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This article analyzes the use of a novel parallel evolutionary strategy to solve complex 

optimization problems. The work developed here has been focused on a relevant real-

world problem from the telecommunication domain to verify the effectiveness of the 

approach. The problem, known as frequency assignment problem (FAP), basically 

consists of assigning a very small number of frequencies to a very large set of 

transceivers used in a cellular phone network. Real data FAP instances are very difficult 

to solve due to the NP-hard nature of the problem, therefore using an efficient parallel 

approach which takes the most of different evolutionary strategies can be considered as a 

good way to obtain high-quality solutions in short periods of time. Specifically, a parallel 

hyper-heuristic based on several meta-heuristics has been developed. After a complete 

experimental evaluation, results prove that the proposed approach obtains very high-

quality solutions for the FAP and beats any other result published. 

 
Keywords: parallel hyper-heuristic; frequency assignment problem; realistic frequency 

planning; parallel heuristic based on metaheuristics 

 

1.  Introduction 

 

One of the most relevant optimization problems in the telecommunication field is the 

frequency planning problem. This problem, also known as the frequency assignment problem 

(FAP) or automatic frequency planning (AFP) is very important nowadays, because cellular 

phone communications are widely used nowadays, and presumably they will be also relevant 

in the near and middle future. The problem basically consists of assigning a given and very 

small number of fixed frequencies (usually no more than 20) to a very large set of 

transceivers, or TRXs, (there are thousands of them in real networks). The frequencies have 

the purpose of making communications in the network possible, taking the information from 

one point to another, whereas the TRXs, which are located in the antennas, give support to all 

the communications produced. The optimization problem arises because there are too few 

frequencies to give support to the enormous number of communications produced in a 

realistic network, therefore, frequencies have to be reused lots of times and this fact causes 

interferences that have to be minimized to maintain a high quality of service. 

The frequency assignment problem is a very well known problem in the literature 

(FAP web 2007, Aardal et al. 2007, Eisenbläter 2001, Kotrotsos et al. 2001), however most of 

the works published are based on benchmark problems (FAP web 2007), and the authors’ 

work is based on real and accurate interference information taken from the 

telecommunications industry. Therefore, it considers the requirements of realistic GSM 

(Global System for Mobile communication) networks (Mouly and Paulet 1992, Eisenbläter 

2001). Moreover, it is important to remark that the FAP in GSM networks has, even 

nowadays, a great social impact, because this technology is the most used mobile 

communication system around the world. In fact, by mid 2009, GSM services were used in 
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approximately 220 countries and territories serving more than three billion people and 

providing travellers with access to mobile services wherever they go (GSM World 2010). 

In addition to the engineering difficulties of dealing with a real-world problem (it is 

necessary to consider all possible sources of interference, regulatory concerns, technological 

limitations, etc. (Eisenbläter 2001)), FAP is also an NP-hard problem (Hale 1980). For this 

reason, real data instances of the problem are really difficult to solve and although some exact 

algorithms have been proposed to deal with the FAP (e.g. Fischetti et al. 2000, Mannino and 

Sassano 2003), they are not feasible when tackling large instances of the problem (Eisenbläter 

2001, Aardal et al. 2007). On the other hand, heuristics and metaheuristics methods have 

proved to be one of the best strategies for solving this kind of optimization problems (Burke 

and Kendall 2005, Blum and Roli 2003, Glover and Kochenberger 2003), and among these 

the metaheuristic strategies (Glover and Kochenberger 2003) have shown especially well 

when addressing real-world FAP instances (Amaldi et al. 2006). Contrary to exact techniques, 

metaheuristics do not guarantee that solutions obtained are optimal, but they provide very 

good solutions in relatively short periods of time. But the present study goes further, because 

once all the metaheuristics were properly configured and fixed to obtain high quality results 

by themselves, the authors designed and developed a parallel cooperative hyper-heuristic 

(HH) which manages and distributes the work among all the strategies previously developed. 

This complex heuristic approach was designed with a double aim: first, to improve the results 

(in both time and quality) obtained by using each individual heuristic, and second, to beat the 

results obtained by any other approach (which solves the same real-world problem as the 

present one) published in the bibliography. 

Therefore, on the one hand, there are seven very different heuristics which search 

within the search space of the FAP solutions; whereas on the other hand, the hyper-heuristic 

designed uses the algorithms previously mentioned as search space. This idea is broadly 

represented in Figure 1. In addition to this, it is important to remark that the HH designed 

makes the heuristics search in parallel, as will be explained in Section 5, thus a good 

performance is achieved in the global search of the optimal solution. 

 

Figure 1. Hyper-heuristic and heuristic search spaces 

 

As will be explained in the following Section (Antecedents and related work), the 

work presented in this article represents a novel and significant contribution, since it proposes 

a new parallel approach which has not hitherto been used to solve a very relevant real-world 

optimization problem. The main contributions of this article are the following three points: 

• A new approach (parallel hyper-heuristic based on complex metaheuristics) has been 

proposed to solve a real-world large-scale optimization problem. 

• The novel approach obtains high-quality frequency plans which are better than any 

other result which has been published so far in the bibliography. 

• The hyper-heuristic is based on seven very representative metaheuristics (population 

and trajectory based, classical and novel) hybridized with a local search method. All 

the heuristics have been carefully adapted to the requirements of the realistic FAP 

tackled in the study. Also, some of the metaheuristics included have been never used 

for solving the frequency assignment problem, so the study and the development of 

these strategies to solve the FAP is also a contribution of this study. 

 

Finally, the rest of the article is structured as follows: in Section 2, the work carried 

out on the FAP is examined, and specifically, on the heuristic techniques and the strategies 

related to the ones used in this study. In Section 3 the background and the mathematical 

formulation of the frequency assignment problem tackled in this work is presented. Sections 4 

and 5 describe the solution approach. In Section 4 the metaheuristics included in the hyper-

heuristic are detailed and then, in Section 5 the hyper-heuristic itself is carefully explained. 

The methodology followed is described in Section 6, while the different experiments 
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performed, the results obtained and the subsequent analysis are discussed in Section 7. 

Finally, the conclusions and future work are discussed in the last section. 

 

2.  Antecedents and related work 

 

As was said in the Introduction, the frequency assignment problem (FAP web 2007) is a well-

known optimization problem in the literature. It was introduced in the seventies by Metzger 

(1970) and due to its relevance, there are quite a lot of in-depth studies and complete surveys 

in which different techniques are proposed to solve it (Aardal et al. 2007, Borndörfer et al. 

1998, Eisenblätter 2001, Koster 1999, Leese and Hurley 2002). However, among those works 

there are only a few studies in which exact algorithms were used in its resolution (Fischetti et 

al. 2000, Mannino and Sassano 2003) because it is proved that the best approaches to deal 

with this kind of problem are the heuristic methods (Aardal et al. 2007). 

Furthermore, there is not one single version of the frequency assignment problem 

(Aardal et al. 2007). The FAP goal has changed from minimizing the number of frequencies 

used in the planning of a telecommunication network (MO-FAP: Minimum Order-FAP, and 

MS-FAP: Minimum Span-FAP), to try to minimize the interferences (MI-FAP: Minimum 

Interference FAP) or even the blocks (MB-FAP: Minimum Blocking FAP) produced in a 

realistic GSM network when a limited number of frequencies are used to support a huge 

number of communications. There are also some models which even include specific GSM 

issues, such as frequency hopping (Touhami et al. 2010, Björklund et al. 2005), or others 

more theoretical which take into consideration the different stages which occur in the 

frequency planning of a realistic network (Paunovic et al. 2001). Although there is much 

more to say about the evolution and variants of the FAP, no more details are going to be given 

here. The interested reader can consult references (Aardal et al. 2007 and FAP web 2007) to 

obtain more information about the different FAP variants and their evolution. 

All in all, the FAP version which is usually tackled when working with real-world 

FAP instances is the MI-FAP. In this particular case, there are only a few frequencies 

(normally no more than 20) to give support to the hundreds or even the thousands of 

frequency assignments. Then, frequencies here have to be repeated many times, and this fact 

causes transmission interferences which obviously have to be minimized. This is the final 

goal of MI-FAP, which is the variant tackled in this study. Therefore, if the bibliographical 

search is focused on this version of the problem, it is easy to find out that the best results are 

usually obtained by metaheuristics methods (Blum and Roli 2003, Glover and Kochenberger 

2003), which also are normally hybridized with a local search (LS) heuristic (a greedy 

method, Talbi 2002) to complement their stochastic behavior. Due to the number of works 

published, this section focuses on those studies that propose solution approaches similar to the 

methods used in this work. Seven different metaheuristics have been developed: GA, Genetic 

Algorithm (Holland 1992), which is the best known type of EA: Evolutionary Algorithm 

(Bäck et al. 1997), SS, Scatter Search (Glover et al. 2003, Martí et al. 2006), PBIL, 

Population Based Incremental Learning (Baluja 1994), VNS, Variable Neighborhood Search 

(Mladenovic and Hansen 1997), ILS, Iterated Local Search (Lourenço et al. 2002), GRASP, 

Greedy Randomized Adaptive Search Procedure (Feo and Resende 1995) and ABC, Artificial 

Bee Colony (Karaboga and Basturk 2007), which are also hybridized with a LS heuristic 

(Talbi 2002) to improve the search for high-quality solutions. 

But in addition to the metaheuristics mentioned above, this article proposes a new 

parallel approach to solve our real-world problem. There are a lot of studies in which 

heuristics and metaheuristics work in parallel to improve their sequential performance when 

they are used to solve optimization problems (Alba et al. 2002, 2004, 2005, Crainic and 

Toulouse 2003, Cung et al. 2003, Talbi 2002). And of course, there are also a lot of works in 

which heuristics work in parallel to solve the frequency assignment problem (Aardal et al. 

