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ARTICLE

Monotony Analysis and Sparse-Grid Integration for

nonlinear Chance Constrained Process Optimization

Abebe Geletu(a)∗, Armin Hoffmann(b), Michael Klöppel(a), Pu Li(a)

(a) Department of Simulation and Optimal Processes, Institute for Automation

and Systems Engineering,
(b) Department of Operations Research and Stochastic, Institute of Mathematics,

Ilmenau University of Technology, P.O. Box 10 05 65, 98684 Ilmenau, Germany
(December 2009)

The numerical solution of a nonlinear chance constrained optimization problem
poses a major challenge. The idea of back-mapping (Wendt et al. 2002) is a
viable approach for transforming chance constraints on output variables (with
unknown distribution) into chance constraints on uncertain input variables
(with known distribution) based on a monotony relation. Once transformation
of chance constraints has been accomplished, the resulting optimization prob-
lem can be solved by using a gradient-based algorithm. However, the compu-
tation of values and gradients of chance constraints and the objective function
involves the evaluation of multidimensional integrals which is computationally
very expensive. This study proposes an easy-to-use method to analyze mono-
tonic relations between constrained outputs and uncertain inputs. In addition,
sparse-grid integration techniques are used to reduce the computational time
decisively. Two examples from process optimization under uncertainty demon-
strate the performance of the proposed approach.

Keywords: chance constraints; nonlinear optimization; monotonicity;
sparse-grid techniques; chemical process optimization.

1. Introduction

1.1. Motivation

Many practical models from process engineering have uncertain model parameters.
Frequently, it is required to guarantee an optimal and robust performance under such
uncertainties. The optimization of some performance function under uncertainty is
most preferably accomplished through the use of stochastic optimization techniques
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2 Chance Constrained Nonlinear Process Optimization

(Prekopa 1995). The conventional way of solving stochastic optimization problems has
been by using expected (nominal) values for the uncertain parameters. Nevertheless, the
solutions obtained through such simplifications may not be robust. Therefore, stochastic
optimization methods are essential to consider the full effect of the uncertain parameters.

In most practical applications, constraint violations are unavoidable as a result of
unexpected and extreme events and measurement errors, etc. Therefore, a requirement
for strict (deterministic) satisfaction of feasibility may incur high costs of operating
the process. In such situations, it is reasonable to demand constraint satisfaction with
some degree of probability. This can be achieved by formulating a chance constrained
optimization problem (CCOPT). In chance constrained optimization, inequality con-
straints are expected to be satisfied by a certain pre-given probability level. Hence, this
approach is less conservative and allows some level of constraint violations. In practice,
chance constraints can be used to specify a guaranteed level of fulfilment of product
specifications, a guaranteed level of availability of products or outputs, safety conditions
and risk-aversion, etc. There are abundant real-life problems with chance constraints
widely studied and applied in chemical process engineering (Arellano-Garcia et al. 2007,
2008, 2009; Flemming et al. 2007; Henrion et al. 2001, 2003; Li 2007; Li et al. 2002;
Straub and Grossmann 1993; Wendet and Wozney 2002); in risk metrics (Rockafellar
and Uryasev 2000); in finance and economics (Charnes and Cooper 1959); in water
resource management (Prekopa 1995); in reliability based design optimization (Royset
and Polak 2004; Royset et al. 2006), to mention only a very few.

This paper considers a chance constrained stochastic optimization model of the form

(CCOPT ) min
u

[E(f1(x, u, ξ)) + γ · V ar(f2(x, u, ξ))] (1)

such that

g(x, u, ξ) = 0; (2)

Pr{xmin
i ≤ xi ≤ xmax

i } ≥ αi, i ∈ I; (3)

u ∈ U ; (4)

x ∈ X , ξ ∈ W. (5)

Here, x, u, ξ are the vectors of output variables, decision (control) variables and
uncertain (input) variables, respectively. The set X ⊂ IRn is an open and convex
set, while W ⊂ IRp is also an open convex set containing uncertain variables and
the set of control variables U ⊂ R

m is compact. It is assumed that the functions
f1, f2 : IRn × IRm × IRp → IR, g : IRn × IRm × IRp → IRn are at least one time
continuously differentiable functions and I = {1, . . . , n1}, |I| < n, where |I| stands for
the number of indices in I. The operators Pr(·), E(·) and V ar(·) represent probability,
expected value and variance, respectively, and γ ≥ 0 is a weighting factor.

Due to the randomness of ξ and the relation (2), for any given value of u,
the output variables x are also random. Hence, the constraint sets in (3),
{x ∈ R

n | xmin
i ≤ xi ≤ xmax

i }, i ∈ I, are random and are given in terms of their
probability measures, i.e., Pr{xmin

i ≤ xi ≤ xmax
i } ≥ αi, i ∈ I. These constraints

specify that individual constraints in equation (3) to be satisfied with separately given
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probability (reliability) levels αi, where αi ∈ (0, 1), i ∈ I. Such chance constraints are
called ”separate” (or single) chance constraints. In chemical process models, the chance
constraints (3), for instance, can specify the holding of minimum and maximum level of
the specifications for product xi the holding of allowed lower and upper volume levels
of a buffer-tank, etc.

Optimization problems in process engineering posses special structures, where mass- or
energy balance equations of the type g(x, u, ξ) = 0 are commonly available as equality
constraints. Frequently, these model equations are nonlinear and the (state) variables x
can only be represented implicitly in terms of u and ξ, as indicated by x(u, ξ). In general,
it is difficult to determine the distribution of the random output variables x directly. As
a result, the computation of the values and gradients of the chance constraints (3) poses
substantial difficulties in solving the CCOPT problem.

1.2. A review of methods for computation of chance constraints

To overcome the difficulties associated with the computation of chance constraints,
there are three major approaches (considering only non-heuristic approaches) in the
open literature: analytic approximation, approximate discretization and back-projection.

Analytic approximation techniques attempt to replace chance constraints with bounding
confidence regions which are usually easy to drive for normal distributions. Nermirovski
and Shapiro 2006 suggest convex approximation of chance constraints in order to
improve tractability. These considerations are mainly confined to chance constraints
whose defining functions are linear with respect to the uncertain variables. As a
result, chance constraints are replaced by quadratic constraints and the optimization
problem reduces to a robust optimization problem (see, for instance, Ben-Tal et al.
2009, Kropat et al. 2010, Özmen et al. 2010, Weber et al. 2010). These approaches
have the danger of either over or under estimation of chance constraints, leading to
conservative or unreliable approximation of chance constraints. Recently, Garnier et al.
2009 introduced linearization of chance constraints for the computation of derivatives
of chance constraints. But, the suggested technique is shown to work only when the
variance of the uncertain variables is very small.

The majority of discrete approximation techniques generate random samples for the
uncertain input variables through Monte Carlo methods and use averaged sums
of function values to approximate chance constraints. Scenario generation methods
(Califore and Campi 2005, Henrion et al. 2001) are those of such approaches. Despite
the fact that this approach is applicable irrespective of the type of distribution function
of the uncertain variables (Gaussian or non-Gaussian), the requirement of feasibility
of constraints for almost all possible realizations of the uncertain variables leads to
a conservative approach and a deterioration in the values of the objective function.
The consideration of very large number of scenarios requires also the solution of a
very large deterministic optimization problem which is computationally intractable. In
particular, scenario generation approaches are less favorable for nonlinear problems.
Variance reduction techniques like importance sampling, Latin hypercube sampling,
Hammersley sequence sampling (Diwekar and Kalagnanam 1997) may provide some
improvement over MC methods. Recently, QMC based sample average approximation
(Kookos 2003, Pagnoncelli et al. 2009, Wang and Ahmed 2008) have been used for the
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computation of chance constrained optimization problems. Quasi-Monte Carlo (QMC)
methods rely on the generation of uniformly distributed deterministic samples with
low-discrepancy properties. Thus, there are potential difficulties associated with sample
average approximation of chance constraints. On the one hand it requires very large
sample size to yield efficient estimates for the probability constraints. On the other hand,
the discrete approximations of the chance constraints may not be differentiable. Such
direct discretization of chance constraints, without considering the special mathematical
structures of the problem and the distribution function of the uncertain variables, can
lead to redundancy and unnecessary wastage of computational resources (Chen and
Merothra 2007, Novak and Ritter 1997, Schürer 2003).

