real random mafrixx)| such thafa(x)];; =
C;kn(X) with a given adapted correspondente= (i,j) andJ = (k,h). It
should be noted that mathematical properties on the matrix-valued random field
{[A(x)],x € Q} are necessary in order to preserve the mathematical properties of
the boundary value problem. L&t = (U U"") be the random vector with
values inR™ = R™obs x R™nobs With m = mgps + Mnobs CONStituted of some
degrees of freedom of the finite element approximation of fieldThe R obs-
valued random vectdy®s = (U°bs .. U ) is made up of thenqps observed
degrees of freedom for which there are available experimental data (correspond-
ing to the finite element approximation of the tracelays of random fieldu).
Vector U°P will be called the observation vector. TRé&nobs-valued random vec-

tor UnobS— (gypobs Uﬁn‘;?;s) is made up of thennopsdegrees of freedom (of the
finite element model) for which no experimental data are available and are intro-
duced for performing the quality assessment of the identification which will be
done. The random vectdt appears as the unique deterministic nonlinear trans-
formation of the finite family ofV,, dependent random matricés(x)], x € Z}.

This set of random matrices can then be represented ®¥vavalued random
vectorv = (V4,...,V,,, ). Consequently, the™-valued random vectdd can be
written as

U= h(V) ’ Uobs _ hObS(V) ’ Unobs: hnObS(V) ’ (1)

in whichv — h(v) = (h°(v), h""v)) is a deterministic nonlinear transforma-
tion from R™Y into R™ = R™obs x R™nobs which can be constructed solving the
discretized boundary value problem.

(3) Experimental data setdt is assumed that,,, experimental data sets are avail-
able for the observation vectt®®. Each experimental data set corresponds to
partial experimental data (only the trace of the displacement field.gqis ob-
served) with a limited length/,, is relatively small). These.,, experimental data
sets correspond to measurements gf experimental configurations associated
with the same boundary value problem. For configurafiomith £ = 1, ... vey,

the observation vector (correspondindt® for the computational model) is de-
noted byu®*?‘ and belongs t&™. Therefore, the available data are made up of the
Vexp VECLOrsU®®L . uePrexin R™. Below, it is assumed thal®®!, ... uexPres

can be viewed as.,, independent realizations of a random vedi6t defined on

a probability spacé©®*P, 7P PeP) and corresponding to random observation
vectorU®s (but noting that random vectoks®™® and U° are not defined on the



same probability space).

(4) Stochastic inverse problem to be solvéithe problem to be solved concerns
the identification of the unknown non-Gaussian random vectepresenting the
fourth-order tensor-valued random fie{d:(x),x € Q}, using partial and lim-
ited experimental data®™®!, ... u®Preo relative to the random observation vec-
tor U°"S such thatJ°P® = h°*S(v) in which h°®Sis a given deterministic nonlinear
mapping. The components of the random vettt™, such that)"*s = h"°PYv)

in which h"Sis a given deterministic nonlinear mapping, are used for performing
the quality assessment of the identification .

3. Summarizing the methodology previously introduced to identify a high-
dimension PCE using partial and limited experimental data

The identification of Bayesian posteriors of high-dimension PCE with random
VVC, using partial and limited experimental data, requires a first identification of
the deterministic VVC of the high-dimension PCE for the non-Gaussian tensor-
valued random field, using partial and limited experimental data. Such a first
identification, performed in four steps, is described in details in [48]. In this sec-
tion, we briefly summarize the methodology for readability of the paper.

Step 1 Introduction of a family of Prior Algebraic Stochastic Models (PASM) for
random vecton. The available partial and limited experimental data are not suf-
ficient to perform a direct statistical estimation of the covariance mgtkjk that

would be necessary to construct a reduced-order statistical model deduced from
the Karhunen-Loeve expansion of the random fighdx)], x € 2} (that is to say
deduced from a principal component analysis of random vegtoin addition,

such a reduced-order statistical model must have the capability to represent the re-
quired mathematical properties for the random farfiy(x1)], . . ., [A(x"?)]} (for
instance, each random matfix(x*)] should be positive definite almost surely).

To circumvent these two major difficulties, it was proposed to introduce a family
{[aPM(x;w)] ,x € Q},, of Prior Algebraic Stochastic Models (PASM) to rep-
resent the matrix-valued random fiefgh(x)],x € Q}. We can then deduce a
family {v™SM(w)},, of PASM for random vectok. This family is defined on a
probability spacg©, 7, P) and depends on the vector-valued parametdre-
longing to an admissible séty. The knowledge of such a family means that the
family { P7*SM(dv; w) ,w € Caq} Of probability distributions oR™v of the family

of random vectorgv™S™(w) ,w € C,q} is known. In addition, it is assumed that
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a generator ofy, independent realizatiorig™"(6;; w), ..., v*M(4,, ;w) for
b,...,0,, belonging too© is available. In practice, vector-valued parameter
will be chosen as a vector with a very low dimension and its components will be,
for instance, the mean val(®|, the spatial correlation lengths and the dispersion
parameters controlling the statistical fluctuations of matrix-valued random field
{[a(x)], x € Q.

Step 2 Identification of an optimal PASM in the constructed family using the ex-
perimental data setsThis step consists in using the experimental dat&™', . . .
uePrexl to identify the optimal valuev®® of parametew. Using the computa-
tional model (see Eg. (1)) and the fami**"(w) of PASM for v, we can con-
struct the family{ U°*S™SM(w) | w € C,q} of random observation vectors such that
UOPSPASM(w) = hoPS(vPASM(w)) for w € Cag. The optimal PASM is then obtained

in finding the optimal valuev®® of w which minimizes an adapted "distance”
J(w) (cost function) between the familj°*S™M(w) 'w € C,q} of random ob-
servation vectors and the family of experimental dai&®! ... u®Prexr}l We

then obtain the optimal PASM denoted &{*S™ = v™SM(w°PY), Several meth-
ods can be used to define the cost functidw), such as the moment method,
the least-square method, the maximum likelihood method, etc (see [40, 50, 54]).
By construction of the PASM, the dimension of vectoris much smaller than

Vexp X Mops The least-square method or the maximum likelihood method can be
used to calculate the optimal valué (see the details in [48]).

Step 3 Construction of the statistical reduced-order optimal PASMr ¢ =
L..., v, let vPSM(64,) be 1y independent realizations of the optimal PASM
VPASM The mean valug = E{v™M} of v™SM (E' is the mathematical expec-
tation) and its positive-definite symmetrien; x my) real covariance matrix
[Cypasm] = E{ (V™M — v) (V™M — v)T'} are estimated using independent re-
alizations{v™M(9,), ¢ = 1,...w }. The dominant eigenspace of the eigenvalue
problem[Cyrasv] W7 = ;W7 is then constructed. LéWw] = [W'!...w"| be the
(my x n) real matrix of then eigenvectors associated with théargest eigenval-
uesh; > Xy > ... >\, > Osuchthafw|” [w] = [I,,], in which[I,] is the(n x n)
identity matrix. The statistical reduced-order optimal PASM is then written as

VPASM V+ Z /)\]" n;ASMWj ’ (2)
J=1

in which nPASM = (pPASM_ - PASM) js a second-order centered random variable

7



with values inR™ such that

E{’I’]PASM} -0 , E{,',’PASM (,I,’PASM)T} — [In] ) (3)

The mean-square convergence of the right-hand side in Eq. (2)) with respect to
the reduced-order is studied in constructing the error function

Z?: 1 )\]

n—er(n)=1- TCyma]

