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Abstract A methodology for analyzing the large static de- 1 Introduction

formations of geometrically nonlinear structural systéems

presence of both system parameters uncertainties and modelrecent challenge in structural mechanics is to have ad-
uncertainties is presented. It is carried out in the cortéxt vanced numerical methodologies for the construction of ro-
the identification of stochastic nonlinear reduced-orden<  bust computational models in order to efficiently prediet th
putational models using simulated experiments. This methanechanical behavior of structures. In numerous industrial
dology requires the knowledge of a reference calculation isapplications, the effects of geometrical nonlinearitigdu-
sued from the mean nonlinear computational model in oreed by large strains and by large displacements have to be
der to determine the POD basis used for the mean nonlirtaken into account in the numerical modeling. For instance,
ear reduced-order computational model. The constructiosuch nonlinear mechanical behavior is exhibited in aero-
of such mean reduced-order nonlinear computational modelautics for the case of helicopter rotating blades [12,21] o
is explicitly carried out in the context of three-dimensan in automotive or aerospace applications involving slender
solid finite elements. It allows the stochastic nonlinedure  beams or thin shells [4,8, 6]. In the context of complex struc
ced-order computational model to be constructed in any genures, large finite element computational models are how-
eral case with the nonparametric probabilistic approach. A&ver needed. Then, given the numerical difficulties inher-
numerical example is then presented for a curved beam ient to the complexity of such computational models, some

which the various steps are presented in details.

Keywords stochastic numerical methodslarge deforma-
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recent investigations have focused on the construction of
reduced order models in this nonlinear context [13,5]. In
particular, the STEP procedure [11,9] has been developed
in order to explicitly construct all linear, quadratic and- c

bic stiffness terms related to reduced nonlinear models. Th
methodology is based on the smart use of a standard com-
mercial finite element code for which no further numerical
development is needed. It only requires a series of straight
forward nonlinear numerical calculations with judiciousp
scribed displacements taken as a linear combination ofgive
basis vectors.

Moreover, deterministic nonlinear computational mod-
els are in general not sufficient to accurately predict the me
chanical response of such complex structures. Unceainti
have then to be taken into account in the computational mod-
els by using probabilistic models as soon as the probability
theory can be used. Let us recall that there are two classes
of uncertainties: (1) the system-parameter uncertaiaties
due to the variability of the parameters of the computationa
model, (2) the model uncertainties, induced by modeling er-
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rors, are the features of the mechanical system not captur@dWeak formulation of the geometric nonlinear

by the computational model, e.g. the introduction of reduce boundary value problem

kinematics in the numerical modeling. The parametric prob-

abilistic approach is particularly adapted to take into ac-This Section is devoted to the weak formulation of the bound-
count system-parameter uncertainties as shown in [14n15] iary value problem in the context of linear elasticity with ge
the context of post-buckling of cylindrical shells. Thista ometrical nonlinearities.

decade, the nonparametric probabilistic approach has been

developed to allow the consideration of both model uncer- o : .
tainties and system-parameter uncertainties. It has been i2.1 Description of the geometric nonlinear boundary value
troduced in [17,19] for the linear case and has been extendé)cgomem
more recently in [9, 10] for linearly elastic but geomettiga The structure under consideration is constructed of a lin-

nonlinear problems. In the presen r ir roce- . . .
onlinear problems the present paper, a direct p OC%ar elastic material and is assumed to undergo large defor-

dure is proposed for the explicit construction of stocltasti mations inducing geometrical nonlinearities. L@tbe the

reduced-orde_r m°d¢'s of uncertain geometrically nonhneathree—dimensional bounded domain of the physical space
st_ructures. IF IS apphcable _to any type of structure _mondie_le corresponding to the reference configuration taken as a nat-
with three_-dlmensmnz_il solid finite elements and with a I|n-ural state without prestresses. The bound®yis such that
ear constitutive equation. 02 = 'uX with I'nX = () and the external unit normal
to boundan(? is denoted by (see Fig. 1). The boundary