The back-mapping (constraint transformation) was proposed by Wendt et al. 2002 for
the transformation of the chance constraints (3) from the space of output variables
into the space of uncertain input variables whose joint distribution is known. The
transformation of chance constraints is performed based on the assumption of the
existence of strict monotonic relations between a chance constrained variable xi, i ∈ I,
and some uncertain variable ξj. Such monotonic relations (probability-measure pre-
serving transformations) are mostly not proved, but frequently assumed or taken for
granted through an inspection made on the model under consideration (see, for instance,
Arellano-Garcia 2007, 2009; Flemming et al. 2007, Li et al. 2002, 2008; Wendt et al. 2002).

This paper follows the back-mapping approach. To use this approach, two major issues
need to be addressed for solving nonlinear chance constrained optimization problems.
First, given a nonlinear model, a strict monotonic relation between the constrained
output and an uncertain input variable should exist. Second, an efficient integration
approach is needed to compute values and gradients of chance constraints and objective
functions. First, this paper proposes an easy-to-use method to verify the monotonic
relations. This is based on the implicit function theorem. Second, the sparse-grid
integration technique is proposed to carry out computation of probability integrals, with
which the computation load can be significantly reduced in comparison with full-grid
integration or quasi-Monte Carlo techniques.

The rest of the paper is organized as follows. Section 2 presents our solution strategy for
CCOPT along with the idea of transformation of chance constraints using monotonicity
relations. Section 3 discusses how to determine the required monotonicity relations based
on the implicit-function theorem. Section 4 introduces sparse-grid techniques for the
computation of chance constraints and their gradients. Section 5 presents two case-studies
from process engineering, verifying the applicability of the monotony analysis and the
sparse-grid integration technique. The paper concludes with Section 6 with a summary
and an outlook for future research endeavors.

2. Solution Strategy for nonlinear CCOPT

The solution strategy for the chance constrained optimization problem (1) - (5) is based
on a sequential method with respect to the state equation, i.e., the state (ouput) variables
x will be eliminated with the help of the state (model) equations (2). It is assumed that
the state equations can be uniquely solved for all state variables. More precisely, we use
the following assumption.
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ASSUMPTION 2.1 The state equation g (x, u, ξ) = 0 has a unique solution x (u, ξ), for all
(u, ξ) in some open superset V of U ×R

n such that the implicit function (u, ξ) 7→ x (u, ξ)
and its partial derivatives (u, ξ) 7→ Duk

x (u, ξ) , k = 1, 2, ...,m are continuous on V . The
theoretical existence of such a function can be warranted by the global implicit function
theorem (see section 3).

Necessary for such a smooth solvability is the validity of the well-known condition

detDxg (x, u, ξ) 6= 0

for all triplets (x, u, ξ) satisfying (2), (4) and (5) and sufficient smoothness of g with
respect to (x, u, ξ), where Dxg denotes the derivative of g with respect to the vector x,

i.e., Dxg :=
(

∂
∂x1

g, ..., ∂
∂xn

g
)
.

First the functions of the objective are described in terms of the control u using the
implicit function (u, ξ) 7→ x (u, ξ):

F1 (u) + γF2 (u) := E (f1 (x (u, ξ) , u, ξ)) + γV ar (f2 (x (u, ξ) , u, ξ)) . (6)

Then with back-mapping the chance constraints are transformed by studying the non-
linear constraints. This requires monotony assumptions which are satisfied in a lot of
practical problems (see case studies in Section 5).

Definition 2.2 The output xi is monotonically related with the uncertain input
ξj on

[
xmin
i , xmax

i

]
if uniformly for arbitrary fixed control u ∈ U and input ξ̃ := (ξk) k 6=j,

the following two conditions are satisfied:

(1) for each output xi ∈
[
xmin
i , xmax

i

]
there exists an input ξj

(
xi, u, ξ̃

)
, defined by

(2), with ξ ∈ X ;
(2) xmin

i ≤ x′i < x′′i ≤ xmax
i implies on the whole interval

[
xmin
i , xmax

i

]

a) either ξj

(
x′i, u, ξ̃

)
< ξj

(
x′′i , u, ξ̃

)

b) or ξj

(
x′i, u, ξ̃

)
> ξj

(
x′′i , u, ξ̃

)
.

The monotonic relation in case (a) is denoted by ξj ↑ xi and it is said that ξj influences
xi positively. In case (b) it is denoted by ξj ↓ xi and is described as ξj influences xi
negatively. More formally the index j should be written as j(i). In subsequent discussions
this is suppressed and simply j is used instead of j(i).

Thus, the interval of outputs
[
xmin
i , xmax

i

]
can be back-mapped one-to-one either to

the interval of inputs
[
ξj

(
xmin
i , u, ξ̃

)
, ξj

(
xmax
i , u, ξ̃

)]
or to the interval of inputs

[
ξj

(
xmax
i , u, ξ̃

)
, ξj

(
xmin
i , u, ξ̃

)]
. Hence, using the strict monotony relation of xi with

ξj and the known joint density function φ of ξ, the probability that xi belongs to the
interval

[
xmin
i , xmax

i

]
can be written as:
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6 Chance Constrained Nonlinear Process Optimization

in case a)

Pr
{
xmin
i ≤ xi ≤ xmax

i

}
= Pr

{
ξj

(
xmin
i , u, ξ̃

)
≤ ξj ≤ ξj

(
xmax
i , u, ξ̃

)}

=

∫

R

. . .

∫

R

∫ ξj(xmax
i ,u,ξ̃)

ξj(xmin
i ,u,ξ̃)

φ (ξ) dξjd
(
ξ̃
)
=: hi(u). (7)

in case b)

Pr
{
xmin
i ≤ xi ≤ xmax

i

}
= Pr

{
ξj

(
xmax
i , u, ξ̃

)
≤ ξj ≤ ξj

(
xmin
i , u, ξ̃

)}

=

∫

R

. . .

∫

R

∫ ξj(xmin
i ,u,ξ̃)

ξj(xmax
i ,u,ξ̃)

φ (ξ) dξjd
(
ξ̃
)
=: hi(u). (8)

Assuming that such transformations exist for each chance constrained output variable
xi, i ∈ I, the resulting chance constraints are functions of u and are denoted by
hi(u), i ∈ I.

The chance constraints have now the form

hi (u) ≥ αi, i ∈ I.

Note that it is not necessary to compute the analytic expressions for ξj

(
xi, u, ξ̃

)

from the system (2). It is sufficient to know theoretically that such a smooth strictly
monotone function exists. Section 3 presents a simple monotony analysis based on the
implicit function theorem.

Now the chance constrained optimization is transformed to the following nonlinear opti-
mization problem (NLP)

(NLP ) min
u

{F1(u) + γF2(u)} (9)

such that

hi(u)− αi ≥ 0, i ∈ I, (10)

u ∈ U . (11)

The existence of a solution to this problem follows if its feasible set M := {u ∈ U | hi(u)−
αi ≥ 0, i ∈ I} is compact, which depends on the continuity of the functions hi, i ∈ I. The
latter can be shown to follow from the special form of hi, i ∈ I, in (7) and (8). The NLP
can be solved using IpOpt from Biegler and Wächter 2006 which implements an interior-
point method and is capable of handling infeasible starting points. Since the solver is
gradient oriented, for all functions, the function values and the first partial derivatives
with respect to the controls u should be computed. However, all these function are given

through the implicit expressions x (u, ξ) or x̃
(
xi, u, ξ̃

)
and ξj

(
xi, u, ξ̃

)
. According to (6),

the gradients of F1 and F2 are computed using the chain rule with the partial derivatives
Dux (u, ξ) of x (u, ξ) with respect to u. Interchanging the integration and differentiation
with respect to u is allowed because of the smoothness of f1 and f2, whenever the integrals
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with inner differentiation exist, which is; e.g., satisfied for the normal distribution. It
follows that

DuF1 (u) =

∫

Rp

[Dxf1 (x (u, ξ) , u, ξ)Dux (u, ξ) +Duf1 (x (u, ξ) , u, ξ)]φ (ξ) dξ.