(4)

which is a monotonic decreasing function frdm ..., my} into [0, 1] and such

thater{my) = 0. Thewy, independent realizationg”*"(¢,), ..., n™M(,, ) are
deduced from the realizationd”™(6,), ..., v™"(0,, ) using, forj = 1,...,n
and for/ =1, ..., the equation
1 .
05 M(0) = —= (V*M(0) —v)" W7 (5)

VA

Step 4 Construction of the PCE with deterministic VVC of the reduced-order
optimal PASM This step consists in constructing an approxima#éif°{N) =
(nShaY N), ..., nEhag N)) of n™SM by using a PCE, such that

N
,’,’PASM ~ nchaOS(N) 7 nchaOS(N) _ Zya \IIQ(E) : (6)
a=1

in which the real valued random variablg(Z), . . ., ¥y (=) are the renumbered
normalized Hermite polynomials of tie"s-valued normalized Gaussian random
variableE = (Z,,...,Zy,) (thereforeE{E} = oand E{EE"} = [Iy,]), de-
fined on probability space, 7, P), such that for altv andg in {1,..., N},

E{Ua(B)} =0 , E{Va(B)Vs(E)} =das (7)

whered, s is the Kronecker symbol. It should be noted that the constant Hermite
polynomial with indexa = 0 is not included in Eq. (6). IV, is the integer
number representing the maximum degree of the Hermite polynomials, then the
numberN of chaos in Eq. (6) is

N = h(N,, Ng) = (Ng+ N)! /(NJ N,y = 1 . 8)
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In Eq. (6)), the symbol%” means that the mean-square convergence is reached
for N sufficiently large and the deterministic VVC which must be identified are
the V vectorsy!, ..., y" in R". Taking into account Egs. (3) and (7), it can be
deduced that vectosg, . . ., y¥ must verify the following equation,

N
doyry Tt =[1,) . 9)

In order to control the quality of the convergence of the series in Eq. (6) with
respect taV (which is mean-square convergent), we have introduced in [48] an
unusualL'-log error function which allows the errors of the very small values of
the probability density function (the tails of the probability density function) to
be measured. For a fixed value &f such a measurement of the error is sum-
marized hereinafter. Let+— pn]pAsm(e) be the probability density function of the

random variable)>s". For ally', ... y" fixed inR" and satisfying Eq. (9)), let
e pT]ghaOS(N)(e; yi, ..., ¥") be the probability density function of random vari-

ablent"@°{ V). The convergence of the sequence of random ve¢igi§°{ V) } v
towardsn™SM is then controlled with thé.*-log error defined by

err;(Ny, Ng) = /BI |10g10pn§’ASM(€) —logy, pn;;haoiN)(e; yi.o.yM)de |, (10)

in which BI; is a bounded interval of the real line which is adapted to the problem
(see the detalls in [48]). The estlmatlonm,f:Asm ) is carried out using the ker-
nel density estimation method [6] with the mdependent realizatj¥(0, ),

n7 (0., ) calculated in Step 3. Similarly, for a given valueydf ... y", the
estimation Ofpn;;haOS(N)(e; y',...,y") is carried out using Eq. (6) and inde-
pendent realization&(0,), ..., E(6,) of the normalized Gaussian vectarde-
fined on probability space, 7, P) with 6, ...,6, in ©. For the random vector
n°"°{ V), the L*-log error function is denoted as éN,, N,) and is defined by

err(N,, Ny) = Z err;( . (11)

It should be noted that Egs. (10) and (11) are not used to idenitify .y, but
only to evaluate, for each fixed value o&f and for giveny!, ... y", the qual-
ity of the approximationp™M ~ nha°{N), For each fixed value ol, the
identification ofy!, ..., y" is performed using the maximum likelihood method

9



[40, 50, 54] as done in [14, 15, 10, 48]. Taking into account that the dependent
random variableg?" ... 7™ are not correlated, the following approximation
L(y*, ..., y") of the log-likelihood function is introduced

n VKL

‘C(yl7 s ayN) = Z Z 10g10 pn;?haoiN) (n;ASM(ef) ) yla s 7yN) : (12)

=1 ¢=1
The optimal valudy',...,y") of (y',...,y") is then given by

") M) (13)

=arg max L(y',...,y
Ot yN)eCy

(y',....y

in which CZ} is such that

Cé\([j = {(y1’ SR >yN) S (RTL)N ) Zya yaT = [[n]} . (14)

For the high-dimension case, that is to say.7iox N very large, solving the op-
timization problem defined by Egs. (13) and (14) is a very challenging problem
which has been solved in the last decade only for small valuesaod N. Such

a challenging problem has been solved in [48] thanks to the use of two novel al-
gorithms:

(i) The first one is required, far = 1,..., N and/ = 1, ..., v, to generate the
independent realizations, (=(¢,)) of ¥, (Z) with high degreeV, of the polyno-
mials ¥,,. Introducing the(v x N) real matrix|¥]| such tha{¥),, = ¥, (E(6,)),
matrix [¥'] is computed as explained in [49] to preserve the orthogonality condi-
tions defined by Eq. (7) for any values &f, and V.

(if) The details of the second one are given in [48] and allows the high-dimension
optimization problem defined by Egs. (13) and (14) to be solved with a reason-
able CPU time, the constraint defined by Eqg. (9) being automatically and exactly
satisfied.

(iii) The random response vectolASM — (OPSPASM ynobsPasMy of the computa-
tional stochastic model, corresponding to the optimal PASM represented by the
PCE, is given byU™" = h(v™sM) in which v?" ~ v + 3" | /X nMwi

with n™sM ~ SN ye g (E). The independent realizatiof®)™"(6,), ¢ =
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1,...,v} of U™Mcan then be calculated. For< k < mops, let U™ be a com-
ponent of the random observation vectdf*s™SM while, if meps+ 1 < k < m,

then UPSM represents a component of the random vettPs™sM, The proba-

bility density functionu, — pyeasu(ux) on R of the random variablé/[*sM is

then estimated using the above independent realizations and the kernel density
estimation method [6].

4. Comments about the proposed methodology and identification of Bayesian
posteriors for the high-dimension PCE using partial and limited experi-
mental data

For given experimental data sets, the best approach which can be made is the one
(1) which takes into account all the available theoretical information related to
the tensor-valued random field and (2) which reproduces the set of the available
experimental data in a statistical sense. The family of PASM (see Step 1) which
depends on the low-dimension vector-valued parameterust span the larger
possible subset of all the admissible tensor-valued random fields. The construc-
tion of such a family must then take into account all the available mathematical
properties (for instance an ellipticity condition). Nevertheless, since the optimal
PASM (see Step 2) is constructed in identifying a family which has only a few
free parameters (components of veat)y this optimal PASM belongs to a subset
which is not big enough to perfectly represent the available experimental data.
Consequently, it is necessary to construct a posterior model to better represent the
experimental data, that is to say, it is necessary to construct a representation which
is capable to span a larger subset containing the experimental data. The approach
used has then been to construct a PCE with random VVC of the optimal PASM.
Such a PCE with random VVC has the capability to represent any tensor-valued
random field and then has the capability to fit all the experimental data in a sta-
tistical sense. Nevertheless, a direct construction of such PCE with random VVC
would not be realistic. This is the reason why, in Step 4, the PCE with deter-
ministic VVC of the optimal PASM is constructed and then, the posterior model

is constructed in replacing the deterministic VVC of the PCE by random VVC.
Clearly, better will be the optimal PASM, less will be the numerical cost required

to fit the probability distributions of the random VVC.