2007, Alba et al. 2005, Chaves-González et al. 2008a, 2009a, Eisenblätter 2001, Crompton et 

al. 1994, Funabiki and Takefuji 1992, Kendall and Mohamad 2004, Maple et al. 2004). 
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However, the heuristic technique presented here is very different, since this is the first time 

that, to the authors’ best knowledge, a hyper-heuristic which uses metaheuristics has been 

proposed to solve a realistic FAP. Therefore, the following paragraphs will discuss on the one 

hand, the published works in which the seven heuristics used here have been used to solve the 

MI-FAP variant, and on the other hand, the studies in which hyper-heuristics have been 

adopted to solve realistic problems. 

Starting with the hyper-heuristic backgrounds, it is remarkable that this is a quite 

recent idea –it was proposed in the late nineties by Hart, Ross and Nelson (1998). Hyper-

heuristics can be thought of as “heuristics to choose heuristics” and they basically differ from 

metaheuristics in which most implementations of metaheuristics search within a search space 

of problem solutions, while hyper-heuristics always search within a search space of heuristics 

(Burke et al. 2003, Chakhlevitch and Cowling 2005, Ozcan et al. 2008, Ross 2005). As a 

result, when using hyper-heuristics, the goal is to find the right method in a given situation 

rather than trying to solve directly a problem (Fig. 1). This idea has been applied across many 

different real-world problems (mainly to solve scheduling and timetabling problems) in 

diverse research fields. Thus, there are recent works where hyper-heuristics are used for 

solving: educational timetabling problems (Burke et al.2002, 2003, 2004, 2006, 2007), bin 

packing problems (Ross et al. 2002, Cuesta et al. 2005), sales scheduling (Cowling et al. 

2000), space allocation planning (Bai et al. 2003, 2008, Burke et al. 2005), nurse rostering 

(Aickelin et al. 2006, Burke et al. 2003), personnel scheduling (Cowling and Chakhlevitch 

2003, Cowling et al. 2002, Remde et al. 2007) or industrial problems (Dowsland et al. 2007, 

Ayob and Kendall 2003). There are two works from Kendall and Mohamand (2004) which 

describe the use of hyper-heuristics to solve the FAP, but those studies are very different to 

the present one because they work with benchmark problems (not real-world problems as in 

this study) to solve the MS-FAP variant. 

Moreover, hyper-heuristics can be developed using a great diversity of techniques 

(for example, they can be designed using Case-based Reasoning (Burke et al. 2002, 2006), 

Tabu Search or Local Search strategies (Aickelin et al. 2006, Burke et al. 2003), Graph-based 

approaches (Burke et al. 2007), Genetic Algorithms (Cowling et al. 2002), Ant Colony 

Optimization (Cuesta et al. 2005), Simulated Annealing (Dowsland et al. 2007, Bai and 

Kendall 2003), Variable Neighborhood Search techniques (Remde et al. 2007), Multi-

Objective approaches (Burke et al. 2005) or Monte-Carlo strategies (Ayob and Kendall 

2003). Therefore, hyper-heuristics are very recent and versatile approaches which can be 

developed using a high range of different techniques and can be applied over many different 

optimization problems. However, in spite of the great amount of works consulted, there are no 

studies in which hyper-heuristics are used to solve the present problem (MI-FAP) or where 

the hyper-heuristic is developed using the present approach. In all works analyzed, the hyper-

heuristics are made up of simple heuristic searches or several variations of a single 

metaheuristic. Therefore, it can be concluded that the work performed here provides new 

contributions in both the problem domain (using a new approach to solve a real-world FAP) 

and in the development of the technique used to solve it (hyper-heuristic developed with 

several independent metaheuristics). 

As specified before, after the hyper-heuristic backgrounds, this article will analyze the 

works in which the metaheuristics included in the present study (EA, SS, PBIL, VNS, ILS, 

GRASP and ABC) have been used to solve problem MI-FAP. There are a lot of studies 

published in which EAs have been used to deal with the FAP. Some of them are classical 

works (Crisan and Mühlenbein 1998, Crompton et al. 1994, Cuppini 1994, Dorne and Hao 

1995) and others are very recent (Idoumghar and Schott 2006, 2009, San Jose-Revuelta 

2007), however, for that reason (the number of contributions here is rather large), this Section 

is limited to those works in which the EA is hybridized with another optimization method (in 

the present case, a local search heuristic) to better tackle the problem (Talbi 2002). This is 

clearly justified because the metaheuristics are stochastic methods which search 

diversification and a local search heuristic usually improves their results by promoting search 

intensification of promising areas. Table 1 summarizes the main features of the most relevant 

works which deal with MI-FAP. For each contribution, the table shows: the bibliographic 
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reference, the optimization method used in combination with the EA (which is a kind of LS 

method in all cases), and the instances used with its size (when this information is available). 

 

Table 1. Works which use hybrid EAs to solve the MI-FAP. 

 

The number of works published in which hybrid EAs have been used to solve the MI-

FAP shows the suitability of this kind of technique to deal with the problem. Also, the usage 

of greedy algorithms (or hill climbers), as LS methods, is the most widely used strategy in 

combination with the EA because of their ability of easily adding specific problem domain 

knowledge. Therefore, the called Low-level Teamwork Hybrids scheme (Talbi 2002), or LTH 

(EA (LS)), is especially effective for tackling our problem. However, in addition to hill 

climbers (or greedy) methods, a wide variety of advanced search heuristics have been used as 

optimization methods to improve the EAs performance (Table 1). Thus, Markov Decision 

Processes (MDP) were used in (Idoumghar and Schott 2006, Greff et al. 2004), Tabu Search 

(TS) in (Alabau et al. 2002) or (Mabed et al. 2002), and a Neural Network in (Salcedo-Sanz 

and Bousoño-Calzón 2005). With regard to the problem instances used, the instance sizes are 

similar. In general, there are several thousands of TRXs (transceivers) in the network.  

With respect to the other metaheuristics used in this work, their use to solve the FAP 

compared with EAs is much reduced. Starting with ILS (Lourenço et al. 2002) and VNS 

(Mladenovic and Hansen 1997) techniques, these approaches have been widely used to solve 

the graph coloring problem (Chiarandini and Stützle 2002, Galinier and Hertz 2006), which is 

a particularization of the FAP, but to the authors’ best knowledge, there are no works 

published related to these algorithms for solving the present problem. The same occurs with 

the ABC metaheuristic (Karaboga and Basturk 2007), because despite other approaches based 

on social insects (such as ACO: Ant Colony Optimization (Dorigo and Stützle 2004)) being 

used to solve the FAP (Luna et al. 2007a, Maniezzo and Carbonaro 1999), there are no works 

in which the ABC algorithm is used to solve the frequency assignment problem. 

SS (Glover et al. 2003, Martí et al. 2006) was used firstly to solve the graph coloring 

problem in (Hamiez and Hao 2002), but the algorithm has been also fixed to solve the present 

problem in (Chaves-González et al. 2008b, 2008c, 2009b). In all those cases, the problem 

tackled is the same as the one used here. Also, SS was also hybridized with an efficient LS 

method to optimize its results (results will be compared in Section 7). 

GRASP (Feo and Resende 1995) has been used in several works to solve the FAP 

(Chaves-González et al. 2009a, Gomes et al. 2001, Liu et al. 2000, Vieira et al. 2008). In all 

the works found the metaheuristics were hybridized with other heuristic to improve the 

results. In (Chaves-González et al. 2009a) the algorithm is used within a master-slave 

approach using grid computing to solve the same problem version as the one tackled here 

(results will be contrasted in Section 7), however, in the works (Gomes et al. 2001, Liu et al. 

2000, Vieira et al. 2008), the problem is not tackled as in the present approach, because Liu et 

al. and Gomes et al. run their experiments using instances automatically generated, and Vieira 

et al. use the Philadelphia instances (FAP web 2007) in their study. Thus, all those cases 

consider benchmarking instances, and this work is focused on a real-world problem (and real-

world instances). 

With regard to PBIL (Baluja 1994), there are quite a lot of works by Chaves-

González et al. (2009c, 2008a, 2008b, 2008d, 2008e) in which the algorithm has been studied 

thoroughly when it is used to solve the FAP. Some of those works use the same problem 

version and instances as are used in this study (Chaves-González et al. 2009c, 2008a, 2008b, 

2008e), although the results obtained in all those studies are poorer than the results obtained 

here. In any case, the results and conclusions obtained there helped to improve the algorithm 

developed here. For example, in (Chaves-González et al. 2008e), results showed that the 

standard version of PBIL hybridized with a local search heuristic was the best approach to 

tackle the FAP, and this idea was taken to developed the best version of PBIL here. On the 

other hand, other studies work with benchmarking-like instances of the problem (Chaves-

González et al. 2008d), or make comparisons between PBIL and other metaheuristics 

(Chaves-González et al. 2008b). Anyway, a complete comparative study will be performed 
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taking into account those works which use the same problem version and instances as ours in 

Section 7. 

To finish this background section, some of the parallel approaches that have been 

published to solve the FAP are analyzed. The number of contributions here is also rather 

large. In fact there are very complete works in which several parallel approaches which can 

be applied to solve the FAP are thoroughly explained (Eisenblätter 2001, Alba et al. 2005), 

therefore this paragraph is focused on those studies which work with our specific version of 

the problem (the MI-FAP variant). It is important to point out that all the parallel approaches 

found combine a parallel strategy with a metaheuristic for solving the problem. Thus, in 

(Chaves-González et al. 2008a), FAP is solved using cluster computing and PBIL. In that 

work an island model was developed to improve the results obtained with the sequential 

version of the algorithm. In any case, the model proposed in this article beats the results 

obtained in those studies. Grid computing has been also proposed to solve FAP. In (Chaves-

González et al. 2009a), the GRASP metaheuristic is parallelized using a master-slave model 

to improve both the performance and the results which were obtained with the sequential 

version of the algorithm. Finally, the solution proposed by Luna et al. (2008a) obtains very 

good results using a grid-based genetic algorithm when solving the same problem, but as will 

be shown in Section 7, the present approach also beats those results. 