For the functions of the objective the integration is done over the full dimension R
p.

For the chance constraints, because of variable upper and lower integration limits, the
Leibnitz rule yields

Duhi (u) =

∫

R

· · ·
∫

R

[φ (ξ)|ξj=ξj(xmax
i ,u,ξ̃)Duξj

(
xmax
i , u, ξ̃

)

− φ (ξ)|ξj=ξj(xmin
i ,u,ξ̃)Duξj

(
xmax
i , u, ξ̃

)]
dξ̃.

In this work, the computation of integrals is done by cubature formulas over sparse-grids
(see Section 4). The grid points and the weights are a priori computed and remain all

over the optimization the same. Furthermore, the determination of Duξj

(
xmax
i , u, ξ̃

)
and

Duξj

(
xmax
i , u, ξ̃

)
can be accomplished by the implicit differentiation formula. This re-

quires the solution of a set of nonlinear equations twice. Using a full-grid tensor-product
of one dimensional quadrature rule increases the computation time exorbitantly (expo-
nentially) with respect to the dimension of ξ. With sparse-grids integration techniques
the approach can be effectively applied for the solution of chance constrained optimiza-
tion problems. Section 4 gives a brief discussion on how sparse-grid integration techniques
can be used to compute chance constraints.

3. A Method to Determine Monotonic Relations

To find monotonically related outputs and inputs is not an easy task. If a guess is known
based on a practical knowledge of the process, then one can try to verify monotony
relations using methods of simulation. However, in most cases it is easier to prove
an algebraic sign than monotony relations by simulation (see Theorem 3.2 below).
This section demonstrates that it is enough to test for algebraic signs to facilitate
transformation of chance constraints.

The variables xi and ξj are related through the nonlinear equation g(x, u, ξ) = 0. This
indicates that each variable xi depends on the variable u and the uncertain variables
ξ1, . . . , ξp. Hence, a monotonicity relation of xi with ξj can be termed as a directional
monotonicity. Note also that the chance constraint on xi, Pr{xmin

i ≤ xi ≤ xmax
i } ≥ αi,

imposes a level of reliability for xi to lie in the interval [xmin
i , xmax

i ], still with some
probability for xi to lie outside of this interval. For this purpose, a global implicit-
function-theorem is needed to be used as a basis for monotonicity analysis between
the x′s and ξ′s in the equation g(x, u, ξ) = 0 for a given u. Global implicit function
theorems have been studied, for instance, in Rheinboldt 1969 and Sandberg 1981. In
particular, the global implicit function theorem given by Sandberg 1981 will be used here.

Suppose there are open and convex sets X ⊂ IRn,W ⊂ IRp such that xmin, xmax ∈ X and
the uncertain variables ξ are fromW. The transformation of chance constraints facilitates
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8 Chance Constrained Nonlinear Process Optimization

the calculation of h(u) and Duh(u) for each fixed u. Thus, the relation between x′s and
ξ′s should hold true for each fixed u ∈ U .

Theorem 3.1 (Global Implicit Function Theorem, Sandberg 1981) Suppose u ∈ U be
given and the function g(·, u, ·) : X×W → IR is continuously differentiable. The following
four conditions hold true

• (a) for each ξ0 ∈ W there is exactly one x0 ∈ X such that g(x0, u, ξ0) = 0;

• (b) for each (x0, ξ0) ∈ X × W, there are neighborhoods Nx0
and Nξ0 of x0 and ξ0,

respectively; and a continuous function ϕu : Nξ0 → Nx0
such that, for each ξ ∈ Nξ0,

x = ϕu(ξ) and (ϕu(ξ), u, ξ) is a unique solution of g(x, u, ξ) = 0;

• (c) Dξg has a full rank for each (x, ξ) ∈ X ×W with g(x, u, ξ) = 0;

• (d) det (Dxg) 6= 0, for each (x, ξ) ∈ X ×W with g(x, u, ξ) = 0;

if and only if there is a unique continuously differentiable function ϕu : W → X such
that g(ϕu(ξ), u, ξ) = 0 for all ξ ∈ W.

In this theorem, the expressions Dxg and Dξg represent the Jacobian matrices of g
with respect to x and ξ, respectively, and det(·) represents the determinant operator on
matrices. The global implicit function theorem says that: (c) and (d) are necessary for
the existence of the above global implicit function ϕu. In general, it is not simple to check
(a) and (b) to guarantee the existence of ϕu. However, if g(x, u, ξ) = 0 can be written as

x1 = F1(u, ξ)

... (12)

xk+1 = Fk(x1, x2, . . . , xk, u, ξ),

then (a) and (b) are trivially satisfied. Therefore, the considerations here are confined
to checking conditions (c) and (d). The conditions (a) - (d) hold true in many model
problems of chemical process engineering. In fact, in the related literature, these
regularity conditions are taken for granted either implicitly or explicitly (see for instance
Arellano-Garcia and Wozny 2009, Hong et al. 2006, Li et al. 2008, Wendt et al. 2002,
etc.). Whenever (c) and (d) are satisfied, in this paper, then it is said that the function
g is regular. Moreover, if g is continuously partially differentiable with respect to u, then
the function ϕu(ξ) is also continuously differentiable with respect to u.

The importance of the above theorem is to ensure a global functional relation between
the x′s and ξ′s, for a given u. After insuring the conditions (a) - (d) of the global implicit
function theorem, then follows an investigation of monotonicity relations between a single
coordinate xi of x and ξj of ξ. Thus, the (local) implicit function theorem implies, for
ξ ∈ W and fixed u ∈ U , that

dg(ϕu(ξ), u, ξ)

dξj
=

∂g(ϕu(ξ), u, ξ)

∂xi

∂xi
∂ξj

+

n∑

k = 1
k 6= i

∂g(ϕu(ξ), u, ξ)

∂xk

∂xk
∂ξj

+
∂g(ϕu(ξ), u, ξ)

∂ξj
= 0,(13)

where the column vectors dg(ϕu(ξ),u,ξ)
dξj

denote the total partial derivative and ∂g(ϕu(ξ),u,ξ)
∂ξj

the partial derivative with respect to ξj. Since the regularity of Dxg(ϕu(ξ), u, ξ) is given
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for all ξ ∈ W and u ∈ U with g(x, u, ξ) = 0, the linear system of (adjoint) equations

η⊤
∂g(ϕu(ξ), u, ξ)

∂xk
= δki, k = 1, . . . , n, (14)

has a unique C1−solution ηu(ξ) on W and u ∈ U ; where δki = 1, for k = i, and δki = 0,
otherwise. Multiplying both sides of (13) by ηu(ξ)

⊤ we get that

∂xi
∂ξj

= −ηu(ξ)
⊤∂g(ϕu(ξ), u, ξ)

∂ξj
for ξ ∈ W, u ∈ U

which yields necessary and sufficient conditions for strict monotonicity of xi with respect
to ξj . Hence, we have the following theorem.

Theorem 3.2 Suppose the assumptions for the global implicit function theorem hold
true. Then xi is globally monotonically related to ξj if either

• (a) ξj ↑ xi, i.e.,

ηu(ξ)
⊤ ∂g(ϕu(ξ), u, ξ)

∂ξj
< 0, ξ ∈ W, u ∈ U ;

or

• (b) ξj ↓ xi, i.e.,

ηu(ξ)
⊤ ∂g(ϕu(ξ), u, ξ)

∂ξj
> 0, ξ ∈ W, u ∈ U .