The paper is organized as follows. In section 2, the equapart!’ corresponds to the fixed part of the structure whereas
tions of the geometrical nonlinear problem are written i th the boundary patt’ is submitted to an external surface force
context of a total Lagrangian formulation. The third Sec-field. A total Lagrangian formulation is chosen. Consequen-
tion is devoted to the construction of the mean nonlineatly, the mechanical equations are written with respect o th
reduced-order computational model required by the nonpareeference configuration. Letbe the position of a point be-
metric probabilistic approach. This mean nonlinear reduce longing to domair?2. The displacement field expressed with
order model is obtained using the Proper Orthogonal Derespect to the reference configuration is denoteudl(as It
composition (POD) method known to be particularly effi- should be noted that the surface force fi€ltk) acting on
cient in nonlinear static cases [13]. The POD basis is conboundaryX’ and that the body force fielg(x) acting on do-
structed with the deterministic nominal three-dimensionamain 2 correspond to the Lagrangian transport into the ref-
computational model of the structure. The mean nonlineagrence configuration of the physical surface force field and
reduced-order model results from the projection of the weako the physical body force field applied on the deformed con-
formulation related to the nonlinear boundary value probfiguration.
lem, on the subspace spanned by the POD basis. It is then
explicitly constructed discretizing the problem usingeiy
dimensional solid finite elements. The fourth Section is de- g/
voted to the construction of the stochastic nonlinear redu- &
ced-order computational model using the nonparametric
probabilistic approach, which will introduce a random ma- N
trix [K] adapted to the problem. Such a nonparametric prob-
abilistic approach is based on the construction of a prdbabi
ity model for the random matrifC] with values in the set
of symmetric positive-definite matrices whose mean value is
deduced from the mean nonlinear reduced-order model. THE=0\ @
mean value offC] involves the linear, quadratic, and cubic
stiffness terms of the mean nonlinear reduced order model @
and must be symmetric and positive definite. An explicit ap-Fig 1 Reference configuration
proach is proposed here, instead of the STEP formulation, to™
maintain these properties. Note that the explicit consimac
of each contribution is required. In the fifth Section, a pro-
cedure is given for identifying the stochastic reducedeord
nonlinear computational model with respect to simulated ex
perimental responses [20, 1, 2]. Finally, the last Secteaig
with an application involving a curved structure in order to
demonstrate the efficiency of the proposed methodology. C = {v € {2, v sufficiently regular, v = 0onI"} , (1)

2.2 Weak formulation

The admissible spacgdefined by
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is introduced in order to construct the weak formulation re-3 Construction of the mean nonlinear reduced-order
lated to the geometric nonlinear boundary value problem. lcomputational model

then consists in finding the unknown displacement fieil

admissible spacé such that, for any admissible displace- This Section focuses on the construction of the mean nonlin-

ment fieldv in C

/’l)i,kﬂijkdX:/ Uigidx—i-/UiGidS . (2)
2 N 5

In this equation, the convention of summation over repeatea

latin indices is used. In additian j denotesgi. InEq. (2),
Tk,

ear reduced-order computational model. First, the equatio
yielding the mean nonlinear reduced-order model is written
for any given projection basis. In such equation, it should
e noted that the linear, quadratic and cubic stiffnessrcont
utions have particular symmetry properties which can di-
rectly be related to the elasticity tensor properties. Tdre ¢

F = {F;;},; is the deformation gradient tensor whose com-Struction of the mean nonlinear reduced-order model is then

ponentst;; are defined by
Fij = wij+dij 3)

in which ¢;; is the Kronecker symbol such th&t = 1 if
i = jandd;; = 0 otherwiseS = {S;;};; is the second

Piola-Kirchoff symmetric stress tensor which is writtem fo

a linear elastic material as
Sij = aijre Ere . 4)

In Eq. (4), the fourth order elasticity tensor= {a; ke }ijre

carried out in two main steps : the numerical construction of
an adapted projection basis and the explicit constructfon o
each linear, quadratic and cubic stiffness contributidme T
second paragraph is devoted to the construction of the pro-
jection basis using the Proper Orthogonal Decomposition
method (POD method). The choice of such POD basis is
known to be particularly adapted in the context of large fi-
nite elements systems [16, 13]. Its construction requires t
knowledge of the nonlinear static response, which is calcu-
lated from the mean nonlinear model using a finite element

satisfies the usual symmetry and positive-definiteness progode. The POD basis is then defined as the eigenvectors of

erties. The Green strain tendor= {F;; };; is then written
as the sum of linear and nonlinear terms such that