In conclusion, after analyzing a considerable number of works related to the study 

carried out, it can be affirmed that, to the authors’ best knowledge, this article proposes a new 

parallel and evolutionary approach to solve a FAP realistic version which provides the best 

results published so far in the literature (as will be discussed in Section 7). 

 

3.  Optimization problem tackled: the frequency planning problem 

 

The frequency planning is one of the most relevant optimization problems in the 

telecommunications domain. In fact, the FAP is considered a very important task for current, 

real-world GSM operators (Mouly and Paulet 1992) because only with an optimum frequency 

plan which makes the most of the scarce range of available frequencies is it possible to 

perform a communication of quality between the cell phones of a realistic network. Therefore, 

in the following subsections there will be, on the one hand, a very brief description of the 

GSM architecture and some details about the frequency planning applied to this kind of 

networks; and on the other hand, an explanation of the mathematical formulation of the FAP 

which is tackled here (Luna et al. in (2007a)). 

 

3.1. The frequency assignment problem and the GSM communication system 

 

As stated in the Introduction, the most used communication system used nowadays is the 

GSM system (Mouly and Paulet 1992). This is an open, digital cellular technology used for 

transmitting mobile voice and data services. The two most relevant components of the GSM 

system which refer to frequency planning are the antennas or, as they are more known, base 

transceiver stations (BTSs) and the transceivers (or TRXs). Essentially, a BTS is a set of 

TRXs (grouped in sectors). In GSM, one TRX is shared by up to eight users in TDMA (Time 

Division Multiple Access) mode. The main role of a TRX is to provide conversion between 

the digital traffic data on the network side and radio communication between the mobile 

terminal and the GSM network. The site where a BTS is installed is usually organized in 

sectors (of several TRXs) and the area where each sector operates defines a cell. No more 

details about the GSM system are going to be given here. To obtain a more detailed 

explanation about this issue, please consult reference (Mouly and Paulet 1992). 

In any case, the frequency planning is the last stage in the design of a GSM network. 

FAP lies in the assignment of a channel (or a frequency) to every TRX in the network 

(Eisenblätter 2001). The optimization problem comes up because the usable radio spectrum is 
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usually very scarce and, consequently, frequencies have to be reused for many TRXs in the 

network. However, the multiple use of a same frequency usually causes interferences that can 

reduce the quality of service (QoS) down to unsatisfactory levels. In fact, significant 

interferences will occur if the same or adjacent channels are used in near overlapping cells. 

The problem is that computing this level of interference is a difficult task which depends on 

various factors (channels, radio signals, environment…). The more accurate the measure of 

the interference in a given GSM network, the higher the quality of the frequency plan that can 

be computed for this network. There are several ways of quantifying this interference. These 

methods range from theoretical methods to extensive measurements (Kuurne 2002), however 

the most extended way of quantifying the interferences produced in a GSM network is using 

the called interference matrix. Each element of this matrix contains a pair (i, j) which holds 

two types of interferences: the co-channel interference, which represents the degradation of 

the network quality if the cells i and j operate on the same frequency; and the adjacent-

channel interference, which occurs when two TRXs operate on adjacent channels (e.g. one 

TRX operates on channel f and the other on channel f + 1 or f – 1). Therefore, an accurate 

interference matrix is an essential requirement for solving the frequency planning problem, 

because the final goal of any frequency assignment algorithm will be to minimize the sum of 

all the interferences held in this matrix. Furthermore, in real-world situations, FAP is involved 

with other additional complicating factors which may be considered. The interested reader is 

referred to (Eisenblätter 2001) to get more detailed explanations about frequency planning 

applied over GSM networks. 

 

3.2. Mathematical formulation of the frequency assignment problem tackled 

 

Let T = {t1, t2,…, tn} be a set of n transceivers (TRXs) in a telecommunication network, and 

let Fi = {fi1,…, fik} ⊂ Ν be the set of valid frequencies that can be assigned to a transceiver ti ∈ 

T, i = 1,…, n. Note that k, which is the cardinality of Fi, is not necessarily the same for all the 

transceivers. Furthermore, let S = {s1, s2,…, sm} be a set of given sectors (or cells) of 

cardinality m. Each transceiver ti ∈ T is installed in exactly one of the m sectors. Also, the 

sector in which a transceiver ti is installed is denoted by s(ti) ∈ S. Finally, let a matrix M = 

{(µij, σij)}mxm, called the interference matrix where the two elements µij and σij of a matrix 

entry M(i,j) = (µij, σij) are numerical values greater or equal than zero. In fact, µij represents 

the mean and σij the standard deviation of a Gaussian probability distribution describing the 

carrier-to-interference ratio (C/I) when sectors i and j operate on a same frequency (Walke 

2002). The higher the mean value is, the lower the interference will be, and thus the better the 

communication quality. Note that the interference matrix is defined at sector (cell) level. A 

solution to the problem is obtained by assigning to each transceiver ti ∈ T one of the 

frequencies from Fi. A solution (or frequency plan) will be denoted by p ∈ F1 × F2 × … × Fn, 

where p(ti) ∈ Fi is the frequency assigned to the transceiver ti. The objective, or the plan 

solution, will be to find a solution p that minimizes the following cost function (Luna et al. 

2007a): 

∑ ∑
∈ ≠∈

=
Tt tuTu

sig utpCpC
,

),,()(  (1) 

In order to define the function Csig (p, t, u) from equation 1, let st and su be the sectors 

in which the transceivers t and u are installed, which are st = s(t) and su = s(u) respectively. 

Moreover, let µstsu and σstsu be the two elements of the corresponding matrix entry M(st, su) 

of the interference matrix with respect to sectors st and su. Then, Csig (p, t, u) is equal to the 

expression described in equation 2. 
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Equation 2 represents three types of cost associated to three interferences which can 

be found in a network frequency planning. K >> 0 is a very large constant defined by the 

network designer just to make it undesirable allocating the same or adjacent frequencies to 

transceivers serving the same area (e.g. installed in the same sector). Cco (µ, σ) represents the 

cost due to co-channel interferences (equation 3), whereas Cadj (µ, σ) is the cost in the case of 

adjacent-channel interferences (equation 6). Therefore, Cco (µ, σ) is defined as shown in the 

following expression: 

))/)((0.1(100),( σµσµ −−= SHco CQC  (3) 

where the term Q(z) is the tail integral of a Gaussian probability distribution function with 

zero mean and unit variance (equation 4), while CSH is a minimum quality signalling 

threshold. 

∫
∞

−⋅=
z

dxxzQ )2/exp(2/1)( 2π  (4) 

Function Q is widely used in digital communication systems because it characterizes 

the error probability performance of digital signals (Simon and Alouini 2005). This means 

that Q ((CSH – µ) / σ) is the probability of the C/I ratio being greater than CSH and, therefore, 

Cco (µstsu, σstsu) computes the probability of the C/I ratio in the serving area of sector st being 

below the quality threshold due to the interferences caused by sector su. That is, if this 

probability is low, the C/I value in the sector st is not likely to be degraded by the interfering 

signal coming from sector su and thus the communication quality yielded is high. (Note that 

this is compliant as to defining a minimization problem). On the other hand, a high 

probability, and consequently a high cost, causes the C/I mostly to be below the minimum 

threshold CSH and thus incurring in low quality communications. However, as function Q has 

no closed form for the integral, it has to be evaluated numerically. The complementary error 

function E is used for this purpose. 

)2/(2/1)( zEzQ ⋅=  (5) 

Press et al. (2002) presents a numerical method that allows the value of E to be 

computed with a fractional error smaller than 1.2×10
-7

. In a similar way, function Cadj(µstsu, 

σstsu) is defined as expressed in equation 6. 

)))2/()((2/10.1(100
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The only difference between functions Cco and Cadj is the additional constant CACR>0 

(adjacent channel rejection) in the definition of function Cadj. This hardware specific constant 

measures the ability of the receiver to receive the wanted signal in the presence of an 

unwanted signal at an adjacent channel. Note that the effect of constant CACR is that Cadj (µ, σ) 

< Cco (µ, σ). This makes sense, since using adjacent frequencies (channels) does not cause 

such a strong interference as using the same frequencies. 

Finally, it should be noted that the mathematical model explained in this section 

(originally proposed by Luna et al. (2007a)) incorporates the definition of a precise 

interference matrix which is directly imported from real-world GSM frequency planning as 

currently conducted in the industry (and not generated in a computer by sampling random 
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variables). This definition allows not only the computation of high performance frequency 

plans, but also the prediction of QoS, because both the definition of the interference matrix 

and the subsequent computations carried out to obtain the cost values are based on the real-

world GSM network operation. 

 

4.  Metaheuristics included in the hyper-heuristic 

 

In this section the heuristics which are part of the authors’ hyper-heuristic are described. Each 

single metaheuristic was carefully fixed for solving the proposed FAP, so the generic outline 

of each algorithm is not explained here (they are widely explained in the bibliography), but 

the adapted versions which were developed to solve the present problem are explained. Both 

trajectory (ILS, VNS and GRASP) and population (GA, PBIL, SS and ABC) based 

metaheuristics have been included, and all of them have been hybridized with the same local 

search (LS) algorithm, which was specially adapted to solve our problem. Therefore, in the 

following subsections brief explanations of each metaheuristic are included along with a very 

short description of the LS which is shared by all of them. 