In general, it is only needed to solve the linear equations (14) to determine η. Then the
type of monotony depends on the algebraic sign of the scalar product

η⊤
(

∂g

∂ξj

)
.

The intention here is not to determine all monotonic pairs of variables xi and ξj . This a
combinatorial task, specially for a very large system g(x, u, ξ) = 0. The major interest
here is to monotonically relate a chance constrained variable xi with some uncertain
variable ξj to facilitate constraint transformations.

It needs to be remarked this presented monotonicity analysis is mainly applicable to small
or medium-scale problems. Even so, sometimes monotonicity can be also obtained by
considering only a part of a large system of nonlinear model equations (see, for instance,
Section 5.2). Furthermore, this approach of testing monotonicity might face difficulties if

it happens that η⊤
(

∂g
∂ξj

)
= 0. This means that, a global monotonicity relation between xi

and ξj, as given in Theorem 3.2 above, is not available. In such a case, either monotonicity
must be investigated on subsets or it may be the cases that xi is independent of ξj.
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4. Computation of Chance Constraints using Sparse-Grid Techniques

The computation of the values and gradients of chance constraints and objective function
requires the evaluation of multidimensional integrals. Traditionally multidimensional
probability integrals are computed using Quasi-Monte-Carlo (QMC) methods. The
QMC methods rely on the generation of low-discrepancy integration-points that are
uniformly distributed in a bounded domain of integration. Thus, these methods require
very large number of integration nodes which result in a very large number of function
evaluation and lead to expensive CPU time (see Chen and Merothra 2007, Heiss and
Winschel 2006, Gerstner and Griebel 1998, Schürer 2003). The recently introduced
QMC based sample average approximation (SAA) techniques for the computation of
chance constraints (cf. Kookos 2003, Pagnoncelli et al. 2009, Wang and Ahmed 2008,
Royset and Polak 2004) not only use large sample size but also result in approximation
of chance constraints which can be non-differentiable.

On the other hand, deterministic integration techniques for chance constraints such
as orthogonal collocation (Arellano-Garcia and Wozny 2009) or recursive integration
(Prekopa 1995) used by Arellano-Garcia 2007, Flemming et al. 2007, Li et al. 2008,
lead to the full-grid integration. In full-grid techniques the number of integration nodes
grows exponentially with the dimension of the uncertain variables. These techniques
incur redundant computations (Mysovkikh 1968) and are known to be ineffective for
integrals of higher dimensions, causing the curse of dimensions(Novak and Ritter 1997).

In 1963 Smolyak proposed a sparse-grid integration technique to overcome the curse of
dimension. The sparse-grid integration technique (Bungartz and Griebel 2004, Gerstner
and Griebel 1998) uses a skillful combination of one-dimensional quadrature rules to
generate a sparse-grid cubature rule for higher dimensions. Usually, the Gauss-Kronord,
Kronord-Patterson, Clenshaw-Kurtis or Gauss-Hermite quadrature rules, which are the
most efficient quadrature rules in practice, are used as the underlying rules to construct
integration nodes and weights. Since the probability integrals considered here are on un-
bounded domains, it is necessary to use a convenient sparse-grid technique for a higher
dimensional integrals with a Gaussian weight function. Therefore, the computation of
values and gradients of chance constraints was accomplished by an extensions of the
sparse-grid integration techniques of Genz and Keister 1996. This cubature rule is con-
structed by a successive (Kronord like) extension of the Gauss-Hermite quadrature rule
to higher dimensions. This sparse-grid technique yields good results even when the values
of the integrands are given approximately, which is a conducive property for the inte-
gral here, since integrands are given implicitly through the solution of a set of nonlinear
equations.
In general, the sparse-grid integration technique requires the integration weight func-

tion to be a product of one-dimensional weight functions. In our case, this can be achieved
by the decorrelation of the normally distributed random variables ξ.
Section 4.1. discusses the transformation (decorrelation) of the normally distributed

random variables ξ into standard normal distributed random variables. As a result, the
integration weight function becomes a product of one-dimensional weight (probability
density) functions. Accordingly, through a variable transformation, the integrals for the
objective function and constraints are transformed into integrals having product weight
functions. Section 4.2. presents the sparse-grid integration technique and briefly discusses
its most salient features that make it valuable in the computation of probability integrals.
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4.1. Decorrelation and variable transformation

For uncertain input variables ξ with normal distribution the probability density function
is

φ(ξ) =
1

(2 π)p/2 |Σ|1/2
e−

1

2
(ξ−µ)⊤Σ−1(ξ−µ),

with expectation µ and covariance matrix Σ with determinant |Σ| > 0. Using the
Cholesky decomposition Σ = LL⊤, where L is a lower triangular matrix, the transforma-
tion z = L−1 (ξ − µ) defines the random variables z with a standard normal distribution.
Define

zmax
j = e⊤j L

−1
(
(ξ1, . . . , ξj−1, ξj(u, x

max
i , ξ̃), ξj+1, . . . , ξp)

⊤ − µ
)
, (15)

zmin
j = e⊤j L

−1
(
(ξ1, . . . , ξj−1, ξj(u, x

min
i , ξ̃), ξj+1, . . . , ξp)

⊤ − µ
)
, (16)

where ej is the j − th unit vector in R
p. Furthermore, in the expressions (15) and (16),

the components of the vector ξ̃ ⊤ = (ξ1, . . . , ξj−1, ξj+1, . . . , ξp) can be written in terms of
z by using ξk = e⊤k Lz + µk, k = 1, . . . , j − 1, j + 1, . . . , p.

Recalling the integral formulation (7) and (8) of the chance constraints

hi(u) =

∫ +∞

−∞
. . .

∫ +∞

−∞

∫ ξj(xmax
i ,u,ξ̃)

ξj(xmin
i ,u,ξ̃)

φ(ξ1, . . . , ξp)dξjdξ̃, i ∈ I

and using the above variable transformation, it follows that

hi(u) =

∫ +∞

−∞
. . .

∫ +∞

−∞

1
√
2π

p−1 e
− 1

2
z̃⊤z̃

(∫ zmax
j

zmin
j

1√
2π

e−
z2
j

2 dzj

)
dz̃, i ∈ I, (17)

where z̃⊤ = (z1, . . . , zj−1, zj+1, . . . , zp). The one-dimensional integral
∫ zmax

j

zmin
j

1√
2π

e−
z2
j

2 dzj

can be computed by using a library function for standard normal distributions. Moreover,
the gradient of the chance constraints is given by

Duhi(u) =

∫ ∞

−∞
. . .

∫ ∞

−∞

1√
2π

p e
− 1

2
z̃⊤z̃
(
e−

1

2(z
max
j )

2

Duz
max
j − e−

1

2(z
min
j )

2

Duz
min
j

)
dz̃.

(18)
Therefore, to determine the values hi(u), Duhi(u), i ∈ I for a fixed u, it is needed
to compute multidimensional integrals on R

p−1 with the Gaussian weight function
WRp−1 : Rp−1 → R such that WRp−1(z̃) = e−

1

2
z̃⊤z̃.

In addition, the values F1(u), F2(u) and gradients DuF1(u), DuF2(u) also require the
computation of the multidimensional integrals. Using the variable transformation intro-
duced above, these require the computation of a set of multidimensional integrals of the
form

E[f(u, ·)] =
∫

Rp

f(u, ξ)φ(ξ)dξ =
1√
2π

p

∫

Rp

f(u, z)e−
1

2
z⊤z dz (19)

Page 11 of 32

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

September 24, 2010 16:46 Engineering Optimization MonoSparseCCOPT-R2

12 Chance Constrained Nonlinear Process Optimization

for each fixed u, where in this case the integration weight function WRp : Rp → R is given
by WRp(z) = e−

1

2
z⊤z = Πp

j=1 exp
1

2
z2
j .