Eij = eij +mij (5)
in which

1 1
€ij = 5(%‘,]‘ +Uj,z') and 7; = o lsillsj (6)

2.3 Definition of the multi-linear forms

The weak formulation defined by Eq. (2) is then rewritten

the spatial correlation matrix associated with the nomine
static response. Its numerical construction is briefly lfeda

in the context of a large finite element model [13]. Finally,
the mean nonlinear reduced-order model is explicitly deter
mined in the context of three-dimensional solid finite el-
ements. In particular, the integrals describing each tinea
guadratic and cubic stiffness contribution are explicity-
culated using the POD basis and using the symmetry prop-
erties of the elasticity tensor.

in order to distinguish the linear part from both non-linear3.1 Equations for the mean nonlinear reduced-order
quadratic and cubic parts of the equation. The followingcomputational model

multi-linear forms are then introduced by writing Eg. (2)

such that
D (U, v) + £ (u,u,v) + E@(uuuv) = f(v) o, (7)

in which the linear formf(v) and the multi-linear forms

kMW (u,v), k3 (u,u,v) andk® (u,u,u,v) are defined for
alluand allvin C by

f(V):/QUz‘gidX-i- v; Gids (8)

X

EOY) = [ g conW) V) i (©)

k(z)(u,u,v)z/ AjkemNem (W), (V)dX +
fo)

/ ajklmus,jvs,keém(u)dx (10)
2

k(g)(ua u,u, V) = / Ajkem Us,j Us k Uém(u) dx . (11)
2

Letp*(x), @ = {1,..., N}, be a given set of basis func-
tions such that

N

ux) = > ¥’ (12)
B=1

inwhichqg = (q1,...,qn) is theRY -vector of the general-

ized coordinates. Let(x) be a test function such that

V(X) = @4 (X) ga (13)

Substituting Eq.(13) into Eq.(7) yields the following noml
ear equations

’CSE qp + ’Cfﬁw 48 9y + ’ng Wy = Fa , (14)
in which

k') = /Q jtm Pk P X (15)
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’C(()ZQB)’y — l(kfﬁ)}v 4 ”Céi)a 4 k(jjﬁ) : (16) Let S5 € .[0, 1],_7'.6 {1, R ,p} Wlth S < Sj+1 be the

2 scalar denoting the incremental weight numper the ex-
=(2) a rnal load vectof. Th real matrix[V] is then in-
K, = / Qiem 0% ‘Pf,e PLmdx 17) ternal load vecto e(n x p) real matrix[V] is the

Q troduced as

K s = / jktm 005 P L 00 X (18)  [V]ij = ui(s;)V/As; , As; =s;—sj-1

e with so = 0 . (25)
Fa = /Q gipi dx + /Z Gigirds . (19) The spatial correlation matrix related to the nonlinear re-

It can easily be seen that the symmetry properties of th8PONSeu(s;) is the symmetric positiven x n) real matrix
fourth-order elasticity tensor yield the following profies [A] such that

1) _ M
Kog =Ko - 20) 4 = v]v]” (26)
£ _g? 21)

afy = NayB > The POD basis is then obtained by solving the following

@) _ @ _ @ i
Kogy =Kgra = Kiag (22) eigenvalue problem

@) _x® e e
Kapns = Kagoy = Roars = Kisas - @3 4)(9) = [@]11] | (27)

Moreover, using the positive-definite property of the fourt

order elasticity tensor, it can be shown that ten@&lg and in which[4] is the diagonal matrix whose components are
the eigenvalues ordered by decreasing values and vifiere

is the eigenvector matrix whose columns are the POD basis

vectors. It should be noted that this numerical construactio

3.2 Numerical construction of the basis using Proper cannot be carried out if the dimensianis large. The fol-

Orthogonal Decomposition lowing methodology introduced by [16,13] is used instead
for large computational models. The singular value decom-