 

4.1. Local Search 

 

The Local Search (LS) strategy used in this work was proposed by Luna et al. (2008b) with 

the aim to design a method which improves the stochastic behaviour of any metaheuristic 

approach developed to solve the present version of the frequency assignment problem. All the 

experiments performed in the study show that all metaheuristics improve their results when 

they use this local search heuristic, therefore it is a common element included in all the 

metaheuristics developed here. The aim of the LS designed is to optimize the assignment of 

frequencies to the TRXs in a given sector, but without changing the remaining network 

assignments. Candidate solutions (or frequency plans) are encoded for all heuristics 

developed as arrays of integer values p, where p(t) is the frequency assigned to TRX t. The 

neighbours of a candidate solution are obtained by replacing the frequencies in the TRXs of 

each sector by other frequencies which are randomly chosen, but trying to avoid the 

generation of neighbours that are not going to improve the current solution. It is important to 

point out here that this local search will never assign the same frequency or adjacent 

frequencies to any pair of TRXs within the same sector (these co-channel and adjacent-

channel interferences are the highest-cost kind of interference, as shown in equation 2, and 

they have to be avoided). To obtain detailed information about this local search heuristic, 

please consult reference (Luna et al. 2008b). 

 

4.2. Iterated Local Search 

 

Iterated Local Search (ILS, Lourenço et al. 2002) algorithm is a very fast trajectory-based 

metaheuristic used for solving optimization problems. It is based on the idea of applying a 

great number of times an efficient local search over a single individual to make it evolve. The 

individual (or solution to the FAP) is encoded as an array of integer values, p, where p(ti) ∈ Fi 

is a valid frequency assigned to the transceiver ti. The algorithm is summarized in Algorithm 

1. 

 

Algorithm 1. Pseudo-code for ILS 

1:   generateInitialSolution (solution) 

2:   solution ← localSearch (solution) 

3:   while (not time-limit) do 

4:        newSolution ← randomMutation (solution) 
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5:        newSolution ← localSearch (newSolution) 

6:        solution ← updateSolution (newSolution, solution) 

7:   endwhile 

8:   return solution 

 

As observed, the heuristic is based on the evolution of a unique solution. This 

solution is firstly randomly generated (line 1) and then improved using the LS heuristic 

described in Section 4.1 (line 2). After that, the solution is randomly mutated (line 4) to 

introduce perturbations which avoid local minima and then, the LS (line 5) is applied again to 

improve the frequency plan obtained after the mutation. The mutation operator used is the 

random mutation, in which the frequencies of a set of randomly chosen TRXs are reassigned 

with a random valid frequency. Finally, the solution is updated by comparing the interference 

cost (the fitness) of the new solution with the interference cost of the original solution (line 6). 

The solution with the highest cost (which is the worst individual) will be discarded and the 

algorithm will start a new iteration with the updated solution. This solution will be returned 

(line 8) when the algorithm reaches its stop condition (line 3). 

 

4.3. Variable Neighborhood Search 

 

The Variable Neighborhood Search (VNS, Mladenovic and Hansen 1997) algorithm is a 

trajectory-based heuristic used for solving optimization problems. VNS basically consists of 

systematic changes of neighborhood within a local search method which is being applied over 

a solution. The solution here is represented as in the previous algorithms explained (array of 

integer values which represent a valid frequency plan and where each position of the array 

represents one specific frequency assignment). There are several VNS variants based on the 

general outline of the algorithm (Mladenovic and Hansen 1997). Among these variants the 

sVNS (skewed Variable Neighborhood Search) version (Algorithm 2) was finally chosen, 

because it obtained the best results solving the FAP. 

 

Algorithm 2. Pseudo-code for sVNS 

1:   generateInitialSolution (solution) 

2:   solution ← localSearch (solution) 

3:   while (not time-limit) do 

4:        k ← 1 

5:        while (k <= kmax) do 

6:             newSolution ← randomMutation (solution, k) 

7:             newSolution ← localSearch (newSolution) 

8:             solution ← updateSolution (newSolution, solution) 

9:             k ← updateK (k, α, solution, newSolution) 

10:      endwhile 

11: endwhile 

12: return solution 

 

The sVNS approach tries to avoid local minima by considering solution searches far 

from the solution which is being explored at that moment (as trajectory-based heuristic, it 

only works with one solution). The heuristic starts just as ILS algorithm started: with the 

generation of a random solution (line 1) and its improvement using the local search described 

in Section 4.1 (line 2). However, the iteration in this occasion depends on a new parameter, k, 

which is used in the mutation method to control the mutation probability of the solution (more 

exactly, the mutation probability is equal to k * 10%). Thus, k parameter is initialized to 1 

(the minimum mutation probability, or minimum neighbourhood) at the beginning of the 

iteration (line 4). This mutation probability (neighbourhood) will change in each step of the 

algorithm until the value of the kmax parameter is reached (9, in our case, as is specified in 

Section 6). The mutation operator used is the random mutation, but on this occasion, the k 
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parameter is used to check if a specific TRX has to be mutated or not (the algorithm generates 

a random value, and if it is lower than the mutation probability, the solution will be changed). 

In case it has, the new frequency to be assigned to that TRX is randomly chosen from a set of 

valid frequencies (line 6). These valid frequencies do not introduce new interferences to the 

sector in which the TRX is installed. Next, the same LS applied over the initial solution in 

line 2 is used to improve the fitness of the new solution generated (line 7). After that, the 

individual which will be taken for the next generation is updated (line 8) by choosing the 

solution with the lowest fitness. Finally, the k parameter is updated (line 9, Mladenovic and 

Hansen 1997) taking into account the distance between the new solution and the current 

solution (measured by counting the number of different frequencies used within the same 

sector) and the value of a new parameter, α. The value for this α parameter was established to 

0.4 after a rigorous experimental study (Section 6). The new value of the k parameter 

indicates if the search is going to be performed far from or nearby the current solution in the 

next iteration of the algorithm. At the end of the process, the final frequency plan calculated is 

returned (line 12). 

 

4.4. Greedy Randomized Adaptive Search Procedure 

 

The Greedy Randomized Adaptive Search Procedure (GRASP, Feo and Resende 1995) is a 

multi-start trajectory-based metaheuristic commonly applied to combinatorial optimization 

problems. The algorithm consists of iterations which include successive constructions of a 

greedy randomized solution (there are several types of constructors with diverse parameters) 

and its subsequent iterative improvement through a local search (as previously, the LS 

described in Section 4.1 is used). The greedy randomized solutions are generated by adding 

elements (in our case, frequencies) to the problem solution set from a list of elements ranked 

by a greedy function according to the quality of the solution they will achieve. The variability 

in the candidate set of greedy solutions is obtained through a Restricted Candidate List 

(RCL), by randomly choosing the elements of the specific solution which is being built. 

Algorithm 3 shows the general outline of the metaheuristic. 

 

Algorithm 3. Pseudo-code for GRASP 

1:   generateInitialSolution (solution) 

2:   solution ← localSearch (solution) 

3:   while (not time-limit) do 

4:        newSolution ← greedyRandomizedConstruction (type, k, bias) 

5:        newSolution ← localSearch (newSolution) 

6:        solution ← updateSolution (newSolution, solution) 

7:   endwhile 

8:   return solution 

 

As described in previous trajectory-based algorithms, GRASP starts with the 

generation of a random frequency plan (line 1) followed by the improvement of this first 

solution with the LS method described in Section 4.1 (line 2). After that, the main part of the 

algorithm starts with the generation of a greedy randomized solution (line 4), then the 

application of the LS method over the new solution generated (line 5) and finally the update 

of the best solution obtained so far by comparing the interference costs of the new generated 

solution and the previous version saved (line 6). There are several constructors for the 

generation of the greedy randomized solution (the type parameter indicates the one used in 

line 4). According to our experiments, the best results solving the FAP were obtained using 

the RG-variant (first random, later greedy; with k = 1 and exponential bias), so this is the 

configuration used to solve the present problem. Therefore, the RG-variant is the only version 

which is going to be briefly described in this section. To obtain detailed explanations about 

the GRASP constructor variants, please, consult reference (Feo and Resende 1995). The RG-

variant modifies in the following terms the way in which the RCL is created: the restricted 
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candidate list is firstly filled in with k frequencies chosen randomly, but the rest of elements 

until complete the list are included greedily (choosing the best frequencies which incorporate 

less interference cost to the solution). After that, the element (or frequency) to be incorporated 

into the partial solution is randomly selected (considering also the exponential bias) from 

those in the RCL (this is the probabilistic aspect of the heuristic). Once the chosen element is 

incorporated to the partial solution, the candidate list is updated and the incremental costs are 

reevaluated (this is the adaptive aspect of the heuristic). This process is repeated until all the 

frequencies of the tentative frequency plan are assigned. Although the frequency plans 

obtained using this GRASP constructor are quite good, they are always improved by using the 

local search method described in Section 4.1 (line 5). This process of construction (line 4), 

improvement (line 5) and update (line 6), is performed until the stop condition of the 

algorithm is reached (line 3). Finally, the best solution found so far is returned at the end of 

the process (line 8). 

 

4.5. Genetic Algorithm 

 

The Genetic Algorithm (GA, Holland 1992) is the best known and used type of Evolutionary 

Algorithm (EA, Bäck et al. 1997). The tentative solutions managed by the present GA are 

preliminary frequency plans of the given FAP instance encoded as in the previous 

metaheuristics. A brief description of the algorithm is shown in Algorithm 4. The heuristic 

starts with the random generation of the population so that all the TRXs of each individual are 

randomly assigned with one of their valid frequencies. After that, the LS described in Section 

4.1 is applied over the whole population. 