4.2. Sparse-grid integration techniques for probability integrals

Now, referring to (17), (18) and (19), the integrals have the general form

E[f ] =

∫

Ω
f(z)W (z)dz,

where Ω ⊂ R
p and W : Rp → R is a weight function. For these integrals the domain of

integration Ω = Πp
j=1Ωj and the weight function W (z) = Πp

j=1Wj(zj) satisfy

Ω1 = Ω2 = . . . = Ωp and W1 ≡ . . . ≡ Wp

which are basic assumptions in sparse-grid techniques. Suppose there is a one-dimensional
underlying quadrature rule on each of the sets Ωj ⊂ R, j = 1, . . . , p with different levels
of accuracy or precision†. Since all these sets are the same, the index j can be dropped
and a sequence of sets of quadrature nodes (grid points) X(i),X(i+1), . . . is considered,
such that X(i) ⊂ X(i+1), i = 1, 2, . . . A multi-dimensional cubature rule constructed
in this way is known to have a nested or embedded sequence of one-dimensional
quadratures. That is, there is a sequence Q(i),Q(i+1), . . . of one-dimensional quadrature
rules, on each of the sets Ωj ⊂ R with non-decreasing level of precision N (i) with

N (i) ≤ N (i+1), i = 1, 2, . . .. Usually, the underlying one-dimensional quadrature nodes
are constructed based on the Gauss-Kronord, Kronord-Patterson and Gauss-Hermite
rules, which are the most efficient quadrature rules in practice.

Now define a multi-index i = (i1, i2, . . . , ip) ∈ N
p and its corresponding norm ‖i‖ =

i1 + i2 + . . .+ ip.

Definition 4.1 (Tensor-Product Sparse-Grid Cubature Technique (Bungartz and
Griebel 2004, Gerstner and Griebel 1998, Smolyak 1963)) The Smolyak or tensor-product
sparse-grid cubature rule, with accuracy l, for approximation of an p-dimensional integral
is given by

A(l, p)[f ] =
∑

l+1≤‖i‖≤p+l

(−1)l+p−‖i‖
(

p− 1
‖i‖ − l − 1

)(
Q(i1) ⊗ . . .⊗Q(ip)

)
[f ]; (20)

where i = (i1, i2, . . . , ip) and

(
Q(i1) ⊗ . . .⊗Q(ip)

)
[f ] =

N (i1)∑

ki1=1

N (i2)∑

ki2=1

. . .
N (ip)∑

kip=1

(
wki1

· wki2
· . . . · wkip

)
f(zki1

, zki2
, . . . , zkip

).

By definition Q(0)
j [·] = 0. The sets of integration nodes X(is) =

{
zkis

| kis = 1, . . . N (is)
}

and their corresponding weights wkis
, kis = 1, . . . N (is), are obtained from the set, say

†The level of accuracy or precision of a quadrature scheme is equal to the number of nodes used
for the approximation of integrals.
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Ωj , and the weight function Wj(·) based on the underlying quadrature rule. For example,
if Ω ⊂ R

3, p = 3, then the cubature scheme (20) with level of precision l = 5 will have
the following tensor-product as one of its terms

(
Q(1) ⊗Q(3) ⊗Q(2)

)
[f ] =

N (1)∑

ki1=1

N (3)∑

ki3=1

N (2)∑

ki2=1

(
wki1

· wki3
· wki2

)
f(zki1

, zki3
, zki2

)

with the multi-index i = (1, 3, 2) such that 1 + 5 ≤ ‖i‖ = 1 + 3 + 2 ≤ 3 + 5‡. Hence,
the terms of (20) are linear combinations of tensor-products of one-dimensional grids of
lower to higher levels of precisions§.

Instead of (20), the full-grid technique, for approximate the integral E[f ], takes the form

Q[f ] = (Q1⊗Q2⊗. . .⊗Qp)[f ] =
N1∑

k1=1

N2∑

k2=1

. . .

Np∑

kp=1

(
w

(1)
k1

· . . . · w(p)
kp

)
f
(
z
(1)
k1

, z
(2)
k2

, . . . , z
(p)
kp

)
.

(21)
The approximation of E[f ] by using the sparse-grid cubature rule A(l, p)[f ] has the
following properties:

• if the function f is polynomial with respect to z, then the approximation can be made
to be exact by using appropriate number of grid points; i.e., E[f ] = A(l, p)[f ] (see
Barthelmann et. al 2000, Heiss and Winschel 2006, Novak and Ritter 1999, Petras
2003). This is known as polynomial exactness.

• A theoretical error-analysis for the sparse-grid approximation of integrals has been
already done by Wasilkowski and Woźniakowski 1995 (see also Bungartz and Griebel
2004, Gerstner and Griebel 1998) for bounded integration domains Ω; i.e., Ω = [a, b]p;
so that

|E[f ]−A(l, p)[f ]| = O
(
2−l r · l(p−1)·(r+1)

)
(22)

for a function f with smoothness of degree r; i.e., f ∈ Cr
p. Theoretical error analysis

can be done by transforming the integral on Ω = R
p to an integral on a bounded

domain Ω = [a, b]p. (see Chen and Mehrotra 2007 for such a transformation).
• The number of grid-points in the formula (20) is equal to the cardinality of the set

X (l, p) :=
⋃

l+1≤‖i‖≤p+l

(
X(i1) ×X(i2) × . . . ×X(i2)

)
(23)

which, for a fixed level of precision l and embedded one-dimensional quadrature rules,
is given by (see Novak and Ritter 1999)

|(X (l, p))| ≈ (2p)l

l!
.

‡For a more accessible discussion on sparse-grid techniques see Heiss and Winschel 2006.
§The level of precision of a quadrature scheme is equal to the number of nodes used for the
approximation of integrals.
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14 Chance Constrained Nonlinear Process Optimization

This means that the number of integration nodes in (20) grows only polynomially with
respect to the dimension p of the uncertain variables.

In contrast, the number of integration nodes in the full-grid integration technique
(21) depends exponentially on the dimension of the uncertain variables z. That is, the
use of all the N1 × N2 × . . . × Np grid points leads to a full-grid integration rule. If
N1 = N2 = . . . = Np =: N , then there are Np integration nodes in the full-grid. This
implies function evaluation grows exponentially with the dimension p.

Summarizing, sparse-gird techniques provide the following advantages:

• a few integration nodes are enough to yield a good approximation of integrals, thus,
saving CPU time;

• the construction of the integration nodes and weights is done using the weight function
W (·) and the integration domain Ω, independent of the function to be integrated. Thus,
grid-points and weights can be computed only once and used repeatedly;

• the multivariate probability density function can be used as the integration weight
function;

• functions which are polynomial with respect to the uncertain variable can be integrated
exactly.

4.3. A comparison between full and sparse grid

To show the efficiency of the sparse-grid techniques the integral

∫

Rn

1√
2π

n

(
n∑

i=1

xi

)
e−

x⊤x

2 dx (24)

is evaluated using full- and sparse-grid methods with polynomial exactness equal to
9 and for the dimension n of the integral ranging between 1 and 20. The number of
necessary grid points depending on the integral dimension n is displayed in Figure 1.
Observe that, the number of grid points for the sparse- and full-grid points are almost
equal for n ≤ 3.

The integral (24) can be evaluated analytically and it is equal to zero. Both sparse- and
full-grid method result in values which do not differ more than machine epsilon from the
analytical solution. Their computation time is shown in Figure 2. It can be seen that
the computation time for the full-grid method grows almost exponentially as a function
of the dimension n of the integral, while this time for the sparse-grid technique remains
almost constant. In addition, it can be seen that the computation time is almost the
same for both cases, if the dimension if the integrals is low. In general, the sparse-grid
method performs better for n > 3.
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Figure 1. Number of grid points versus dimension

Figure 2. Computation time for integral (24)

5. Case Studies

5.1. Variance Minimization under Chance Constraints

In the CSTR (continuously stirred tank reactor) model Figure 3, the objective is to
choose values for the design parameters that guarantee minimum fluctuation (variation)
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Figure 3. An Isothermal CSTR

of the production rate RB of species B from the set-point RB = 60 mol/min. Uncertain
variables are assumed to be kinetic parameters of the chemical reactions and the inflow
concentration.