Let us consider an uncertain computational model for which the stochastic model-
ing of uncertain parameters is performed by introduciigndependent random
variables (after having applied a Karhunen-Loeve statistical reduction and a non-
linear transformation of independent random variables for which the probability
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measures are known). Clearly, for the direct problem consisting in analyzing the
propagation of uncertainties through the computational model, the length of the
germ of the PCE of the random response of this stochastic computational model,
must be chosen a¥,. In this paper, the stochastic inverse problem is consid-
ered. The uncertain parameter is a random field for which the stochastic model
is unknown and must be identified. Using the Karhunen-Loeve statistical reduc-
tion (see Step 3) and then the PCE of #ievalued random variablg™s™ (see

Step 4), there are three unknown parametgrd/, and V;, which must be se-
lected to get a good convergence of the representation. The value of parameter
is defined in studying the error function— err(n) defined by Eq. (4) which is
based on a mean-square convergence. The valugthen independent from

the value ofN, and N,;. Now, the value ofV, and V; must be defined in or-

der that the convergence of the PCE of #ievalued random variablg™" be
reached. Such a convergence is studied using the uniisdal error function

(Ny, Ng) — err(N,, Ny) defined by Egs. (10) and (11). It should be noted that
this error function is better than the mean-square error function and allows the
convergence of the probability function to be controlled over all the range of the
large values and the very small values of the probability levels (this means that
this error function allows the tail of the probability density functions to be cor-
rectly fitted). Consequently, the maximum degrég of the polynomial chaos
must be sufficiently high to get the convergence of the representation when the
random field is any non-Gaussian random field (a random field which is unknown
and which must be identified without any information about the tails of the sys-
tem of marginal probability distributions which define the probability law of the
non-Gaussian random field). In addition, the introduction of a very large number
N of polynomial chaos(¥,(E),« = 1,...,N} induced by the use of a high
value of V; coupled with the use of a significant value/gf, is equivalent to the
introduction of a very large number of uncorrelated random variables due to the
orthogonal property defined by Eq. (7).

For the stochastic inverse problem under consideration, this analysis shows that,
there is no reason to set a priori a valueAgror a value forV; which are strongly
dependent. The optimal values§f and N, must be determined using ttie-log

error function and there is no reason to set the valu¥ oo the valuen.

As explained above, the family of PASM which is introduced is, in general, not
capable to perfectly represent the experimental data (for instance, this can be the
case for the mesoscale stochastic modeling of complex anisotropic and hetero-
geneous microstructures). It should be noted that the family of PASM does not
take into account modeling errors but is introduced to model the random medium.
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Consequently, a posterior stochastic model must be introduced in order to improve
the optimal PASM which has been constructed and identified in Steps 1 to 3 and
for which the representation by a high-dimension PCE has been constructed in
Step 4. Such a posterior stochastic model is mainly constructed in order to take
into account the modeling errors introduced by the choice of the family of the
PASM.

Following the method of reduced PCE with random VVC of vector-valued ran-
dom variables presented in [46, 48, 1] and in order to take into account model un-
certainties, the optimal valugg', . . ., y") constructed in Step 4 are replaced by a
family of random vector§Y', ..., Y™} defined on a probability space’, 77, P'))
which is independent of the family of random variables, (E),..., Ux(E)}
(which are defined on the probability spaég, 7, P)).

In [48], we have proposed a first approach to identify such a posterior stochas-
tic model. Presently, we propose an alternative approach based on the use of
the Bayesian method for the high-dimension case. The identification of Bayesian
posteriors in high-dimension case (that is to say the identification of a posterior
probability distribution of a random vector with several millions of dependent
components) using a random observation vector for which limited and partial ex-
perimental data are available is also a challenging problem.

5. Prior probability model of the random VVC

5.1. Prior model

Let VP be the prior stochastic model 6f*S™, defined as the™v-valued random
variable on the probability spa¢®’ x ©, 7" @ T,P’ ® P), such that

Vprior =V+ Z /)\j njpriorwj . (15)
j=1
The prior stochastic modelPo = (5™ . pPior) s ar"-valued random vari-

able defined oi©®’ x ©, 7' @ T, P’ ® P), which is written as the following PCE
with random VVC (deduced from Eq. (6)),

N
7,'prior _ Z Ya,prior \DQ(E) ) (16)
a=1
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The family of R"-valued random variablefY P YNPiol gre defined on
the probability spacé®’, 7’,P’). We introduce the random vectaP"®" with
values inrR™", defined on(©’, 77, P’), such that

yPrior _ (Yl,prior’ o ’YN,prior) ’ a7)

and for which its probability distribution is assumed to be represented by a proba-
bility density functiony — p%™ (y) onR™ with respect to the Lebesgue measure

dy=dyi ...dy,n.

5.2. Independent realizations of the prior model
For all(¢’,0) in © x O, the realizationv®®'(¢’, §) of vP"" is written as

Vprlor 0/ =V+ Z \/7 prlor 0/ 7 (18)

in which the realizatiomP™ (6. 6) = ("0, 6), ... ,nP"(¢', 0)) of pPior is
written as

pr|or 9/ ZYa prior 9/ 5(9)) ‘ (19)

The realizatioryP™"(9") of YP'°' is given by
Ypriorw/) — (Yl,prior(el)’ o 7YN,prior(0/)) ) (20)

5.3. Probability distribution of the prior model

Let ¢ > 0 be any given positive or null real number. The probability density
functiony — p'*(y) onR" of the random vectoyPor = (Y Prior .y N.prier)
is such that the random vectorsP™" .. YNPir gre mutually independent and
such that,

YOPTOr = 22 |y U, +Y* —ely?| (21)

inwhich [y is the vector|y¢|, . .., [y*|) wherey', . .. ,y" are theV known vec-
tors inR” calculated in Step 4. In Eq. 21y, ..., Uy} is a family of indepen-
dent uniform random variables df, 1], defined 0n(@’ T',P"). Consequently,
the componeny’™ POT of Y @PTiOT s 3 uniform random variable, centeredjihand

the support of its probability distribution is written as

87 =[y —e¢

s ety uy +elylll (22)
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It can then be deduced that{n*"*} = 0 and the mean values of the random
VVC are such that

E{Ya,prior} _ Xa , fora=1,...,N (23)

The statistical fluctuations of “P"" around the mean valug* is controlled by

parametee. If ¢ = 0, thenY PO — y* almost surely (dete?ministic case for the
VVC of the PCE introduced in Step 4).

5.4. Subset of independent realizations for the prior model

Let {[aPmo'(x1)], ..., [aPo"(xN»)]} be theN, random matrices associated with the
prior model VP, In Section 2-(2), we have seen that the matrix-valued ran-
dom field{[a(x)], x € ©} must generally satisfy mathematical properties for that
the stochastic boundary value problem has a unique stochastic solution verifying
given properties. Let us assume that such mathematical properties are described
as follows: The family of random matricg&P°'(x!)], ..., [aP1o"(x"»)]} verifies,
almost surely, a property denotedZs, (for instance, foralkin {1, ..., N,}, the
random matriXaP™°'(x*)] should be positive define almost surely). By construc-
tion (see Section 2), far = 0, propertyP,,, is verified almost surely. However,

for ¢ > 0, such a property can be not verified for certain realizations. Conse-
guently, the rejection method is used to construct the subset of independent real-
izations for whichp,,, is satisfied almost surely.