 

Algorithm 4. Pseudo-code for GA 

1:   initialize (population) 

2:   population ← localSearch (population) 

3:   while (not time-limit) do 

4:        parents ← binaryTournament (population) 

5:        offspring ← uniformCrossover (parents) 

6:        offspring ← randomMutation (offspring) 

7:        offspring ← localSearch (offspring) 

8:        population ← updatePopulation (offspring) 

9:   endwhile 

10:  return bestIndividual (population) 

 

The GA includes binary tournament as the selection scheme (line 4) to choose the 

parents from which the offspring will be generated. These new frequency plans will replace 

the worst solutions within the current population if they reduce their interference cost. The 

binary tournament operator works by randomly choosing pairs of individuals from the 

population and choosing from each pair the individual having the best (lowest) fitness. The 

algorithm applies then uniform crossover to each pair of parents in which every gene of the 

offspring (i.e. the frequency of each TRX) is chosen randomly from one of the two parents 

(line 5). The mutation operator used is the random mutation in which the frequencies of a set 

of randomly chosen TRXs of the solution are reassigned with a random valid frequency. After 

the mutation, the same local search applied over the population in line 2 is used to improve 

the offspring fitness (line 7). Finally, the new offspring is used to update the population (line 

8) by replacing the worst individuals by those newly generated which are better than the 

former ones (they have a lower interference cost). This process will be repeated generation 

after generation until the stop condition (a time limit) is reached (line 3). Then, the best 

individual in the population will be returned (line 10). 
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4.6. Population Based Incremental Learning 

 

The Population Based Incremental Learning (PBIL, Baluja 1994) is a method that combines 

some properties of the genetic algorithms with the competitive learning for function 

optimization. The method is based on the evolution of a probability distribution, P, which is 

represented by a vector which holds the probability of each valid frequency to be assigned to 

each TRX of a tentative solution. The number of frequencies available for each TRX is not 

constant, so P is encoded as an array of arrays instead of as a regular matrix. Solutions are 

represented as in the previous algorithms, by arrays of integer values, p, where p(ti) ∈ Fi is the 

frequency assigned to transceiver ti. The PBIL algorithm outline appears in Algorithm 5. 

 

Algorithm 5. Pseudo-code for PBIL 

1:   initialize (probVector) 

2:   population ← generatePopulation (probVector) 

3:   while (not time-limit) do 

4:        population ← localSearch (population) 

5:        bestIndiv ← bestIndividual (population) 

6:        probVector ← updateprobVector (probVector, LR, bestIndividual) 

7:        probVector ← mutateprobVector (probVector, MutP, MutA) 

8:        population ← regeneratePopulation (probVector, population) 

9:   endwhile 

10:  return bestIndividual (population) 

 

The first thing to do is just initializing the probability vector, probVector, with the 

same probability for all frequencies (at the beginning, all frequencies have the same 

probability of being assigned to a specific TRX). Then, the first population is generated (line 

2) by using the probVector previously initialized (line 1). After that, the local search method 

(Section 4.1) is applied over each individual in the population (line 4). The individual with the 

lowest fitness is then taken from the population (line 5) to update the probability vector. The 

probability vector is updated according to the information provided by the best individual of 

the population and the value of the learning rate (LR) parameter (line 6). This update is 

performed following the expression: probVectori ← probVectori × (1.0 – LR) + bestIndivi × 

LR. After that, the probability vector is mutated according to the MutP (mutation probability) 

and MutA (mutation amount) parameters following the expression: if (random (0, 1) < MutP) 

then probVectori ← probVectori × (1.0 – MutA) + random [0, 1] × MutA. Finally, a new 

population (which includes the best individual of the previous population) is regenerated by 

using the new probability vector (line 8). At the end of the process, when the time limit 

expires, the best solution is returned (line 10). 

 

4.7. Scatter Search 

 

Scatter Search (SS, Glover et al. 2003, Martí et al. 2006) is a metaheuristic which works with 

a representative set of solutions which is called RefSet (from the words reference set). 

Solutions here are encoded by using the same representation as in the previous algorithms, 

that is, arrays of integer values. The RefSet is composed of the most representative solutions 

from the population. It is divided into quality solutions (the best frequency plans which solve 

our problem) and diverse solutions (the most different ones). The number of individuals for 

each subset has been specially configured to solve the present version of FAP. 

 

Algorithm 6. Pseudo-code for SS 

1:   initialize (population) 

2:   population ← localSearch (population) 

3:   RefSet ← generateFrom (population) 
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4:   while (not time-limit) do 

5:        SubSet ← subSetGenerator (RefSet) 

6:        SubSet ← combinationMethod (SubSet) 

7:        RefSet ← localSearch (SubSet) 

8:        RefSet ← generateFrom (RefSet, population) 

9:   endwhile 

10:  return bestIndividual (RefSet) 

 

An outline of the algorithm is shown in Algorithm 6. The algorithm starts with the 

random generation of the population through the assignment of a valid frequency to each 

single TRX in each solution (line 1). Then, the LS described in Section 4.1 is applied over the 

population to improve the quality of solutions (line 2). After generating the RefSet (line 3), a 

Subset Generation Method (line 5) is used to create all possible subsets from the RefSet. The 

next step consists of applying the Solution Combination Method (line 6) to the solutions in 

each subset. The solutions are combined in a pair-wise way. Finally, the LS is used again (line 

7) to try improving the frequency planning obtained as the result of the combination method. 

Frequency plans are replaced in the RefSet so that the best solutions keep in there. When all 

combinations have been evaluated, the best solution is saved for the next RefSet and a new 

random population is generated to select the (RefSetSize – 1) most diverse solutions from 

there (line 8). The distance used to measure the diversity between two frequency plans is the 

total amount of different frequencies assigned to every sector in both plans. With this new 

reference set, the algorithm restarts a new iteration until the time limit for the experiment 

expires (line 4). When this occurs, the best individual held in the reference set will be 

returned as the final solution to the problem (line 10). 

 

4.8. Artificial Bee Colony 

 

Artificial Bee Colony (ABC, Karaboga and Basturk 2007) is one of the most recently defined 

population-based algorithms used to solve optimization problems. It was created in 2005 by 

Karaboga (2005) and the heuristic is motivated by the intelligent behavior of honey bees. The 

bee colony consists of three groups of bees: employed, onlookers and scouts bees. In ABC 

model, the position of a food source represents a possible solution to the optimization 

problem (in our case, a valid frequency plan) and the nectar amount of a food source 

corresponds to the quality (fitness) of the associated solution. As explained in previous 

algorithms, solutions are represented by arrays of integer values. The general outline of the 

algorithm adaptation is shown in Algorithm 7. 

 

Algorithm 7. Pseudo-code for ABC 

1:   initialize (population) 

2:   population ← localSearch (population) 

3:   while (not time-limit) do 

4:        population ← mutationMethod (employedBees, population) 

5:        probVector ← generateSolutionProbability (population) 

6:        population ← generateSolutions (onlookerBees, probVector, population) 

7:        population ← replacePoorerSolutions (scoutBees, population) 

8:   endwhile 

9:   return bestIndividual (population) 

 

The algorithm starts with the random generation of the population, or bee colony (line 

1), and the improvement of the solutions (or frequency plans) within the population using the 

local search method described in Section 4.1 (line 2). Then, each generation of the algorithm 

will be divided into the following 4 stages: firstly, the employed bees, which represent up to 

half of the colony size, perform a random mutation in which the frequencies of a set of 

randomly chosen TRXs of the solution are reassigned with a random valid frequency. After 
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doing this operation, the same LS applied in line 2 will be used to improve the mutated 

solutions. Secondly, a probability vector is generated according to the fitness of each solution. 

This vector contains the probability that each frequency plan in the population is explored by 

the onlooker bees. The best solutions will have more probability than the poorer of being 

chosen by this kind of bees. After that, the onlooker bees generate new individuals by taking 

solutions from the population according to the probability vector previously generated. A 

mutation method similar to the one applied in line 4 will be used to create new frequency 

plans (but in this case the solutions are not randomly chosen, but taken according to the 

probability vector created in line 5). Finally, the scout bees replace the worst solutions in the 

population by others which are randomly generated (line 7). This operation expands the 

search space of the algorithm, avoiding that the heuristic gets stuck in a local optima. At the 

end of the process (line 9) the best solution held in the population will be returned (line 9). 

 

5.  Parallel hyper-heuristic 

 

This article proposes a new approach to solve optimization problems based on heuristics 

searches: a parallel hyper-heuristic (PHH). The present PHH has been developed using 

several metaheuristics (described in the previous section), which are very significant 

trajectory (ILS, VNS, GRASP) and population (GA, SS, PBIL, ABC) based heuristics. As 

stated in the Introduction section, hyper-heuristics can be thought of as “heuristics to choose 

heuristics” and they basically differ from metaheuristics in which these search within a search 

space of problem solutions, while hyper-heuristics always search within a search space of 

heuristics. A diagram with the general outline of the proposed approach is shown in Figure 2. 

The present system works as follows: the problem specification and the instances of the 

problem are taken by the metaheuristics through an adapted evaluation function to evaluate 

the quality of the generated solutions. The problem itself is solved by these metaheuristics. 

The task carried out by the hyper-heuristic (HH) consists of controlling the metaheuristics 

output to distribute the workload according to the results obtained by each heuristic along the 

whole execution time of the system. The communication between the HH and the “lower-

level” metaheuristics does not depend on the problem specifications, because the HH only 

receives, in each synchronization, information about the costs and the solutions (this is only 

numerical data) which are obtained by the metaheuristics until that moment. According to that 

information, the hyper-heuristic chooses the number of instances of each metaheuristic which 

will work with the solutions until the next synchronization of the system. Finally, at the end 

of the process, the best solution obtained so far (by one of the metaheuristics) will be returned 

as the final solution. 