As shown in Figure 3, the process involves a first order sequential reaction
A −→ B −→ C (see Kallagnaham and Diwekar 1997). The variables are listed as follows:

• F - feed flow rate;

• CAi, CBi - inflow concentrations of the species A and B, respectively;
• Ti - inflow temperature;

• Q - heat from the CSTR;

• V - bulk volume of the mixture in the CSTR;

• T - mixture temperature in the CSTR;

• CA, CB - concentrations of A and B in the mixture, respectively.

Furthermore, the kinetics of the reaction process is based on the following parameters
for A and B, respectively:

• −rA, −rB rates of consumption;

• EA, EB activation energies;
• HRA, HRB molar-heat constants (independent of temperature);

• k0A, k
0
B pre-exponential Arrhenius constants;

• ρ, CP density and specific heat constants.

In the reaction process, the rate of production of species B from species A is expected
to have a set-point value of at least RB = rBV = 60 moles/minutes. The governing
equations for the production of species B in the CSTR are steady state equations. The
uncertain variables are supposed to have a known (joint) probability distribution. Hence,
the problem can be formulated as a chance constrained nonlinear optimization problem
to minimize the variance of RB.
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min V ar(RB)

such that

Q− FρCp (T − Ti)− V (rAHRA + rBHRB) = 0,

CA

(
1 + k0A exp(−EA/RT ) τ

)
− CAi

= 0,

CB

(
1 + k0B exp(−EB/RT ) τ

)
− CBi

− k0A exp(−EA/RT ) τ CA = 0, (25)

−rA − k0A exp(−EA/RT )CA = 0,

−rB − k0B exp(−EB/RT )CB + k0A exp(−EA/RT )CA = 0,

RB − rBV = 0,

P r{RB ≥ 60} ≥ 0.9.

where

• x = (CA, CB , rA, rB , RB , T ) is the vector of state variables;

• ξ =
(
CAi

, CBi
, Ti, k

0
A, k

0
B

)
is the vector of uncertain input variables with a joint normal

distribution;

• u = (Q,V, F ) is the vector of control variables in some non-negative bounded intervals;

• τ = V/F represents the average residence time of each species in the reactor.

The chance constraint Pr{RB ≥ 60} ≥ 0.9 requires the process to produce species B
at a rate of at least 60 mol/min with a reliability level of α = 90% and at a minimum
variance. Putting all equality constraints into a system of equations g(x, u, ξ) = 0, the
Jacobian of g with respect to x is

Dxg =




0 0 − V HRA − V HRB 0 − FρCp

1 + k0A exp(−EA/RT ) τ 0 0 0 0 α
−k0A exp(−EA/RT ) τ 1 + k0B exp(−EB/RT ) τ 0 0 0 δ
−k0A exp(−EA/RT ) 0 −1 0 0 β
k0A exp(−EA/RT ) −k0B exp(−EB/RT ) 0 −1 0 γ

0 0 0 −V 1 0




;

with

α =
EACA

RT 2

[
k0A exp(−EA/RT )

]
τ, β = −EACA

RT 2

[
k0A exp(−EA/RT )

]
,

δ =
EBCB

RT 2

[
k0B exp(−EB/RT )

]
τ − EACA

RT 2

[
k0A exp(−EA/RT )

]
τ,

γ = −EBCB

RT 2

[
k0B exp(−EB/RT )

]
+

EACA

RT 2

[
k0A exp(−EA/RT )

]
,

and this matrix is invertible, for each k0A, k
0
B ≥ 0 and FρCP 6= 0. The Jacobian with
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Table 1. Monotonic pairs of state and
uncertain variables

CAi CBi Ti k0

A k0

B

CA ↑ 0 ↓ ↓ 0
CB ↑ ↑ 0 ↑ ↓

rA ↓ 0 ↓ ↓ 0
rB ↑ ↓ ↓ ↓ ↓

RB ↑ ↓ ↓ ↓ ↓

T ↑ ↑ ↑ ↑ ↑

respect to the uncertain variables ξ will be

Dξg =




0 0 FρCp 0 0
−1 0 0 CA exp(−EA/RT ) τ 0
0 −1 0 −CA exp(−EA/RT ) τ CB exp(−EB/RT ) τ
0 0 0 −CA exp(−EA/RT ) 0
0 0 0 CA exp(−EA/RT ) −CB exp(−EB/RT )
0 0 0 0 0




.

Assuming that FρCP 6= 0, rB 6= 0, CA 6= 0 and CB 6= 0, the matrix Dξg has full
rank. Using symbolic computations, as explained in Section 3, the monotonicity relations
among state and uncertain variables are summarized in Table 1. The table provides a
complete list of monotonic pairs of state and uncertain variables. The upward arrows
↑ indicates that a state variable increases when the corresponding uncertain variables
increases; conversely, a down arrow ↓ indicates that a state variable decreases as the
corresponding uncertain variable increases. Nevertheless, for the transformation of the
chance constraint Pr{RB ≥ 60} ≥ 0.9, it is enough to use the relation RB ↑ CAi

. This
implies that

Pr{RB ≥ Rmin
B } = Pr{CA ≥ Cmin

A } =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

Cmin
A

φ(ξ)dξ.

Our numerical experiment uses the correlation matrix R, the mean and variance of
the uncertain variable as given in Table 2. The numerical computations requires the
evaluation of a set of integrals of dimension 5. These integrals are computed with a
reasonable number of pre-computed grid-points based the cubature technique of Genz
and Keister 1996. Table 3 gives the data used for the numerical experiments and CPU
time for both sparse- and full-grid integration techniques. For this example (also for the
case-study in Section 5.2) full- and sparse-grid integration techniques are constructed
such that the numerical error is |E[f ] − A(l, p)[f ]| < 1e − 3 for a given function f .
Note also that the computation of the integrals involves the solution of a large system
of nonlinear equations to determine the implicitly defined variables. Therefore, most of
the computational effort goes to the solution of the nonlinear equations. In particular,
when using the sparse-grid technique, at each step of the optimization algorithm, it is
required to solve a set of 6× 993 nonlinear equations (for variance) and a set of 6× 441
nonlinear equations (for chance constraints). Table 4 shows the optimization results for
both the sparse- and full-grid techniques.
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R =




1.0 0.1 0.1 0.0 0.0
0.1 1.0 −0.8 0.0 0.0
0.1 −0.8 1.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 1.0




Table 2. Mean and variance of the
uncertain variables in the CSTR
model

Uncertain variable Ti CAi
CBi

k0A k0B
µ 300.0 3118.0 342.0 8.4 ∗ 105 7.6 ∗ 104
σ 1.0 155.9 17.1 100.0 100.0.

.