The set of basis vectors used for constructing the mean redposition of the matriXV] is written as

ced-order nonlinear computational model is obtained with

the Proper Orthogonal Decomposition (POD) method whichV| = [B][S][C] , (28)

is known to be efficient for nonlinear static cases. The con-

struction of such a basis requires a set of displacemensfield? Which[S] = [4]"/? and where the columns of ttie x 1)

solutions of the mean nonlinear computational model. In&nd(p x p) real matrices 5] and[C] are the left and right

deed such basis is defined by the eigenvalue problem of ttingular vectors related to the corresponding singular val

spatial correlation operator related to this displacerfient ~ U€s- Let{B™] be the(n x N) matrix issued from the col-

It should be noted that the POD basis does not only dedMn truncation of matrixB] with respect to theV largest

pend on the operators of the computational model but alsgingular values. The matrlﬁB_IY] can be easily computed.

strongly depends on the external loads applied to the strud1€ (V x V) symmetric positive-definite real matrix"

ture. Below, the numerical construction of the POD basis i4S then introduced as

summarized in the context of the finite element method. The N NT . N NiT

finite element discretization of Eq. (7) can be writtenas (A1 = WS TIWET, with [WH] =[BT [V]. (29)

K%, are positive definite.

KDy + V@) = ¢, (24)  Denoting asd”] the (n x N) real matrix defined by the
column truncation of matrij®] with respect to theév largest

in which theR™-vectoru is the vector of the unknown dis- singular values, we then have

placements. In Eq. (24), th@: x n) symmetric positive-

definite matrix[K' (1] is the linear finite element stiffness g~ — [BN][wN] (30)
matrix, the R"-vector F¥'*(u) is the vector of the restor-

ing forces induced by the geometrical nonlinear effects anth this equation[#] is the eigenvector matrix solution of
the R™-vector( is the vector of the external applied loads. the eigenvalue problem

It should be noted that there are specific numerical algo-

rithms for solving this nonlinear equation (see for inseanc [AN] @] = [@N][AN] (31)
[7]) which are particularly efficient as the curvature of the

nonlinear response changes (see for instance [3] for algavhere[A”] is the(N x N) real diagonal matrix defined as
rithms based on arc-length methods or [22] for algorithmghe truncation of matriXA] with respect to theV largest
based on asymptotic methods). singular values.
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3.3 Construction of the mean nonlinear reduced-order  andy”, related to the first contribution of the quadratic stiff-
computational model ness term, is written as

2
The mean nonlinear reduced-order computational model is? )($ﬂ, ¢) =
explicitly constructed from the knowledge of the POD basis. r
The construction is carried out in the context of the three- > _ [B(y,)]” [D][Es(y,)] @” (det J)w; . (37)
dimensional finite element method. The finite elements used:=1
here are isoparametric solid finite elements wittodes and |, the same way, thB>*-vector, constituted of the internal

the numerical integration is carried out witlGauss integra- - forces induced by the POD basis vectfs ¢~ ande® and

tion points. related to the cubic stiffness term, is written as
Let [D] be the(6 x 6) real matrix which represents the (3)

usual Hooke matrix related to the fourth-order elastiaty-t f
sor. For a given isoparametric finite element, the displace- _~ r s
ment fieldu(y) with y € [-1, 1]3, is defined by [Es(y)]" [D][Ey(y;)] @" (det J) w; . (38)

i=1

B o~y ~b
@°,%",%°) =

ufy) = [N(y)u (32)  Inasecond step, for each type of stiffness, we proceed with

in which the(3 x 24) real matrix[N(y)] defines the inter- the assembly of each oAf(gf;ese elementary contributions. We
(¢”, ") andf® (¢”, 7, )

polation functions and where tfR#*-vectord is made up of ~ then denote by (o), B
the degrees-of-freedom of the finite element.Lbe the set  the R"-vectors of these internal loads. The mean nonlinear
of indices defined b = {(i,7) € {(11),(22), (33), (12), reduced-order computational model is then described by