 

Figure 2. General outline of the proposed approach. 

 

The hyper-heuristic achieves a good performance in the global search for the 

optimum solution, because it makes the metaheuristics search in parallel. An island model 

with all the metaheuristics has been developed. This model is managed by a master process 

(our hyper-heuristic) which rules all the metaheuristics. Also, to optimize the communications 

between the processes, an efficient communication protocol which minimizes the 

communications has been designed. Therefore, the PHH not only chooses which heuristic is 

the most appropriate in a given situation, but also distributes efficiently the workload among 

the different metaheuristics depending on the quality of their results. As will be explained in 

the next section, a cluster computer with 128 cores has been used to perform all the 

experiments. Then, one of the cores of our cluster will be used to run the hyper-heuristic 

process, which is going to work as the master process of the system, and the rest of the cores 

will be taken by the heuristics to solve the problem itself. The outline of the PHH master 

process is described in Algorithm 8. 
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Algorithm 8. Pseudo-code for the master of the PHH 

1:   initialize the system probability vector, probVectorHH 

2:   assign a metaheuristic to each core according to probVectorHH 

3:   while (stop condition not satisfied) do 

4:        wait until the sync. (while each core runs the assigned metaheuristic) 

5:        when sync. → each metaheuristic sends the best solution to the master 

6:        receive the solutions sent by the heuristics and sort them by their fitness 

7:        update probVectorHH according to the best solutions received 

8:        assign a metaheuristic to each core according to the new probVectorHH 

9:        send the best solution to each metaheuristic for the restart 

10: endwhile 

11: return the best solution received at the end of the process 

 

The parallel hyper-heuristic (PHH) is a synchronous system which manages and 

synchronizes the metaheuristics which solve the FAP. The seven metaheuristics are 

distributed between the available cores at the beginning of the process (line 2). PHH performs 

this important task by using a probability vector which indicates the approximate occupation 

of the metaheuristics in our cluster. This probability vector is initialized uniformly before the 

distribution of the metaheuristics (line 1). Therefore, the heuristics are expected to be 

distributed homogeneously in our system at the beginning of the process. Moreover, a 

minimum number of cores per metaheuristic is established (in the present specific case, 5 

cores per metaheuristic were configured), just to avoid that in future iterations any algorithm 

could disappear from the system. Then, once all metaheuristic instances have been assigned to 

a core of our cluster, the heuristics will start their execution (as described in Section 4) until 

their stop condition (a time limit) is satisfied. When they finish, each metaheuristic will send 

the best solution found so far to the master process (line 5). The hyper-heuristic only waits 

idly until the solutions sent by the metaheuristics start to arrive (line 4). When the reception 

process is finished, the master process sorts all the solutions according to their quality (line 6). 

It is important to remark here that each solution received in the hyper-heuristic includes the 

frequency plan which represents that solution (this is an array of integers, as in the 

metaheuristics described in the previous section), its fitness value (which shows the quality of 

the solution) and a code which identifies the heuristic which obtained that solution. 

Furthermore, the PHH does not accumulate any solution from one synchronization point to 

the next because each individual heuristic includes elitism strategies. Therefore the system 

always works with the best frequency plans generated. 

After the reception process has finished, the probability vector is updated with the 

best solutions following a process of selective pressure (line 7). This process only considers a 

certain number of the best solutions obtained, therefore, for each metaheuristic occurrence in 

the “top list”, the probability (taken from 0 to 1) of that metaheuristic is increased 

proportionally. Then, as the system is using 127 cores to run the metaheuristics, when there is 

synchronization point, the top list in that very moment includes, for example, the best 50 

solutions provided by the metaheuristics of the system. Thus, if these 50 solutions are 

distributed as follows: 17 by SS, 9 by GA, 7 by ABC, 6 by VNS, 5 by PBIL, 4 by ILS and 2 

by GRASP; then, the updated probability vector will include the following values: P(SS) = 

0.34, P(GA) = 0.18, P(ABC) = 0.14, P(VNS) = 0.12, P(PBIL) = 0.1, P(ILS) = 0.08, and 

P(GRASP) = 0.04. The number of solutions taken into consideration in the synchronization 

points depends on the number of cores used to run the heuristics. The master process of the 

PHH only keeps the best solution provided by each core, and the selective pressure grows 

proportional to the number of cores used to run the metaheuristics. For example, with 127 

cores the 50 best solutions out of 127 (selective pressure) are only considered in order to 

update the probability vector. After this update, the hyper-heuristic reassigns the 

metaheuristics to each free core (line 8). The new distribution is performed according to the 

new probability vector but considering besides that each metaheuristic will be assigned to at 

least 5 cores of the system. Moreover, the hyper-heuristic includes elitism strategies, because 

the best solution obtained after every synchronization is also sent to each metaheuristic. This 
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solution will become the initial individual for trajectory-based metaheuristics (ILS, VNS and 

GRASP); meanwhile the population-based heuristics (GA, SS, ABC and PBIL) will include 

this solution to the first population generated. Finally, when the stop condition is satisfied (in 

the present case, a certain number of synchronizations, as will be explained in Section 6), the 

hyper-heuristic returns the best solution obtained at the end of the process, or in other words, 

the best frequency plan which solves the optimization problem. 

 

6.  Methodology 

 

All the experiments performed have been carried out in a cluster computer which includes 16 

identical nodes, each one with 2 processors Intel Quad Xeon CPU 2.33Ghz, 6MB L2 Cache 

and 8 GB DDR2. Also, all nodes are connected through a full-duplex Gigabyte Switch 

(1000Mbps). Therefore, the system includes 128 cores (16 nodes × 2 processors per node × 4 

cores per processor) fully connected. With regard to the software environment, all nodes 

include Scientific Linux 5.3 64 bits OS (SL home page 2010), MPICH2 1.0.8p library to use 

MPI (Message Passing Interface, MPI forum home page 2010), and the GCC 4.1.2 compiler 

(GCC home page 2010). In the following subsections some more details are given about the 

experimental conditions of all experiments. 

6.1. GSM problem instances 

 

The real-world GSM networks used in the present study correspond to two quite large US 

cities: Seattle and Denver (both with more than 550,000 inhabitants). Figure 3 shows the 

topology of both instances. In that figure, each triangle represents a sectorized antenna, where 

several TRXs (between 2 and 6) operate to give support to the communications produced in a 

certain area of the network. The number of TRX per sector varies depending on the traffic 

demand and the specific requirements produced in each zone of the city, but for both 

instances, 3 or 4 TRX installed per sector is the usual case. As stated in the Introduction, 

frequency planning is an important and very complex task for current real-world GSM 

operators, because the number of available frequencies to cover the entire network 

communications is always very small. In the present case, Denver GSM instance includes 

2612 TRXs (or transceivers) distributed in 334 BTSs (base transceiver stations or antennas), 

and it only has 18 available frequencies to be assigned to each TRX. On the other hand, the 

Seattle instance includes 970 TRXs installed in 503 BTSs and only 15 different frequencies 

are allowed to perform the network planning. It is important to highlight here that the first 

stages of the present research were started using benchmark instances of the FAP library to 

configure and test the algorithms. For example, (Chaves-González et al. 2008d) studied the 

resolution of several FAP benchmark instances with the PBIL algorithm, however, even this 

heuristic, which supplies the worst results in the current study (Figure 6), provided results 

which were optimal or near optimal when tackling benchmark instances. For that reason, real-

world instances were used in the present experiments. These instances are much more 

complex and include realistic demands and requirements taken from the industry, being more 

interesting and challenging for this research. 

 

Figure 3. Topologies of the GSM instances used in the study 

 

The mathematical formulation used to represent the problem was explained in Section 

3. Some constants were defined there, in equations 2, 3 and 6, and their values were set as 

follows: K = 100,000, CSH = 6 dB and CACR = 18 dB, respectively (for both instances). Finally, 

it is also remarkable that the data source considered to build the interference matrix based on 

the C/I probability distribution (see Section 3) uses thousands of Mobile Measurement 

Reports (MMRs, Kuurne 2002) rather than propagation prediction models. MMRs are a more 
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accurate data source, because they capture the cell location pattern in the network and do not 

rely on predictions, as do the benchmark instances (FAP web 2007). 

 

6.2. Experimental conditions and parameter configuration of the algorithms 

 

Due to the stochastic nature of metaheuristics, each experiment performed in the study 

includes 30 independent executions. In order to provide the results with statistical confidence, 

make comparisons and detect differences between the algorithms within short and long time 

ranges, three different time limits (120, 600 and 1800 seconds) have been considered. These 

limits have been chosen for a double reason: on the one hand, to bear in mind the practical 

interest of telecommunication companies, for which the time requirements are usually very 

hard; and on the other hand, because there are several studies published where the present 

problem has been tackled using other approaches (as will be analyzed in the following 

section) and it was desired to obtain comparable results. 