Let ¢ be fixed (not equal to zero). Let™®'(¢1), ... YPo'(¢’,) be v’ indepen-

dent realizations ofP™" for #},...,6, in ©'. Let Z(6,),...,E(0,) be thev
independent realizations & (for 64, ...,0, in ©) introduced in Step 4 of Sec-
tion 3. For givend, and6,, let vP"'(9,, 6,) be the realization of/*™" and

let [aPor(xL; 0),,6,)], . . ., [BPO" (x> 6, 6,)] be the corresponding realizations of
[aPior(x )] [aPiOr(xNe )], Consequently, if the family [aP™O"(x%; 8}, 0,)], . . .,
[aPrior(xNe: 7, 0,)]} verifies propertyP,,,, then realizationd,,, 6,) will be kept

and, if not, this realization will be rejected. For fixéfl, we then introduce the
sups.et{egl, il } 0 {01, 6.}, with w(¢') < v, for which propertyP,,, is
verified.

It should be noted that will arbitrarily be fixed in the context of the use of the
Bayesian method to construct the posterior model. In general, maié be
chosen large, morg(¢') will be small. Therefore, a compromise will have to be
chosen between the numhef’) of realizations to get convergence of the sta-
tistical estimators and a large valuesoéllowing large deviations from the prior
model to be generated.
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5.5. Prior probability density functions of the responses
For all ¢’ fixed in {1,...,v'}, the realization&J’"'(9,,,6,,) for j = 1,...,(¢)
of the prior random vectdgP®" = (YoPsprior ynobspriory _ p(yprien) gre calculated
with the stochastic computational model for the prior mog®P' of v. For1 <
k < mops, UP"" is @ component of the random observation vett#P"*" while,
if mops+ 1 < k < m, thenU™ represents a component of the random vector
UneesPrer. The probability density functiomy, — p, prior(ux) 0N R of the prior
k

random variablé/?™™" is then estimated using the above independent realizations
and the kernel density estimation method [6].

6. Posterior probability model of the random VVC using the classical Bayesian
approach

In this section, we present the use of the classical Bayesian approach to construct
the posterior probability model”°*'of the random VVC for which the prior prob-
ability modelyP"" has been constructed in Section 5.

6.1. Conditional probability of the vector-valued random observation if VVC are
given

Foragivenvectoy = (y',...,yV)inR™ = R" x ... xR", letU = (U°PS U"°bs)

be the random vector with valuesRri* = R"bs x R™nobs, such that) = h(V) (see

Eq. (1)) in which the random vectar with values inR™v is given byv = Vv +

>i_y \/Ajn; W (see Eq. (15)) and for which the random veojoe (11, .. ., 7,,)

with values inR" is given byn = 2521 y* ¥, (E) (see Eq. (16)).

We introduce the conditional probability density functio??s — onb5|Y(UObS|Y)
(defined orr™ebsand with respect to the Lebesgue meastu€® = du™. .. dud’s |

of random observation vecttl®*sif v = (Y!, ..., YY) is equal to the given vec-
tory=(y',...,yY)inr",

Consequently, the random observation veti8s = (U ..., U&?;S) depends
onY = yand the stochastic computational model allows the conditional prob-
ability density functionsi®®® i pyebsy (U*y) andug® — pyovsy (ug™ly) to be
calculated.
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6.2. Formulation using the Bayesian method

The posterior random vectdsPost = (oPsPost ynobsposh with values inR™ =
R™obs x R™nobs |5 Written (see Eg. (1)) as

Upost Vpost) Uobspost hobs Vpost) Unobspost hnobS(Vpost> (2 4)

in which ther™v-valued random vectorPstis the posterior model ofP®", Tak-
ing into account Egs. (15) to (17), the posterior model&P" is written as

yPost _ V+Z\/7 poStyy 7 (25)

in which the posterior stochastic modgtost = (7% ... 7P is aR"-valued

Y

random variable defined q®’ x ©, 7' ® T,P’ ® P), such that

N
npost: Z Ya’pOSt\I’a(E) ’ (26)

a=1

in which the family ofR”-valued random variableSy s, . Y PO gre de-
fined on the probability spad®’, 77, P’). As previously, we introduce the-
valued random vectarPostdefined on(©’, 77, P’) such that

Ypost: (Yl,post’ o YN,posI) ’ (27)

whose its probability distribution is represented by the probability density func-
tiony — pP°*(y) onR™" with respect to the Lebesgue meastye= dy; . . . dyn.

Letu®®! ... u®Pvew be thevey, independent experimental dat&® correspond-
ing to observation vectdd®®. The Bayesian method (see for instance [4, 5, 7,
9, 40, 50, 51, 54]) allows the posterior probability density funciifi(y) to be
calculated, using the prior probability density functigfi®(y) and using the ex-
penmental valuepjonsy (U u®Pf|y) of the conditional probablllty density function

onbs|Y( S|y) as
pS[OSt( ) Lbayeiy) prlor(y) ’ (28)

in whichy — LP¥e{y) is the likelihood function defined or™", with values in
R™, such that

1,27 pyovsy (U™*]y)

Lbaye — _ :
) E{Hzexlp Puobsy (uexpe|yprior)}

(29)
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Eqg. (29) shows that likelihood functiab®®®smust verify the following equation,

E{LPavegyPrion)) — /R N LP¥Sy) p2(y)dy =1 . (30)

6.3. Posterior probability density functions of the responses

The probability density function — ppost(U) ONR™ of the posterior random vec-

tor UP*tis then given bypeost(U) = [5..v pujy (U]y) p5°(y) dyin which pyy (u]y)

is the conditional probability density function ofgiveny = yand which is con-
structed using the computational model defined in Section 6.1. Using Eq. (28),
this last equation can be rewritten gigosi(u) = E{LPYe{YP"") pyy (U] YP™")}.

Let UP°* be any component of random vectdt®s. Forl < k < mops UL rep-
resents a component of random observation vedfBi*s while, if meps+ 1 <

k < m, thenUP represents a component of random vedi?*sP°t Conse-

quently, the probability density functiom;, — p,pos(u;) on R of the posterior
k
random variablé/?**'is then given by

pUpost(uk) _ E{Lbayetirior) pUk|Y(uk|Yprior)} 7 (31)
k

in which py, v (ux|y) is the conditional probability density function of the real
valued random variabl&}, giveny = y and which is constructed using the com-
putational model defined in Section 6.1.

6.4. Computational aspects
We use the notation introduced in Section 5.4 concerning the realizatioremf
=. Forv’ sufficiently large, the right-hand side of Eq. (31) can be estimated by

1 v i ! i !
pUIEost(uk) > Z LPegyPrioT(gr ) pu,y (uk YP(0)) (32)

=1

For fixed ¢, the computational model defined in Section 6.1 is used to calcu-
late ther(¢) independent realizationd(6,, [YP"'(6;.)), . .., U(0q,,, [Y""(0;))

for y = vP"'(6},). We can then dedudd®(0,, [Y*"'(6;,)), . . ., U0y, [YP"(6},))
and, for all fixedk, Uy (6, [YP"(07)), - - ., Uk(04, ., [XP"(67)).

(1) Using the independent realizatidd&(6,, [Y""(0;,)), . . . , U0, ., [ """ (6},))
and the multivariate Gaussian kernel density estimation (see Appendix A), we
can estimat%obsw(uex">f|Yp”°f(9;,)) and then, using Eqg. (29), we can compute
Loaegyrror(g Yy for ¢/ = 1,...,v".
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(2) Using the independent realizatiaig(,, |YP"(6},)), . . ., Uk, [YPor(gy,))
and the kernel estimation method [6], we can estimatey (u;|YP"'(0;,)) and
then, using Eq. (32), we can estimateost(uy).