(13), (23)}} and corresponding with the spt= {1, 2, 3,4, D) — o p1) (o8 39

5,6}. From Eq. (32), it can be deduced that (;5 ® A@)“’ ) (39)
- - - K — sT B a7

4y (T) (1= b55) +256(0) = [BO)owe Ragy = @7 1 (@7 e7) (40)

(,j)eT, Jed, k={1,...,24} , @3) K5 =T (% ¢7,¢%) . (41)

in which [B(y)] is the (6 x 24) real matrix whose compo- The quadratic stiffness tensé#”) of the mean reduced
nents are obtained by the calculation of partial derivatdde  nonlinear computational model is then build from Eq. (16).
the interpolation functions contained in the mafiX(y)]. 1 =2 (3) _—

The first step consists in calculating, for each finite eI-I-t should be noted thgt FWéaﬁ’ Kagy andlCaﬁW; cpntnbu

he el buti ¢ h i o tions have to be explicitly known for constructing the sto-

ement, t_ e_eementary contr! utions of the linear, qu rat chastic nonlinear reduced-order computational modelén th
and cubic internal forces projected on the POD basis. Therbeneral case of complex structures
for a given finite element, thB**-vector, constituted of the '
internal forces induced by the POD basis vegt6rand re-

lated to the linear stiffness term, is written as 4 Nonparametric stochastic modeling of uncertainties
1 . . . . .
F( )(Gaﬁ) = Z [B(y,)]" [D] [B(y,)] " (det J)w;, (34) This Section concerns the construction of the stochastie no

i=1 linear computational model. Itis assumed that the mean com-
putational model contains both system parameter uncertain

ties and model uncertainties which will be represented by

the nonparametric probabilistic approach. The nonparamet

ric probabilistic approach is necessarily implementednfro

a mean reduced computational model, which is chosen to
be the mean reduced-order nonlinear model described in the
above Section.

in which @ﬂ is the spatial restriction of POD basis veatst

to the considered finite element. Furthgr,i = {1,...,r}
are the locations of the Gauss integration points related to
the isoparametric finite element with; the corresponding
weights. Finally,(det .J) is the Jacobian of the transforma-
tion. Let[Cy(y)] be the(3 x 24) real matrix defined by

Us(Y) Us,m(y) = T [CLY)]T [Cr(Y)]T (35)

We then introduce the reéb x 24) matrix [E(y)] whose 4.1 Definition of a reshaped stiffness matrix

row number/J € J is defined by
The main idea of the nonparametric probabilistic approach

& ([Ci(y)]T [C;(Y)] (1=d:5)+[Ci()]* [Cz-(y)]) . (36) s to replace each of the matrices of a given mean reduced
computational model by a random matrix whose probabil-

Then, for a given finite element, tH&*-vector constituted ity model is constructed from the maximum entropy prin-

of the internal forces induced by the POD basis veaigts ciple using the available information [17,19]. In the usual
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linear case, the random matrices issued from the mechanioaith

system are with values in the set of the symmetric positive- @) 1~ ~(2) ~(2)
definite matrices. In the present geometrical nonlinear confCasy = 5 (’Caﬂv +Kpya + Kvaﬁ)
text, the nonlinear equations involve nonlinear operators
this case, we then introduce [9] thBx P), P = N(N+1)
matrix [K] as the real defined by

2)
]

|7 2K

(47)

It should be noted that the nonlinear dependency of the
random linear, quadratic and cubic stiffness terms with re-
spect to dispersion parametehas been omitted in Eq.(46)

[IC(”] [I% for clarity of presentation.

=(2)

(K] =
K

(42)

) 5 Identification of the stochastic nonlinear
In Eq. (42),[l€( )] and[K®)] are respectively theV x N2)  reduced-order computational model
and(N? x N?) real matrices resulting from the following

reshaping operation This Section is devoted to the identification of the paramete
¢ in D of the stochastic nonlinear reduced-order computa-
[/E(Q)]M — fcfﬁ)7 , withJ = (B—1)N +~ , (43) tional model using simulated experiments.