Table 3. Data for the chance constrained optimization of the CSTR
Sparse-grid Full-grid

Reliability level, i.e., α 0.9 0.9
Number of integration grid points 993 (variance), 441 (constraint) 7776 (variance), 1269 (constraint)
Overall computation time 4s 34s

Table 4. CSTR optimization results using sparse- and full-grid methods
Q∗ V ∗ F ∗ V ar(RB)

Sparse-grid method −1.71e + 06 0.212277 0.0471224 12.1428
Full-grid method −1.71e + 06 0.212398 0.0471057 12.1297

Figure 4. Variance of uncertainties vs. optimal objection values

Figure 4 shows how the variance of the rate of production (RB) of species B varies when
each of the uncertainties are multiplied by an identical factor (horizontal axis). It is easy
to see that when the variance of the input uncertainties is increased, then the variance
of the output will increase. This implies that higher uncertainties in the inputs result in
higher uncertainties in the output.
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20 Chance Constrained Nonlinear Process Optimization

Figure 5. A distillation column

5.2. A Nonlinear Chance Constrained Model for a Distillation

Column

The second example considers a chance constrained optimization of a distillation
column with 20 separation stages (trays); i.e., j = 1, . . . , 20 as shown in Figure 5. The
numbering of the trays begins with the condenser as tray 1 and ends with the base as
tray N = 20. A mixture of methanol and water is to be separated. The mixture is fed
to the column at the tray number j = 14. The distillation process is highly influenced
by a random variation of the feed and its concentration. Random variations can occur
due to mixture supply variations. For instance, variations in mixture concentrations
can happen when mixtures are supplied by different vendors. As a result there is some
random variation in the feed concentration x1,F , feed temperature TF and the feed flow
F . In this consideration all the 20 separation stages are supposed to have the same
tray efficiency η. ‖ In practice, the value of η is determined experimentally; hence, η
is uncertain in nature. Consequently, the variables η, F, TF , x1,F can be considered as
uncertain input variables denoted by ξ⊤ = (η, F, TF , x1,F ). In addition, these uncertain
input variables are assumed to have a normal distribution with a given correlation matrix.

Products of the distillation process are collected at D and L1. Uncertainties in the
feed flow will propagate through the distillation process and will have an impact on
the products (outputs). In the closed-loop framework, the output variables x1,1 and D
and the amount of energy P , required for the distillation process, are uncertain. This

‖It is also possible to consider all 20 separation stages each with different tray efficiency ratios.
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problem was also considered by Flemming et al. 2007 with a closed-loop optimization
under uncertainty.

Each distillation stage results in a set of nonlinear equilibrium equations which connect
the input and output variables at the final stage. The model equations g(x, u, ξ) = 0
for the above distillation column are well known from the literature (see Flemming
et al. 2007). Hence, the discussion here concentrates only on the chance constrained
optimization of the process.

State variables in the Model equation

• D - the flow amount of the product collected from the accumulator

• xi,j - the concentration of component i in the liquid at stage j

• yi,j - the concentration of component i in the gas at stage j

• Lj, Vj - amount of liquid and vapor leaving stage j, resp.

• Lj−1, Vj+1 - amount of liquid and vapor entering stage j, resp.

• HL
j , H

V
j - liquid and vapor enthalpy, resp., at stage j

• hLi,j , h
V
i,j - liquid and vapor enthalpy, resp., of component i at stage j

• P - flow of the reboiler

The temperature TN in the reboiler and the reflux ratio r are control variables u =
(TN , r). It means that the setpoints of two control loops will be optimized (see Flemming
et al. 2007). All other variables are aggregated into the vector x of state variables. The
objective is to keep the temperature TN in the reboiler at a minimum, so that the energy
consumption will be minimized, and at the same time product specifications are satisfied
up to some pre-given reliability levels. Furthermore, bounds on the boiler temperature
TN are put to guarantee productivity and safety conditions, respectively. Hence, the
optimization problem can be formulated as

(CCOPT ) min
TN , r

TN (26)

such that

g(x, u, ξ) = 0, (27)

Tmin
N ≤ TN ≤ Tmax

N , (28)

rmin ≤ r ≤ rmax, (29)

Pr{D ≥ Dmin} ≥ αD, (30)

Pr{x1,1 ≥ xmin
1,1 } ≥ αx1,1

, (31)

Pr{P ≤ Pmax} ≥ αP . (32)

The constraints (30), (31) and (32) specify separate chance constraints. Due to the un-
certainty of D, x1,1, P , the corresponding constraints are expected to be satisfied up to
the pre-given reliability levels αD, αx1,1

and αP . However, it is difficult to known the
distribution of D, x1,1 and P a priori. Therefore, it is required to transform the chance
constraints on the output variables into chance constraints on the input uncertain vari-
ables ξ. This can be accomplished, as explained in Section 3, by using monotonicity
relations. Using the energy balance equations

(Lj−1 · x1,j−1 − Lj · x1,j) + (Vj+1 · y1,j+1 − Vj · y1,j) + Fj · x1,F = 0, j = 2, . . . , N − 1,
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with Fj = 0 until stage 14, and the component balance equation

V2 · y1,2 − (L1 +D)x1,1 = 0,

it follows that

−D · x1,1 + VN · yN + F · x1,F = LN · x1,N .

This expression relates the feed flow and the products directly. Consequently, the follow-
ing strict monotonicity relations hold true

x1,F ↑ x1,1 and x1,F ↑ D.

Similarly, it can be shown that x1,F ↑ P . This means that, as the feed concentration
increases, the amount of energy required for the separation also increases. Therefore, the
chance constraints can be transformed as follows

Pr{D ≥ Dmin} = Pr{x1,F ≥ xmin
1,F (Dmin, u, ξ̃)} =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

xmin
1,F (Dmin,u,ξ̃)

φ(ξ)dξ,

Pr{x1,1 ≥ xmin
1,1 } = Pr{x1,F ≥ xmin

1,F (xmin
1,1 , u, ξ̃)} =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

xmin
1,F (xmin

1,1 ,u,ξ̃)
φ(ξ)dξ,

Pr{P ≤ Pmax} = Pr{x1,F ≤ xmax
1,F (Pmax, u, ξ̃)} =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ xmax
1,F (Pmax,u,ξ̃)

−∞
φ(ξ)dξ,

where ξ̃ = (η, F, TF ) and φ(ξ) is the joint normal distribution of the uncertain input

variables. The values xmin
1,F (Dmin, u, ξ̃), xmin

1,F (xmin
1,1 , u, ξ̃) and xmax

1,F (Pmax, u, ξ̃) can be

determined from the system of equation g(x, u, ξ) = 0 at each iteration step of the
optimization problem.

The following bounds are used for the uncertain output variables in the chance constraints
(30) - (32):

Dmin = 6l/h; xmin
1,1 = 0.99mol/mol; Pmax = 6800W.

and the bounds on the control variables are

Tmin
N = 900C, Tmax

N = 1000C, rmin = 1, rmax = 6.

The uncertain input variables are assumed to have the correlation matrix R, mean µ
and variance σ given in Table 5.

Most of the computational effort in the solution of the CCOPT problem goes to the
solution of the nonlinear state equations. At each step of the optimization algorithm it
is required to solve a block of 193 nonlinear equations 165 times, exploiting the special
block structure that arises when using the sparse-grid points. For the solution of the
nonlinear equations a two phase approach is used. The first phase calculates a solution
to the model equations. From this solution a starting point is generated for the modified
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R =




1.0 0.3 0.1 0.1
0.3 1.0 0.1 0.3
0.1 0.1 1.0 0.1
0.1 0.3 0.1 1.0




Table 5. Mean and variance of uncertain variables
Uncertain Variable η F TF x1,F

µ 0.70 20.00l/h 30.00 0C 0.20
σ 0.001 1.000 1.000 0.010

.