7. Posterior probability model of the random VVC using a new approach
derived from the Bayesian approach

In Section 6, we have presented the classical Bayesian approach to construct the
posterior mode¥ st of the prior model?™® of the random VVC. Nevertheless, in

the application presented in Section 8, we will see that, for a very high-dimension
problem (the random vectar®®st has several millions of components), the usual
Bayesian method can be improved to get a more efficient method derived from the
classical one and presented below.

It should be noted that Eq. (31) can be rewritten as
pUlgost(Uk) = E{L”S pUk\Y<uk|Yprior)} ) (33)

in which the positive-valued random variablé® defined on(©’, 77, P’) is such
that LS = LPaegyPio) and such thatt{L"s} = 1 (see Eqg. (30)). The’
independent realizations df's are L'S(¢),..., L'S(#,) such thatL"s(¢;) =
LPae{yPor(¢/,)). With such a notation, Eq. (32) can be rewritten as

1 & / i /
pyposi(ur) = — > L0} puy e (uk ¥ (0;) (34)

=1

andE{L"} = 1 yields
LS sy ~1 (35)
124
=1

The method proposed consists in using Eq. (34), butin repldcihg: LPaye{yPror)
by another random variable for which the vedtdt = (L's(#),..., L"(¢’,)) of

the realizations of."s is constructed as the unique solution of the following linear
least square optimization problem with nonnegativity constraints,

L" = in G(L) .
arg LrgégdG( ) (36)
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The admissible sdi,q4is defined as
, 1 &
Gaa=A{L = (L1, L) €RY L2 0,0 L2 05— Ly=1}. (37)
=1

The cost functiol. — G(L) is defined as

Mobs v’
. 1 ; 2
GL)=>" /R (Pyee(uf™) — ~ > Ly Pyebsy (WY (6;,)) )" dui™, (38)
k=1 =1

in which 90 ﬁU:xp(uzbs) is an estimation of the probability density function of

eXp,I/exp

the random variabl&"® carried out with the experimental datg®", . . . | u;
(see Section 2-(3)) and using the kernel estimation method [6]. In Eq. (38),
Pyovs (uf*YP™(0;)) is estimated as explained in Section 6.4. The optimiza-
tion problem defined by Eq. (36) can be solved, for instance, using the algorithm
described in [26]. The quality assessment is performed using Eq. (34)siach
thatmeps + 1 < k < m, that is to say, whe°* represents a component of
the random vectot"°*SP°stwhich is not observed and which is then not used in
Eq. (36) for the calculation df"s.

In theory, the Bayesian approach presented in Section 6 can be used in high di-
mension and for a few experimental data (small value.gj), but in practice, for

the high-dimension case (very large value of the produ¢tsuch as several mil-
lions), the posterior probability model significantly improves the prior model if
many experimental data are available (large valug.@j. On the other hand, the
method proposed in Section 7 requires the estimation of the probability density
function of the experimental observatiobi§® (using the kernel density estima-

tion in the context of nonparametric statistics). Such an estimation is not correct
if veypis too small and must be sufficiently large (for instangg ~ 100). In Sec-

tion 8 which is devoted to the application, folv = 550 x 10625 = 5843 750
(high-dimension case)yqps = 50 While m = 1017 (partial data) ane,, = 200
(limited data), we will see that the posterior model constructed with the method
proposed in Section 7 is more efficient than the Bayesian method presented in
Section 6. Finally, it should be noted that, as soon as the independent realizations
yPior(gy, ... YPior(g’ ) are given, Egs. (36) to (38) correspond to the generator
of random variabld."s allowing the realization&."s(¢}), ..., L'S(¢’,) to be gen-
erated. For any’ and for any realizations af?™®, we then have a generator of
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realizations ofL"S. For any given measurable mappigglefined orR™, we can
then compute the quantity

y(e')

L%
g UDI’IOI’ 0@/ 0( )) 9 (39)

B{g(UP)) ~ Viz

=1 j=1

where UP™(6,,,6,,) = h(v""'(6,,,6,,)) is calculated with the computational
model and where

vPO(0),,0,)) =V + Z VN0, 60,) , (40)

with
n""°(0),, 6,) ZYO‘F’”” (0) Ua(E(0y,)) - (41)

8. Application

In this work, we reuse the example introduced in [48], but the experimental data
are different. The stochastic model used to generate the experimental data (nu-
merical experiments) strongly differs from the family of prior algebraic stochastic
models (PASM). This means that the prior stochastic model cannot fit the ex-
periments and consequently, the posterior model must be constructed using the
experimental data. Consequently, the first four steps of the methodology must be
redone and will then be presented. We will present the identification of the pos-
terior model using the two approaches presented in Sections 6 and 7. In order to
give readability to the present paper, we give again some explanations, already
introduced in [48], but required to obtain a good understanding.

8.1. Definition of the stochastic boundary value problem at the meso-scale

We consider a microstructure represented by the dofain(]0, 1) of R* with
generic poink = (z1, o, x3) (See Fig. 1). Domaif is occupied by a heteroge-
neous complex material modeled by a statistically homogeneous and anisotropic
elastic random medium at the meso-scale. For this meso-scale modeling, the elas-
tic properties of the microstructure are then defined by the non-Gaussian fourth-
order tensor-valued random fiefd:(x), x € Q} in which C(x) = {Cijre(X) }ijne-

Let {u(X) = (u1(X), u2(X),us(X)), x € Q} be the displacement random field at

the meso-scale. The random constitutive equation is then written, @9 =
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Figure 1:Finite element mesh of the domain.

Ckem(X) €0m(X), in Which s is the stress tensor aradis the strain tensor such
that e, (U(X)) = 2(Oue(X)/0x,, + Ounm(X)/0z,). The boundary() is written

asl'y U 'gpsU I'. A Dirichlet conditionu = 0 is given onI'y while a Neumann
condition is given orl" corresponding to the application of a given deterministic
surface force fieldf (x) = (g1 (x), g% (x), g2 (x)). There is no surface force field
applied tol'ops Which is the part of the boundary for which fieldis observed

(this corresponds to the hypothesis for which only partial experimental data are
observed and then are available). The stochastic boundary value problem consists
in finding the second-order random figld(x), x € 2} such that

—divs=10 in Q
ux)=0 on T, |, (42)
sx)n(x) =g"(x) on T and s(x)n(Xx)=0 on TLgps ,

in whichn(x) = (ny(x), n2(X), n3(X)) is the outward unit normal to52, where
{divs(x)}; = 0s;x(X)/0x), and where the random constitutive equation is defined
above.

8.2. Introduction of a family of prior algebraic stochastic models (PASM) for the
random field{c(x),x € Q}

We apply Step 1 of the methodology presented in Section 3. The stochastic bound-
ary value problem defined by Eq. (42) is elliptic. A fam{lg™sM(x;w),x € Q},
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of PASM is introduced to represent the fourth-order tensor-valued random field
{c(x),x € Q}. Forallxin Q, c™M(x;w) is represented by the symmetric
positive-definitg6 x 6) real random matrixa™s"(x ; w)] such thafa™SM(x; w)|

= C7'(x;w) and depends on the vector-valued parameter Such a fam-

ily {[a"M(x;w)],x € Q}, of PASM cannot arbitrarily be chosen (see for in-
stance [2, 3, 56] for the scalar case). In this application, we are interested in
the anisotropic case (tensor case) and we then propose to choose the stochastic
model as follows. It is assumed that the mean valje= E{[a"M(x;w)]} is
independent ok and is a positive-definite matrix. For allin Q, [APSM(x; w)]

is written asa™SM(x; w)] = [A°] 4 [AP(x; w)], in which the positive-definite
matrix [A°] is written as[A°] = ¢, [2] with 0 < g3 < 1 (which can be chosen as
small as one wants), and whéad”*"(x ; w)] is a positive-definite random matrix.