It is assumed that a collection of.,, simulated ex-
[IC(3)] _ x® periments are available at,,; spatial locations. Denote by
M= Rapys U;*P (s, 0x,) thekth simulated experiment at DOF number
with] = (a —1)N + fandJ = (y —1)N+4 . (44) 35 afunction of the load incrementThe corresponding ob-
The key point consists in showing that the mafi} is ~ Servation calculated with the stochastic nonlinear reduce

a symmetric and positive-definite matrix [9]. Consequentlyorder_ computational model iS_ denoted U)’@v s) zi_nd is a
the nonparametric probabilistic approachiinitially imtuwed ~ function of the parameter which has to be identified. Let

in the linear context can easily be extended to the geometrgfr(& s) (resp.U; (9, 5)) andewp’+(5) (resp.U;™"™ (s))
cally nonlinear context. be the upper- (resp. lower-) envelope of the confidence re-

gion of observationU;(4,s) obtained with a probability
level 0.98 and the upper- (resp. lower-) envelope of experi-
4.2 Construction of the random matrix model mentsU ;™" (s).

The mean reduced matijiK] is then replaced by the random
matrix [KC] such tha€{[K]} = [K] in which & is the math- 08
ematical expectation. The random mat#y] is then written
as[K] = [Lk]T [Gk][Lk] in which [Lk]is a(P x P)
real upper matrix such thak’] = [Lx|? [Lx]. Further,
[Gk] is a full random matrix with value in the set of all the
positive-definite symmetri€P x P) matrices. The proba-
bility model of the random matri}G x| is constructed from
the maximum entropy principle with the available informa-
tion. All details concerning the construction of this preba

bility model can be found in [17,18]. The dispersion of the  ©°t UP(s) i
random matrixG ] is controlled by one real positive pa- of — : — — — |
rameters € D called the dispersion parameter. In addition, incremental load s

there exists an algebraic representation of this random maig. 2 Definition of the cost function
trix useful to the Monte Carlo numerical simulation. From

the random matrifc} thAe(er;mdom linear, quadratic and cu- Then, a cost functiori(¢) is introduced to quantify the

bic stiffness termKS;, Kosy andlc,(fg)vg can easily be de- departure of the simulated experiments from the confidence
duced from Eqs. (42)-(44). The random matrix model is thertegion constructed with the stochastic reduced-ordeimonl

defined by ear computational model. Penalty terms are introduced only
in the regions for which the simulated experiments are not

_ N
U=I7Q . (45) within the confidence region constructed with the stochasti
inwhichQ = (Q,,...,Qy) is theR" -valued random sat- nonlinear reduced-order computational model (see Fig. 2).
isfying fora = {1,..., N'} the equations The cost function is then a positive decreasing function of

parameters. Indeed, the cost function is equal to zero as

ICSg Qs+ ICfngﬂ Q, + ICS’B)W(;QB Q,Qs = Fa, (46) soon as the simulated experiments belong to the confidence
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region of the random observation. Specifically, itis pragbs 2 = {]r;, r.[x]0,«a[x ]0, [} in a local cylindrical sys-

here to define the cost functigiiy) to be minimized as tem defined a0, e, &, &) with o — ?;f)_gr = [ —ba
«
N + 2 - 2
J(6) = [|AT(6,)llg + [|AT(6, ) - (48)  andr, = LoLet Iy C 812 be the boundary described
«

In this equation|| - || is the L? norm over the load incre- as{r e [r;,r.], 6 = I , z3 € [0,h]}. The structure
mental bnancB = [0,1] and whereA*@, s) andA™(d,s)  is assumed to be fixed on this boundary so that we have a
are theR"*<-vectors whose componests defined by Dirichlet condition onl. The structure is free on boundary
Af(6,5) = {UF(5,5) — U;IPHF(S)} % 8Q\F0. The structure is_subjected to external surfgce loads

N crpt applied along both directiores ande, in the end section de-

{1- H(U; (0,s) — u;m (s)} (49) 137

B B cop.— fined by{r € [r;,rc], 0 = 5 13 € [0,4] }. The Young

A5 (0,8) = {U; (0,8) = U™ (s)} x modulus and the Poisson coefficient of the homogeneous
{H(U; (9,5) - Uje””p"*(s)))} . (50) and isotropic linear elastic material afe = 10'° N.m 2

andv = 0.15. The finite element model is a regular mesh of

102425 nodes an@40 x 16 x 24 = 92 160 finite elements

constituted oB-nodes solid elements with = 8 Gauss in-

§°P' = argmin j(8) . (51) tegration points. Therefore, the mean computational model
0€D hasn = 306 123 degrees of freedom (see Fig. 3).