All the single metaheuristics included in the present system (Section 4) have been 

carefully fixed with complete sets of experiments. Therefore, before doing the experiments 

with the final approach, an in-depth rigorous study was performed (each single experiment 

was also repeated 30 times independently) in order to find the best parameter configuration 

for each heuristic included in the present system. These previous experiments are also very 

relevant because it is well-know that the success of a hyper-heuristic is based on the good 

performance of its low-level heuristics. The authors point out here that the goal of this 

preliminary experimentation was to find the parameter settings that meet the several 

requirements imposed by the industrial context of the work. First of all, the authors wanted to 

provide the two real-world FAP instances with very accurate solutions, but using the same 

parametrization in the two cases. Indeed, it is known that the algorithms can be fine tuned for 

each instance but, when presenting the optimization tool to a telecommunications engineer 

who is not an expert in meta-heuristics, he/she can expect a good solution as soon as possible 

without tuning the solver. Therefore, once each individual heuristic was configured, the 

parameter setting is not modified at all in the final system. The following items summarize 

the parameter setting obtained for each of the individual metaheuristics (see Section 4 for the 

meaning of each parameter) when they are configured to solve the present optimization 

problem. 

• ILS: mutation probability (MutProb) = 0.2. 

• VNS: kmax = 9, α = 0.4. 

• GRASP: type = RG-variant, k = 1, bias = exponential bias. 

• GA: population size = 30, offspring size = 6, mutation probability (MutProb) = 0.02, 

parents selection = binary tournament. 

• PBIL: population size = 20, learning rate (LR) = 0.1, mutation probability (MutP) = 

0.02, mutation amount (MutA) = 0.1. 

• SS: population size = 40, RefSet size = 9 (best solutions number = 1, diverse solutions 

number = 8), solution combination method = uniform crossover, subset generation 

method = pairs of individuals. 

• ABC: colony size = 30, employed bees size = 6, onlooker bees size = 24, scout bees 

size = 1, scout bee is used each iteration of the algorithm, MutProb = 0.2. 

 

7.  Empirical results 

 

In this section the results obtained in the different experiments with the parallel hyper-

heuristic approach are analyzed. The quality of solutions has been also compared with other 

studies published in the literature. Before doing this, it is necessary to put properly in context 

how the quality of those results (or frequency plans) is measured. The quality of a solution 

provided by a metaheuristic depends on the value of its associated fitness. This fitness value 
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represents in the present case the interference cost associated with a specific frequency plan, 

which in real-world networks is very high and is the parameter to be minimized by any 

algorithm which works with this complex optimization problem. Furthermore, the two 

instances used here have important differences in their requirements and features (different 

interference matrices, different number of TRXs, number of BTSs, available frequencies, etc), 

because they cover significantly different cities which have different sizes and topologies, as 

seen in Figure 3. In this way, with these two instances an important range of GSM network 

features is covered. Therefore, according to the present study, if another instance (or several 

other instances) is given to the PPH system, it should be expected that the PHH should work 

well using the current setting, and no further calibration should be required to solve it. 
 

7.1. Synchronization number study 

 

As described in Section 6, all experiments have been performed in a 128-core cluster. The 

master process of the PHH distributes the metaheuristics included in the proposed approach 

and, after a certain period of time, collects the best result generated by each heuristic. Then, 

the hyper-heuristic will use all the solutions provided to synchronize the system according to 

the best solutions obtained until that moment (Algorithm 8). This synchronization process is 

very important, since it determines how many cores will run each heuristic and it also updates 

the initial solution which is used by the metaheuristics after each synchronization. Therefore, 

the good evolution of the metaheuristics included in the system will significantly depend on 

the good configuration in the number of synchronizations which the PHH will perform in 

each independent execution. Moreover, despite the communications between the master 

process and the metaheuristics has been optimized by minimizing the number and size of 

messages passed, it is important that the system is configured with an appropriate number of 

synchronizations. If the number of synchronizations is too high, the system will spend too 

much time performing this task, and the heuristics will not have enough time of execution to 

provide good solutions. On the contrary, if the number of synchronizations is too low, the 

heuristics will work with an inadequate configuration, and the results will not be as good as 

they should. For all those reasons, a complete set of experiments was performed using both 

instances of the problem –Denver and Seattle. 

 

Figure 4. Average result evolution for the different synchronization experiments performed 

using the Denver and the Seattle FAP instances 

 

Figure 4 summarizes the results obtained with these experiments. As can be observed, 

the heuristics are synchronized every minute, every 2 minutes, 5 minutes, 10 minutes and 15 

minutes. Since the time limit for every experiment is 30 minutes (see Section 6.2), this means 

that the experiments are performed making 29, 14, 5, 2 and 1 synchronizations respectively. If 

both graphics (Figure 4) are carefully examined, it can be seen that the best results are 

obtained when the PHH synchronizes the metaheuristics every 5 minutes. This is clearly 

observed in Figure 4b, where Seattle instance results are plotted. The row labeled as “Seattle” 

in Table 2 expresses the best and average results of 30 independent executions for three 

different time limits (2, 10 and 30 minutes). If the system is configured with a higher number 

of synchronizations, the results are also very good in the first minutes of the algorithm 

execution (as shown in Figure 4b), but they become poorer from that moment, because too 

much time is wasted in operations of synchronization, and the heuristics do not have enough 

time to make their solutions evolve properly. Therefore, synchronizing every 5 minutes is the 

best option to obtain optimal frequency plans when the PHH is used to solve the Seattle 

instance. 

With regard to the Denver instance (Figure 4.a), it can be seen that very good results 

are obtained by using different configurations, but results here depend on the time that the 

algorithm is running. Thus, for short periods of time (up to 10 minutes) the best frequency 
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plans are obtained when the system synchronizes the heuristics very frequently (every minute, 

2 minutes or 5 minutes). On the contrary, when the time limit gets bigger, very good results 

are obtained by synchronizing every 5, 10 and 15 minutes. In fact, if only the global results 

(obtained after the 30 minutes of execution) are considered, the best frequency plans are 

obtained by synchronizing every 10 minutes (with an average frequency cost of 84484.53 cost 

units). However, after analyzing the overall results, it can be concluded that the best 

frequency plans are obtained when the system is synchronized every 5 minutes, because very 

good results are obtained with this configuration in any period of time (the reduction in the 

interference cost is optimum if the whole execution time is considered, Figure 4a). 

 

Table 2. Empirical results of the PHH approach (with sync time = 5 min.) for 3 different time 

limits on both, the Seattle and the Denver instances. The best, mean ( x ) and the standard 

deviation (σ) values of 30 independent executions are presented 

 

All in all, after the result analysis, the best frequency plans are obtained for both 

instances, Denver and Seattle, when the parallel hyper-heuristic synchronizes the 

metaheuristics every 5 minutes. More synchronizations make the results poorer, because the 

metaheuristics do not have enough time to make the solutions improve (too much time is 

dedicated to the synchronization task), and with less synchronizations the metaheuristics work 

as separated islands for too long, obtaining worse results because of the lack of control from 

the hyper-heuristic. The final empirical results obtained with the best configuration found for 

both instances are shown in Table 2. 

 

7.2. Contribution of each algorithm study 

 

In this subsection the contribution performed for each single metaheuristic to the overall 

evolution of the system (Figure 5) is discussed. This is important because it proves that all the 

metaheuristics chosen contribute in the search of the optimal solution of the problem. Only 

the winner configuration analysis (synchronizations every 5 minutes) has been included. 

Moreover, the final results obtained by the PHH system and the results provided by each 

single metaheuristic included in the system (Figure 6) have been compared, and as can be 

seen, the PHH clearly improves the results of any of the metaheuristics. Moreover, studying 

those results it is possible to think that some metaheuristics are redundant in the system, but 

this is false because, as observed in Figure 5, all heuristics contribute to the global system 

evolution. 

 

Figure 5. Average metaheuristic contributions obtained when the best sync configuration is 

established to solve both problem instances 

 

Figure 6. Comparison between the results obtained by the different metaheuristics separately 

and the final results obtained by the PHH system 

 

However, the best frequency plans are usually provided by the population-based 

heuristics. In case of the Denver instance, the ABC algorithm is the method which makes the 

highest contribution to the system (in fact, ABC, SS and GA metaheuristics provides 

approximately the 60% of the best individuals). This is explained since the population based 

algorithms are the most stochastic ones, and each synchronization supplies these algorithms 

with a relevant greedy contribution which improves their operation. On the other hand, 

trajectory-based algorithms are greedier by themselves, so synchronizations have less impact 

in their evolution. Something similar occurs in case of the Seattle instance, in which the GA 

algorithm provides more than the 40% of best solutions (Figure 5), while the rest of heuristics 

share their contribution. In any case, the heuristics which are weak in some situations are very 

strong in others. Thus, although the trajectory-based heuristics obtain poorer contribution 
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results than the population-based, they work better than population-based algorithms during 

the first minutes of execution because they evolve faster, so their contribution is also very 

relevant to obtain high-quality frequency plans at the end of the process. In conclusion, the 

hyper-heuristic system uses a well-balanced set of heuristics, and all of them contribute to the 

search for FAP solutions with greatly reduced interference costs. 

 

7.3. Number of cores study 

 

This subsection studies the variation in the results when different numbers of cores are used. 

Experiments from 8 cores (the PHH includes 7 metaheuristic in addition to a master process) 

up to all the 128 cores available in the cluster have been performed. In this respect, it is 

important to clarify that when the system works with the minimum number of cores (8), each 

heuristic is assigned constantly to a different core. Therefore, in this particular case the hyper-

heuristic only performs a constant delivery of the 7 heuristics designed. Figure 7 summarizes 

the results produced in these experiments. 

 

Figure 7. Results obtained when the proposed approach is supported using different numbers 

of cores 

 

All the experiments have been performed using the best synchronization 

configuration and with the same experimental conditions explained in the previous sections. 

The results obtained using our two real-world instances are shown: Denver (Figure 7a) and 

Seattle (Figure 7b). As can be observed, the system obtains very good frequency plans even 

with a small number of cores. Thus, even with only 8 cores the results are quite good, 

although the result quality is clearly improved when the number of cores increases (especially 

if we focus on the Denver instance, in which the improvement is remarkable if the number of 

cores is high). Therefore, on the one hand it can be concluded that outhe system obtains very 

good results with a wide range of cores, and on the other hand, a gradual increase in the 

number of cores is translated into a steady improvement in the quality of the results, which is 

a remarkable indicator of the good design of the parallel approach. 