In this applicationg, is chosen to the valug)—¢. The family of random fields
{[APM(x;w)],x € Q}y is defined in [43, 44] which yields a stochastic non-
uniform ellipticity condition. The family of random field§A™"(x;w)],x €

Q}w, defined above, then yields a stochastic ellipticity condition which implies
that the second-order random solution of the stochastic boundary value problem
continuously depend from its parameters. It can then be deduced that the mean
value 4] of [A"M(x;w)] is such thafA] = E{[A™V(x;w)]} = [a] — [A°] =

(1 — £¢)[A] which is then a positive-definite matrix. For this PASM, there ex-
its a generator of independent realizations. The vector-valued parametet is

(0, L.) € Caqin whichd > 0 is a real parameter controlling the level of sta-
tistical fluctuations of the field and, > 0 is a correlation length controlling

the spatial correlation of the field. In [43, 44], it is proven that, forxaih 2,
AP w)] = (L] [£(x:6, L)]" [£(x 6, Lo)] [£] in which [4] = [£]” [£] and
where the random upper triangular matpiX(x; 6, L.)| depends orx, 6 and L.

and is such that/{[L(x; 4§, L.)]" [L£(x; 4, L.)]} = [I]. As explained in [43, 44],

the random upper triangular matfig(x; §, L.)] is explicitly expressed as a func-

tion of 21 independent homogeneous normalized Gaussian real-valued random
fields for which the21 spatial autocorrelation functions depend &hreal pa-
rametersZ?? 127 137 for 1 < j < j/ < 6 which represent the spatial corre-
lation lengths. In this application, we have used= L' = LY = L7 for

1 < j < j" <6. Consequently, the spatial correlation lengths of the random field
{[APM(x;w)], x € Q}, is controlled by only one parameter whichiis.
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8.3. Stochastic finite element approximation of the stochastic boundary value
problem

The cube(]0, 1[)? is meshed witls x 6 x 6 = 216 finite elements using-nodes

finite elements (see Fig. 1). There &rategration points in each finite element.

We then haveV, = 1 728 integration points. The dimension of vecto?*"(w)

discretizing[a™M(.; w)] is thenmy = 21 x N, = 36 288. Concerning the bound-

ary conditions, the displacements are locked at pdints, 0), (1,1,0), (1,1,1)

and (1,0, 1) corresponding to the 4 corners of the face of the cube in the plane

x1 = 1. An external point load0, 1,0) is applied to the node of coordinates

(0,0,1). The observed degrees of freedom, for which there are available experi-

mental data, are the,- andzs-displacements of the nodes located inside the face

x1 = 0. Since there aré9 nodes on each face of the cube whasaodes inside

the face, there areiops = 2 x 25 = 50 observed degrees of freedom. The number

of degrees of freedom for which no experimental data are availablgyjg = 967

and the total number of degrees of freedom is thesa: 1017.

8.4. Experimental data sets

The objective is the validation of the methodology proposed for partial and lim-
ited experimental data. The experimental data are then synthetically generated
using the stochastic boundary value problem for which the elasticity tensor is a
non-Gaussian elastic random field defined &%®, 7°®, P¢®), such that, for all

xin Q, [A®P(x)] = [A%]+ [LZ]" [L(x; 6%, LEP)]T [GP [L(x; 0%P, LTP)] [L7).

We have takery®P = 0.25, L&® = (.33, and [GP®" is the positive-definite
symmetric(6 x 6) random matrix defined in [42] such that{[GP*"|} = [I]

and whose statistical fluctuations are controlled by the dispersion paraifféter
which is chosen equal t.3. It should be noted that the total statistical fluctu-
ations of this random field is controlled by two multiplicative random matrices
[G(x; 0P, LEP)] = [L(x; 6P, LEP)|T[L(x ; 6%P, L)] and [GP*"], whose disper-
sion parameters a®&® = 0.25 andéP*" = 0.3. For the anisotropic material,
the (6 x 6) real matrix[A®"] = (1 — £0)[2*®*] of the mean model , such that
[A®P] = [L£¥P)T [£%9), is defined as

[ 3.3617  1.7027 1.3637 —0.1049 —0.2278 2.1013 ]
1.7027  1.6092 0.7262 0.0437 —0.1197 0.8612
1.3637 0.7262 1.4653 —0.1174 —0.1506 1.0587
—0.1049 0.0437 —0.1174 0.1319 0.0093 —0.1574
—0.2278 —0.1197 —0.1506 0.0093 0.1530 —0.1303

| 21013 0.8612 1.0587 —0.1574 —0.1303 1.7446
(43)

[Aexp] — 1010 %
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The matrix defined by Eq. (43) corresponds to the mean value of the elasticity
tensor of the anisotropic random microstructure presented in [44]. Finally, we
considervey, = 200 experimental data sets*®!, ... u®®vew considered as in-
dependent realizations of the random vedi5i® defined on probability space
(e Texp PPy - Each experimental data se¥® is then generated as the re-
alizationU®*®(9;") of the observation vector iR™ebs, that is to say, is such that
uSPL = ho(veR(97%)) in which 67, ..., 05 arews,,, independent realizations

in ©% and wherev®® is the random vector representing the finite family of ran-
dom matriceq [A®P(x)],x € Z}.

8.5. Identification with experimental data of an optimal PASM in the constructed
family

The optimization problem defined in Step 2 of Section 3 is constructed using
the least-square method and allows the identification of the optimal PASM to be
carried out using the experimental data. This optimization problem is solved by
the trial method. The cost functiom — J(w) (defined in [48]) is computed

for 6 € {0.24,0.27,0.30,0.33, 0.36,0.39,0.42,0.45,0.48,0.51,0.55}, for L. €
{0.2,0.24, 0.28,0.3,0.31,0.32, 0.33,0.34,0.35,0.36,0.4} and for [A] = [A®?]

(note that{ 4] is fixed and is not free in the optimization problem). For each trial
point w, the value of the cost functiod(w) is estimated using the stochastic
numerical modelJPS"SM(w) = hoPS(v™SM(w)) which is solved by the Monte
Carlo method withl 000 independent realizations of random vectsfsM(w).

The optimal valuev°Pt = (§°P, L"), corresponding to the minimum of the cost
function, is obtained fo#°P = 0.42 and L' = (0.34. Fig. 2 displays the graph of
the cost functionio, L.) — J (9, L.).

8.6. Construction of the statistical reduced-order optimal PASM

We apply Step 3 of the methodology presented in Section 3. The optimal PASM
VPASM(WOPY) is simply denoted by ™M, Its mean valugy = E{v™sM(w°"")} is a
vector inr3® 288 and its covariance matrix’yrsv] is a(36 288 x 36 288) real sym-
metric matrix. These two second-order moments are estimated with the optimal
PASM usingy. = 1 000 independent realizations. The dominant eigenspace of
the eigenvalue problefd'yesu] W7 = \;W7 is solved by using the usual subspace
iteration method without assembling matfi¥;easv|. The(36 288 x n) real matrix
w]=[w'...w"] of then eigenvectors associated with théargest eigenvalues

A > X > ... >\, > 0issuchthafw]” [w] = [I,]. Fig. 3 displays the graph of

the relative error functiom — err(n) = 1 — (3_7_, A;)/tr[Cyeasv] related to the
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Cost function J( 8, L )

Dispersion parameter § Spatial correlation length LC

Figure 2: Cost function(d, L.) — J(¢, L) for the identification of the optimal PASM using the
experimental data sets.

convergence (with respect tg of the expansion of random vectaf*s™ corre-
sponding to the optimal PASM. This figure shows that a reasonable convergence
is reached forn = 550.