Finally, z — H(x) is the Heaviside function. The identifi-
cation ofé consists in solving the optimization problem

6 Numerical application

The objective of this application is to show the efficiency
of the presented methodology. The application is a three-
dimensional linear elastostatic problem in the geomdtyica
nonlinear context. The material is chosen to be homoge-
neous and isotropic. The extension to the nonhomogeneous
case and to the anisotropic case is straightforward. A pre-
liminary calculation is carried out with MD NASTRAN in
order to get the reference solution from which the POD basis
is calculated. The stochastic nonlinear reduced-order congig. 3 Finite element model
putational model is then constructed as a function of identi
fication parameter.

Note that the simulated experiments have been obtained
by numerical simulations for a family of structures around

the mean structure. Specifically, the geometrical chanractee2 with intensity 1, 333, 333 N and yields point loads ap-

istics of each structure of the family are modified with re lied to the nodes of the end section along the direation
spect to those of the mean structure. Moreover, the mate-. . . L . :
. - : with intensity —166, 666 N. An initial imperfection with a
rial characteristics of these structures are inhomogeabus . . . .
maximum amplitude o200 um is added to the initial struc-
the contrary of the mean structure. Consequently, the megn . ; . .
! . ure in order to construct the mean nonlinear computational
computational model can never reproduce the simulated ex- C o L i o
. L . -~ “odel. This initial imperfection is defined by the first lin-
periments which justifies the use of a stochastic nonlinear : :
. ear elastic buckling mode of the curved structtravhose
reduced-order computational model. . L
shape is zoomed and shown in Fig. 4. In the present case,
the first linear elastic buckling mode is a bending mode with
eigenvalue\, = 0.1825 corresponding to a critical load
243, 333N along the directiore, (respectively—30,415N

along the directior, ).

The discretization of the external loads yields point loads
applied to the nodes of the end section along the direction

6.1 Mean finite element model

The three-dimensional bounded domain called the cur-
ved structure, results from the geometrical transfornmatio  In order to simulate the post-buckling mechanical re-
of a slender rectangular domai® into a curved domain sponse, the static nonlinear calculations are carried put b
2. The slender domaif¥’ is defined in a Cartesian system solving Eq. (24) using MD NASTRAN with an algorithm
(0,e,e,€e3) such that?” = {]0,1[x]0,b[x]0, [} with  based on the arc-length method. The displacement field is
[ = 10m,b = 1m, h = 1.5m. The curved structure calculated using:; = 110 load increments. Fig. 5 shows
2 is then defined as a part of a cylindrical domain such thathe deformed curved structure.
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stochastic fieldZ(x) which is defined by

J
E(x) = E+ Y &bi(x) (52)
j=1
in which &1, ..., &, are independent uniform random vari-

ables with zero mean and standard deviatioa 0.1E/\/§

and where the functionis; (x) are given smooth functions.
For convenience, these smooth functions are taken as the
Fig. 4 Shape of the first linear elastic buckling mode spatial average over each element of the eigenvectors asso-
ciated with theJ lowest eigenvalues of the usual generalized
eigenvalue problem related to the linear dynamics.