 

7.4. Comparative study with other authors 

 

Finally, in this subsection the results obtained in the present study are compared to the results 

obtained in other works published in the bibliography. Table 3 summarizes this comparison 

(in three slices of time). Our results are shown in the first row, while the following rows 

contain the results of other research studies. All the studies included in Table 3 solve the same 

problem instances with different heuristic methods. Related to this point, it should be stated 

that there are no comparisons for the Seattle instance since, to the authors’ best knowledge, 

this work represents the first study in which this instance has been tackled. For each study 

referred to in the table the best and average results (with the standard deviation) are given of 

30 independent executions in three different time limits (120, 600 and 1800 seconds). Only 

the last work in Table 3, (Grid EA by Luna et al. 2008a), uses a different time limit, because 

the algorithm developed in that study was executed in a grid environment taking into 

consideration an iteration limit instead of a time limit. Despite this fact, that study is relevant 

because it showed the best results published so far in the resolution of the Denver instance. As 

is shown, even those results, which were obtained after 1.5 hours of execution are improved 

upon by the present approach, but in only 30 minutes of execution (one third of the time). The 

rest of the approaches are compared by using the same time limits and conditions as in this 

study. 
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Table 3. Best, average and standard deviation results (for the Denver instance) obtained after 

30 independent executions using different approaches. 

 

As may be seen in Table 3, very different approaches have been used to solve the 

present FAP version. Some of them are heuristics which were included in the PHH system 

(Chaves-González et al. 2009a, Chaves-González et al. 2009b), and others are also parallel 

approaches (Chaves-González et al. 2009a, Luna et al. 2008a), however the present results 

improve all of them, in every time limit. Only the Grid GRASP approach (Chaves-González 

et al. 2009a) obtains a better solution than the PHH in 120 seconds, but its average result is 

worse than ours (87256.9 cost units versus 87100.2), and the standard deviation is quite high 

(381.2 versus 2309.2), so the best individual obtained in that time slice can only be 

considered as a peak result. In fact, the PHH system obtains better results than the Grid 

GRASP approach in the 600 and 1800 time limits. 

 

8.  Conclusions 

 

This article describes a new approach to tackle complex optimization problems. The present 

study was based on the resolution of a realistic frequency assignment problem. Both, the 

instances used to perform the experiments and the mathematical model adopted to deal with 

the problem were provided by the industry.  

The development of the proposed approach was divided into two main stages. The 

first stage studied, designed and adapted different and representative metaheuristics (Section 

4) to solve the optimization problem. Some relevant population-based heuristics (GA, SS, 

ABC and PBIL) and some very efficient trajectory-based heuristics (ILS, VNS and GRASP) 

were included. Those algorithms were also hybridized with a local search method (Section 

4.1) to improve their results. Then, after the rigorous parameter adjustment of the algorithms 

to solve the present problem, a parallel cooperative hyper-heuristic was designed to control all 

the lower level metaheuristics. It is important to remark here that, to the authors’ best 

knowledge, this is the first time that this approach (parallel metaheuristics within a hyper-

heuristic) has been used to solve a real-world problem (FAP). In fact, some of the 

metaheuristics included in the PHH have not been ever used to solve this problem, so the 

study and the development of those novel techniques to solve the real-world FAP can be 

considered also an important contribution of the present work. Furthermore, in order to obtain 

reliable data from the tests, a complete set of experiments was performed, taking information 

in different periods of time. The system has been evaluated every 2, 10 and 30 minutes to 

compare its results with other studies published in the literature. 30 independent executions 

have been also run for each experiment in order to obtain statistical results. Thus, after 

analyzing these data, summarized in Tables 2 and 3, it can be stated that the results here are 

quite reliable, because for all the experiments performed, very competitive frequency plans 

with very low standard deviations were obtained. 

Moreover, if the results are more carefully analyzed, some interesting conclusions can 

be reached. On the one hand, all heuristics contribute to the global system evolution (Figure 

5). Also, the proposed approach obtains very good results when it is run with different 

number of cores (Figure 7), improving the quality of the frequency plans when the number of 

cores is increased. Furthermore, the PHH approach obtains the best results when the 

metaheuristics are synchronized every 5 minutes (Figure 4). On the other hand, the latest 

related works have been examined to compare the results obtained in the present study with 

other recent and relevant studies (Table 3). 

Therefore, the most important contributions of the study can be summarized as 

follows: first, a new heuristic approach has been developed to solve a complex optimization 

problem: a realistic FAP with constraints and requirements taken from the industry; second, 

the results obtained with this approach represent very high quality frequency plans with much 

reduced interference costs; and finally, after a complete comparative study it can be stated 
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that the results obtained with this approach beat all the results published so far in the 

literature. 

As future lines of work, the authors are interested to use the approach to solve even 

larger FAP instances and to solve other important optimization problems. For example, other 

relevant problems from the telecommunication domain which will be considered are the ACP 

(Automatic Cell Planning) or the RND (Radio Network Design) problems. 
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Table 1. Works which use hybrid EAs to solve the MI-FAP 

 

Reference Optimization method Problem instance (size) 

(Alabau et al. 2002) Greedy, Tabu Search Owner (5700 TRXs) 

(Mabed et al. 2002) Tabu Search Owner (639 TRXs) 

(Matsui et al. 2003) Greedy Owner 

(Greff et al. 2004)  

(Idoumghar and Schott 2006) 
Markov Decision Proc. Owner (5700 TRXs) 

(Salcedo and Bousoño 2005) Neural Network Philadelphia 

(Colombo 2006) Greedy Generated (1667 TRXs) 

(Luna, Alba et al. 2007a) Greedy Owner (2612 TRXs) 

(Luna, Blum et al. 2007b) Greedy Owner (2612 TRXs) 

(Luna, Estébanez et al. 2008b) Greedy Owner (2612 TRXs) 
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Table 2. Empirical results of the PHH approach (with sync time = 5 min.) for 3 different time 

limits on both, the Seattle and the Denver instances. The best, mean ( x ) and the standard 

deviation (σ) values of 30 independent executions are presented 

 

 120 seconds 600 seconds 1800 seconds 

 Best x ± σ Best x ± σ Best x ± σ 

Seattle 925.44 1075.01±59.86 546.76 635.61±43.01 456.64 550.07±46.50 

Denver 86340.26 87100.20±381.16 84246.64 85167.94±382.86 83815.78 84527.43±404.72 
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Table 3. Best, average and standard deviation results (for the Denver instance) obtained after 

30 independent executions using different approaches.  

 
 120 seconds 600 seconds 1800 seconds 

 Best x ± σ Best x ± σ Best x ± σ 

PHH 86640.3 87100.2±381.2 84246.6 85167.9±382.9 83815.8 84527.4±404.7 

ACO (Luna, Alba et al. 

2007a) 
91140.0 93978.2±1165.9 89703.4 91726.4±1002.9 88345.9 90382.5±935.3 

EA (Luna, Alba et al. 

2007a) 
104247.7 108071.9±1723.4 100701.2 103535.9±1939.7 96490.5 99862.3±1553.1 

GRASP (Chaves, 

Hernando et al. 2009a) 
88857.4 91225.7±1197.2 87368.4 89369.6±1185.1 86908.4 88850.6±1075.2 

Grid GRASP (Chaves, 

Hernando et al. 2009a) 
85313.0 87256.9±2309.2 85313.0 86772.1±1701.0 85259.4 85855.3±686.9 

ACO (Luna, Estébanez et 

al. 2008b) 
90736.3 93439.5±1318.9 89946.3 92325.4±1092.8 89305.9 90649.9±727.5 

ssGA (Luna, Estébanez et 

al. 2008b) 
87477.3 89540.4±991.1 86755.7 87850.8±573.6 85720.3 86908.9±379.8 

SS (Luna, Estébanez et al. 

2008b) 
91216.7 94199.6±1172.3 91069.8 93953.9±1178.6 91069.8 93820.4±1192.3 

(1+2)EA (Luna, 

Estébanez et al. 2008b) 
87763.9 92294.0±1407.6 86064.8 89669.8±1164.8 85607.3 88574.3±1100.3 

LSHR (Luna, Estébanez 

et al. 2008b) 
88543.0 92061.7±585.3 88031.0 89430.9±704.2 87743.0 88550.3±497.0 

SS (Chaves et al. 2008b, 

2009b) 
86169.4 88692.7±1124.9 84570.6 86843.8±950.5 84234.5 85767.6±686.3 

DE (Chaves, Maximiano 

et al. 2008c) 
92145.8 95414.2±1080.4 89386.4 90587.2±682.3 87845.9 89116.8±563.8 

Grid EA (Luna, Nebro et 

al. 2008a) Results obtained in 1.5 hours: Best = 83,991.3, x ± σ = 84,936.3±375.8 

 

Page 26 of 40

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

Figure 1. Hyper-heuristic and heuristic search spaces 

 

Figure 2. General outline of the proposed approach. 

 

Figure 3. Topologies of the GSM instances used in the present study 

 

Figure 4. Average result evolution for the different synchronization experiments performed 

using the Denver and the Seattle FAP instances 

 

Figure 5. Average metaheuristic contributions obtained when the best sync configuration is 

established to solve both problem instances 

 

Figure 6. Comparison between the results obtained by the different metaheuristics separately 

and the final results obtained by the PHH system 

 

Figure 7. Results obtained when the proposed approach is supported using different numbers 

of cores 
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