Relative error function
1 T T T

0.9
0.81
0.7r
0.6
0.51

err(n)

0.4r
0.3r
0.2r
0.1r

0 I I I I I N
0 100 200 300 400 500 600 700 800

Value of n
Figure 3: Graph of the error functiom — err(n).

8.7. Construction of the PCE with deterministic VVC of the reduced-order opti-
mal PASM

We apply Step 4 of the methodology presented in Section 3. The calculations
of (1) the valueN, of the length of germnE = (Z,,...,Zy,), (2) the max-
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imum degreeN, of the polynomial chao¥ ,(E), and (3) the optimal values
y',...,y" of the deterministic VVC iR™ (with n = 550) of the PCEp®"2{N) =

ZaNzl y* ¥, (E), are performed as explained in Step 4 of Section 3 and in [48],
with v = 1 000 andv = 11 000. The convergence is obtained fdf, = 4 (as

in [48]). Fig. 4 displays the graph of the'-error functionN,; — err(N,, N;) for
random vecton"°{ V) with N = h(N,, N,;) and for N, = 4. It can be seen that
convergence is obtained fd¥; = 20. At convergencel{, = 4 andN; = 20),
there areV = 10 625 deterministic VVC in the PCE of"°Y N), that is to say
5843 750 = 10 625 x 550 real coefficients which have been identified. It should be
noted that there ar®/, = 4 independent Gaussian germs, induciMg= 10 625
uncorrelated non-Gaussian (but dependent) random variables used in the PCE,
value (V, = 4) which has to be compared to tBé 288 independent Gaussian
germs used to generat&*sM (the optimal non-Gaussian PASM). Fig. 5 is related
to the convergence analysis with respect to the number h(N,, N,) of chaos.
Each figure shows the comparison of the graph of the optimal PASM péf
logyq(p,pesm(€)) with the graph of the pdé +— log,(p,chaog,y) (€ yhooyY)
estimated using the PCE witki = h(NV,, N;) chaos. The figures show the com-
parisons for the coordinatgs= 1 and550, for N, = 4and forN, = 9 (V = 714),

Ny = 20 (N = 10 625) and for N, = 22 (N = 14 949). It can be seen again

a good convergence of the probability density function for these two coordinates
obtained forN, = 4 and N; = 20 corresponding to the valu¥ = 10 625. The
quality of the convergence is similar for the otl3@8 coordinates.

4

3.5¢
3l
2.5¢
ol
157

L! - error for log(pdf)

1t

0.5 ‘ : ‘ ‘
5 10 15 20 25 30
Maximum degree Nd of the polyomial chaos

Figure 4: L'-error function N; — err(N,, N,) for random vectorn®3°SN) with N =
h(Ng4, Nq) and for N, = 4.

27



1,N=714 j=1, N=10625

-2t

log, (pdf(e)
log, (plf(e))

-3}

-4}

-5 . . . . . . .
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
e e

j=1, N=14949

j=550 , N=714

log,(pdf(e)

-3 -2 -1 0 1 2 3 -4 -2 0 2 4
e e

j=550 , N=10625 )
o j=550 , N=14949

log, ,(pf(e))
log, (pef(e)

Figure 5:Convergence analysis with respect to the nuniBarf chaos. Comparisons of the graph
of the optimal PASM pdf — P, PASM( ) (thin solid line) with the graph of the pdf— p chao{e)
estimated using the PCE wn‘ZM chaos (thick solid line), for different values nf and for given

coordinatej (the values of and N are indicated at the top of each figure). Vertical axisg ;, of
the pdf. Horizontal axis: value of 7).
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8.8. Prior probability model of the random VVC

Section 5is used with = 550, N = 10625, = 1.2, " = 10 000 andv = 3 000.

As explained in Section 5.4, each matrix of the famfipAP™ (x';6,,,6,)], ...,
[APOr(xNo 7, 6,)]} must be positive definite (proper®,,,). For fixedd,, the
subset{d,,, ..., ng,)} of {6y,...,60,} has been determined with the stochastic
computational model in order that propefy,, be verified. Fig. 6 displays the
graph of function’ — v(¢) from {1,...,v'} into {1,...,v}. It can be seen

that the average value is abaui0, which compared to = 3 000, corresponds

to a significant rate of rejection. Such a rate can easily be understood taking

Number of realizations in 8 for each fixed realization 6’

360 ‘H

Number of realizations in 6

2000 4000 6000 8000 10000
Index I' of the realization ',

Figure 6:Graph of functior?’ — v(¢') related to propertyP,,,.

into account the high value af which has been fixed tb.2. The total number
of realizations in®’ x O is ZIZ';1 v(l') = 3 439 684. We compare the exper-
imental datal/;® with the random responség*s™ and U™ associated with
VPASM (the optimal PASM represented by the optimal chaos expansionyfd
(the prior model), respectively. In order to limit the number of figures presented
in the paper, we have selected the observed degrees of freleddmch corre-
spond to ther,-displacement of node%, 17, 25 and 37 (among the25 nodes
located inside the face of equation = 0). An estimationuf® — pjewe(up™)
of the probability density function of the random variabl€® is carried out us-
ing experimental data™™', ... u; " (see Section 2-(3)) and the kernel esti-
mation method [6]. The probability density functiaf® — p, obseasu(ug™) is
estimated as explained in Section 3-Step 4-(iii). The probﬁbility density func-
tion u™ > p, obsprior(u>) is estimated as explained in Section 5.5. Fig. 7
k

shows the comparison af® — pyew(uf®) with uf®® > p ovseasm(uf™) and
k
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up x 10

5 p.d.ffor x —displacement U of node 25 »  p.d.ffor x ~displacement U of node 37
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Figure 7: For observed degrees of freeddntorresponding to the: »-displacement of nodes
17, 25 and37, graphs ofu® — pexp(uf™) (thin solid lines),u®® — p, obspasm(uf®) (dashed
k k

lines),ugPs — onbsprior(ugt’s)(dashed dotted lines).
k

uQPS onbsprior(ugbs). As explained in Section 8.4, these four figures show that

there are ksignificant differences between the experiments and the PASM for the
observed degrees of freedom. It can also be seen that the prior model is not yet
sufficient to correctly fit the experiments.