Observation DOF 1

Displacement (m)
[
o
i

1
0.8 1

1
0 0.2

0.4 .6
Incremental load s

Fig. 6 Displacement response at observation DO&s a function of
the incremental load: mean computational model (thick dashed line),
simulated experiments (thin gray lines)

Fig. 5 Deformed curved structure . ‘ Observation DOF 2
3.5¢ T i
3F e B
_25F ,"“ 1
6.2 Construction of the experimental data basis s /" |
In this numerical applicatiom.,, = 8 simulated exper- & sl il
iments related to the static nonlinear response are calcu- or-" 1
lated. The simulated experiments are observed, gt = -05t ~ 1
2 observation points corresponding to the DOFs located at 1 02 07 0% o5 1
the middle of the end section in the directiofise;) and inerementalfoad's

(0, &2). The simulated static nonlinear responses are denoté:r(]ilg-_7 DiSplacelTendt_ response of ob;erva}tiondelz)Es a:(f(l;ncrt]iog Ic_>f
by uezp,k(s), for k in {1, B .,nemp}. The Corresponding the incremental load: mean computational mode ('[ ICK aashe: |ne),

obs \ _ ) simulated experiments (thin gray lines)
quantity defined for the mean nonlinear computational mo-

del is denoted byu,;s(s). The simulated experiments are

generated as follows. The geometrical paramétérandh Figures 6 and 7 compare the static nonlinear responses
are replaced by the random uniform variablesB and H  as a function of the incremental loadior both mean nonlin-
centered around geometrical parametgbsandh with sup-  ear computational model and simulated experiments. Since
ports[0.951, 1.051], [0.95b, 1.05b] and [0.95h, 1.05h].  the simulated experiments are scattered around the respons
Moreover, it is assumed that the Young modulus is inho<€alculated with the mean nonlinear computational model, it
mogeneous with0% of variation around its mean value. can be deduced that the use of a stochastic nonlinear com-
This is achieved by replacing the deterministic valiilby a  putational model is justified.



Computational stochastic statics of an uncertain curvegtisire with geometrical nonlinearity in three-dimensibelasticity. 9

6.3 Construction of the POD basis stochastic convergence analysis is then carried out toedefin
the numben, of Monte Carlo realizations to be kept in the

The nonlinear response shown in Fig. 5 is then used fofiumerical simulation. Let, — Convn,) be the function
calculating the POD basis as described in Section 3.2. Letefined by

Convweop (V) be the function defined by

N 1 & 1/2

B 1 . Conv(n,) = {— > _[[U@;)]II” : (54)
Coneop(N) = 1 P~ ;AJ : (53) {n P }
for which the calculation ofr([A]) does not require the in which|||U(6;)||| = max |[U(0;,5))|], ||U(8;,3))|?

computation of matri{A]. Fig. 8 shows the graph of the »

function N — Conwop(V) in a logarithmic scale. It can Z UZ(0;,s) whereUy (6, s) is the jth realization of the

be seen that a good convergence is obtained\for 10. k=1

From now on, all numerical calculations are carried out withfandom response at DOF for a given load incremen.

N = 12. The mean nonlinear reduced-order computational/9ure 9 displays the graph, — Conv(n;) obtained with a
model is then constructed and solved using the Crisfield adispersion parametér = 0.6. Convergence is reached for
gorithm [3] based on the arc-length method. ns = 1500. The identification of is then carried out by
constructing the non-differentiable cost functidn- j(0)
using the Monte Carlo numerical simulation. The cost func-
tion is a positive decreasing function of paramétexs soon

as the simulated experiments belong to the confidence re-
gion of the random observation, the cost function is equal to
zero.

Convergence Analysis

Robust Identification

@
=]

o
=]

»
o

0 2 4 6 8 10 12
N

Fig. 8 Convergence analysis : graph&8f— Convpop (N).

Cost function j(5)
w
o

6.4 Experimental identification of the stochastic nonlinea ‘ ‘ ‘
reduced-order computational model OO O e paeers s 0807

disperéion parémeter 5

Fig. 10 Robust identification : graph @f — 5(4).

Convergence Analysis
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=
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Fig. 9 Convergence analysis : graphof — Conv(n). 05y Nonr ]

0 0.2 0.4 0.6 0.8 1
Incremental load s

The construction of the stochastic nonlinear reducedrig. 11 Robust identification for observation DOF 1 : graph of the
order computational model using the nonparametric probexperimental data — u°*?**(s) (thin dashed lines), graph of the

obs

abilistic approach is performed as explained in Sectioh  confidence region of the random resposser Uos (s) (grey region).
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