8.9. Posterior probability model of the random VVC using the classical Bayesian
approach

We compare the experimental d&tg® with the random responség"™ andU;°*

associated with the prior modeP™ and the posterior mod&P°stcomputed with

the method presented in Section 6. For the observed degrees of fréedenuse

the estimationsi +— pyee(uf™) andug™ — p, obsprior(uf>) calculated in Sec-
k
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obs,
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Figure 8:For observed degrees of freed@nsorresponding to the »-displacement of nodés 17,
25 and37, graphs ofuf®s — p exp(uf) (thin solid lines),uf*s — onbsprior(ung)(dashed dotted
k k

lines),ugPs — onbspost(uzbS) computed with Section 6.4 (blue thick solid lines).
k

tion 8.8. The probability density functiom?™ — p, cbsposi(uf™) is estimated as
k

explained in Section 6.4. Fig. 8 shows the comparisombfi— ﬁU:xp(ung) with

U = pobsprior (U™ anduf®™ = p_ovsposi(uf™). These figures show that the

posterior model improves the prior model a bit, but is not sufficiently good taken
into account that the comparisons are relative to observed degrees of freedom for
which experimental data are used in the identification procedure.
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Figure 9:For observed degrees of freed@nsorresponding to the »-displacement of nodés 17,
25 and37, graphs ofuf®s — p exp(uf) (thin solid lines),uf*s — onbsprior(ung)(dashed dotted
k k

lines),ugPs — onbspost(uzbS) computed with Section 7 (blue thick solid lines).
k

8.10. Posterior probability model of the random VVC using a new approach de-
rived from the Bayesian approach

We compare the experimental datfi® with the random respons&g™ andU/f**
associated with the prior modeP"°" and the posterior mod&P°stcomputed with
the method presented in Section 7. For the observed degrees of fréedem
use the estimations™® — pyee(up™) anduf® = p, obsprior(ug™) calculated in

k
Section 8.8. The probability density functiefl® — p, obsposi(u3™) is estimated

k

as explained in Section 7. Fig. 9 shows the comparisaif$f— ﬁU:xp(uzbs) with
udPS pU]?bsprior(uzbs) and ugPs pU]?bspost(uzbs). These figures show that the
posterior model significantly improves the prior model and that the comparisons
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with the experiments are good.

8.11. Quality assessment of the two posterior stochastic models

In Sections 8.9 and 8.10, we have compared the probability density functions
of observations, calculated with the two proposed posterior models. For these
two models, the observations (for which experimental data are available) are used
to identify the models. In order to give a quality assessment of the posterior
stochastic models, we present comparisons for degrees of freedom which are
not observed (that is to say which are not used in the identification procedure
of the posterior stochastic models). We then consider degrees of freedom
such thatmgys + 1 < k < m, corresponding to the,-displacement of the
nodesr2, 74, 170 and 174 for which the coordinates af®.1667,0.500,0.1667),
(0.1667,0.500, 0.500), (0.500,0.500,0.1667) and (0.500, 0.500, 0.8333). These
four nodes are located inside the cube. Figs. 10 and 11 show the comparisons of

uloPS i p, exp(uk0 S with uR°PS s p nobsprior (47, b9 andufoPs — p nobspost(uk bs)

k

computed Wlth Sections 8.9 and 8.10. The four figures in Flg 10 show that the
quality of the posterior stochastic model, identified with the Bayesian approach
for degrees of freedom which have not be used to identify it, is not really good
while the four figures in Fig. 11 show that the quality is good enough for the pos-
terior stochastic model identified with the proposed new approach derived from
the Bayesian method.

9. Conclusions

A methodology has been proposed for the identification of a Bayesian posterior of
a high-dimension PCE of a non-Gaussian tensor-valued random field using patrtial
and limited experimental data, through a stochastic boundary value problem. We
have validated the methodology of this very challenging problem for which the
joint probability distribution of several millions of dependent non-gaussian ran-
dom variables has to be identified. The first four steps of the methodology have
been introduced and validated in a previous paper. In the present work, we have
developed two approaches for the last step consisting in the identification of the
Bayesian posteriors from a prior model, and which constitute novel results due
to the high-dimension aspects. In addition, we have proposed and validated a
new approach derived from the Bayesian method which is very efficient in high
dimension.
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Figure 10: For degrees of freedom not used in the identification of the posterior stochas-
tic model and corresponding to the,-displacement of node®2, 74, 170 and 174, graphs
of ufobS s ﬁfop(uQObS) (thin solid lines), uf°bs pUnobsprior(UEObS)(daShed dotted lines),

k
ulfoPs pUnobspost(uz"bS) computed in Section 8.9 (blue thick solid lines).
k
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A. Appendix: Estimation of a probability density function on R™ using the

multivariate Gaussian kernel density estimation

In this appendix, we summarize the nonparametric estimation of a multivariate
probability density function using the multivariate Gaussian kernel density estima-
tion (see for instance [6, 52]). Such a method is used to estimm%(uexﬁﬂy)
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Figure 11: For degrees of freedom not used in the identification of the posterior stochas-
tic model and corresponding to the,-displacement of node®2, 74, 170 and 174, graphs
of ufobS s ﬁfop(uQObS) (thin solid lines), uf°bs pUgobsprior(ug"bs)(dashed dotted lines),

ulfoPs pUnobspost(uz"bS) computed in Section 8.10 (blue thick solid lines).
K

(see Eq. (29)) for given®™®* and for giveny.

LetS = (S4,...,Sn), withm > 1, be any second-order random variable de-
fined on(©, T, P) with values inR™ (the components are statistically dependent
andS is not a Gaussian random vector). 1%V,),...,S(,) bev independent
realizations ofS with ¢,,...,6, in ©. Let Ps(ds) = ps(S) ds be the probability
distribution defined by an unknown probability density functios ps(s) onR™,

with respect to the Lebesgue measiésenRr™. Fors’ fixed inR™ and forv suffi-
ciently large, the multivariate kernel density estimation allows the nonparametric
estimationps(s”) of ps(s°) to be carried out using theindependent realizations
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S(0:),...,5(0,). The first step consists in performing a rotation and a normaliza-
tion of data in the principal component axes. The second step is devoted to the
Gaussian kernel density for each direction.

LetS and[@s] be the usual statistical estimations of the mean value and the co-
variance matrix of the random vect8rusing thev realizations. For instance,

S = ! > =1 S(0). Itis assumed thatCs] is a positive-definite symmetric

(m x m) real matrix. Consequently, there is an orthoggmalx m) real matrix

[@] (that is to say®] []7 = [®]” [®] = [I,,]) such thafCs] [®] = [®] [\] in which

[A] is the diagonal matrix of the positive eigenvalues. Qet (Q4,...,Q,,) be
the random vector such that
S=S+[®Q , Q=[2"(S-9 . (A-1)

We haveps(s) ds = po(q) dq and sincd det[®]| = 1, we haveds = dg. Conse-
quently, if we introducey® = [®]” ( — S), thenps(’) = po(q°) and therefore,
the nonparametric estimatigiz(s’) of ps(s°) is equal to the nonparametric esti-
mationpg(q°) of po(q°), that is to say,

Ps(s’) =po(a”) (A-2)

Using Eq. (A-1), the realizationS(6,),...,S(6,) are transformed in the real-
izationsQ(61), ..., Q(#,) of random vectoQ such that, for all in {1,...,v}
Q(by) = [@])T (S(6,) — A) Eq. (A-2) shows that the initial problem is equivalent
to the construction of the nonparametric estlmaﬁ@m ) of pQ(q ) using the
realizationsQ(6,), ..., Q(6,) of random vectoQ. LetQ and[OQ] be the usual
statistical estimations of the mean value and the covariance matrix of the random
vector Q using ther independent realization®(6,),...,Q(6,). It can be seen
that R R

Q=0 , [CoJ=1 . (A-3)
The second step consists in calculatigq°) using the the multivariate kernel
density estimation which is written as

Srm e (M) e

inwhich by, ..., h,, are the smoothlng parametegs,= (¢%,...,¢° ) and where
K is the kernel. For the multivariate Gaussian kernel density estimation, we have

i = WM&@EEFW L K@) =—c% . (AB)
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