Table 6. Data for the chance constrained optimization of the distil-
lation column

Sparse-Grid Full-Grid
Reliability level, i.e., αD = αx1,1 = αP 0.95 0.95

Number of Integration Grid Points 165 63 = 216
Overall computation time 295s 219s

Table 7. Optimization results for the distillation column using sparse- and full-grid methods
Solution → T ∗

N r∗ Optimal value of objective function
Sparse-grid method 96.24810305 1.412900723 96.24810305
Full-grid method 96.18671087 1.412420353 96.18671087

system

g((x1, . . . , xi−1, x
min
i , xi+1, . . . , xn), u, (ξ1, . . . , ξj−1, ξ

min
j , ξj+1, . . . , ξp) = 0.

or

g((x1, . . . , xi−1, x
max
i , xi+1, . . . , xn), u, (ξ1, . . . , ξj−1, ξ

max
j , ξj+1, . . . , ξp) = 0

correspondingly. The data and results of the optimization are given in Table 6 and
7, respectively. Note that all chance constraints are required to hold with a 95%
reliability. The numerical experiments are done with an AMD Athlon 64 X2 dual
core processor with 2.2 GHz per Core and 2 Gigabyte RAM. Using this platform the
total computational time required is 295s. For the same problem the computation
time reported by Flemming et al. 2007 is 40.4 minutes which is obtained on a PC
with Pentium IV, 3GHz processor and 1GB RAM. In this case, the more than 8 fold
improvement of computation time is also attributed to the use of efficient coding
and latest hardware platform. In fact, the 3-dimensional unbounded integrals in
the chance constraints can be computed equally fast, even with less approximation
error, using a full-grid technique. In fact, the comparative advantage of a sparse-grid
techniques unfolds itself when the dimension of uncertain variables is high (see Figure 2).

In addition, one of the most important issues in chance constrained optimization is the
question of feasibility of the problem versus the cost of the demand for higher reliability.
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Table 8. Higher reliability incurs higher objective function values

α TN in 0C
0.500 92.3323
0.550 92.5906
0.600 92.8604
0.650 93.1461
0.700 93.4603
0.750 93.752
0.800 94.1346
0.850 94.5973
0.900 95.2168
0.910 95.3821
0.920 95.5303
0.930 95.7174
0.940 95.9304
0.950 96.2114
0.951 96.2331
0.952 96.2443

This can be studied by investigating the parametric problem

ϕ(α) = min
u

(F1(u) + γF2(u)) (33)

such that u ∈ M(α) = {u ∈ U | hi(u) ≥ αi, i ∈ I}, (34)

where α ∈ (0, 1)n1 and n1 = |I|. Note that if α(1) ≤ α(2) lexicographically, then
M
(
α(1)

)
⊃ M

(
α(2)

)
and ϕ

(
α(1)

)
≤ ϕ

(
α(2)

)
. In other words, a continuous increasing

in the level of reliability increases the minimum value of the objective function. Table
8 shows this fact for CCOPT. At the same time, a continuous increase in the reliabil-
ity level α results in a shrink on the feasible set. This leads to a maximum reliability
level α∗ ∈ (0, 1) beyond which it is not possible to hold the required product specifica-
tions. That means, there is a maximum α∗ for which the problem remains feasible and
M(α) = ∅, for α > α∗. The numerical experiment done on CCOPT justify theses issues.
The problem becomes infeasible for α > α∗ = 0.953.

6. Conclusions

The numerical solution of nonlinear optimization problems subject to chance constraints
presents a difficult task. Specifically, this is the case when the chance constrained
state (output) variables and the uncertain input variables have nonlinear relations.
To circumvent this difficulty chance constraints can be transformed from the space of
state (output) variables into chance constraints in the space of uncertain variables,
so that the computation of constraint values and their gradients is possible. This
idea of transformation of constraints is facilitated if there are strict monotonicity
relations between chance constrained state variable and an uncertain input variable.
Consequently, this paper gives conditions that guarantee the required monotonicity
relations between state (output) and uncertain (input) variable pairs, which lead to an
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easy-to-use monotonicity analysis method. This approach can be applied for small to
medium-scale problems with respect to the number of uncertain variables. Sometimes
monotonicity can also be obtained by investigating part of a large system. If global
monotonicity can be found using a small part of a large system of equations, it also
holds true for the whole system.

After transformation, the numerical solution of the resulting chance constrained
optimization problem requires the evaluation of multi-dimensional integrals. This
study indicates how to compute values and gradients of chance constraints by using
tensor-product techniques on sparse-grids. With this approach it is possible to save
computation time by several fold. However, it still remains to test the potential of the
approach for chance constrained optimization problem with a large number of uncertain
variables.

The case-studies considered are limited to steady-state optimization problems. But,
transformation of chance constraints using monotonicity and sparse-grid integration
techniques can still be applied for nonlinear dynamic chance constrained optimization
problems from process engineering .

In the case-studies considered above, the chance constrained state variables are mono-
tonically related with at least one uncertain input variable. But this may not be the case,
in general. If there is no such uncertain input variable which is globally monotonically
related with the given state variable, the transformation of the chance constraint is not
straightforward. In several cases, such monotonicity relations can be shown to hold on
intervals. This issue will be addressed in our future work.
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and L. T. Biegler, eds. Assessment and Future Directions of nonlinear model pre-
dictive control ; Springer-Verlag, 305 – 315.

(2) Arellano-Garcia, H., Wozny, G., 2009. Chance constrained optimization of process
systems under uncertainity: I. Strict monotonicity. Comput. Chem. Eng. 33, 1568
– 1583.

(3) Barthelmann, V., Novak, E., Ritter, K., 2000. High dimensional polynomial inter-
polation on sparse grids. Adv. in Comp. Math., 12, 273 – 288.

(4) Ben-Tal, A., El Ghaoui, L., Nemirovski, A., 2009. Robust optimization. Princeton
University Press.

(5) Bungartz, H.-J., Griebel, M., 2004. Sparse grids. Acta Numerica, 13, 147 - 269.

Page 25 of 32

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

September 24, 2010 16:46 Engineering Optimization MonoSparseCCOPT-R2

26 REFERENCES

(6) Califore, G., Campi, M. C., 2006. Uncertain convex programs: randomized solutions
and confidence levels. Math. Prog., Ser A., 102, 25 – 46.

(7) Charnes, A., Cooper, W., 1959. Chance-constrained programming. Management
Science, 6, pp 73 – 79.

(8) Chen, M., Merothra, S., 2007. Epi-convergent scenario generation method for
stochastic problems via sparse grid. Technical report 2007-08 2007; Department
of Industrial Engineering and Management Sciences, Robert R. McCormick School
of Engineering, Northwesetern University, Evanston, Illinois 60208.

(9) Diwekar, U. M., Kalagnanam, J. R., 1997. Efficient sampling technique for opti-
mization under uncertainty. AIChE Journal, 43, 440 – 447.

(10) Flemming Th., Bartl, M., Li, P., 2007. Set-point optimization for closed-loop control
systems under uncertainty. Ind. Eng. Chem. Res., 46, 4930 – 4942.

(11) Genz, A., Keister, B. D., 1996. Fully symmetric interpolatory rules for multiple
integrals over infinite regions with Gaussian weights. SIAM J. Numer. Anal., 71,
299 – 309.

(12) Gerstner, T., Griebel, M, 1998. Numerical integration on sparse grids. Numerical
Algorithms, 18, 209 - 232.

(13) Heiss, F., Winschel, V., 2006. Esitimation with numerical integration on sparse
grids. Münchner Wirtschaftswissenschaftliche Beiträge(VWL), 2006-15.
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Gröthschel, S. Krumke and J. Rambau, eds. Online Optimization of Large Scale
Systems, ; Springer-Verlag, 455 – 476.

(15) Henrion, R., Möller, A., 2003. Optimization of a continuous distillation process
under random inflow rate. Comput. Math. Appl., 45, 247 – 262.

(16) Hinrichs, A., Novak, E., 2007. Cubuature formulas for symmetric measures in high
dimensions with few points. Math. Comput., 76, 1357-1372.

(17) Hong, W.R., Wang, S., Li, P., Wozny, G., Biegler, L.T., 2006. A quasi-sequential
approach to large-scale dynamic optimization problems. AIChE Journal, 52, 255 –
268.

(18) Kallagnaham, J. R., Diwekar, U. M., 1997. An efficient sampling technique for off-
line quality control. Technometrics, 39, 308 – 319.

(19) Kookos, I. K., 2003. Optimal operation of batch processes under uncertainity: A
Monte Carlo simulation deterministic optimization approach. Ind. Eng. Chem. Res.,
42, 6815 - 6822.

(20) Kropat, E., Weber, G.-W., Pedamallu, C.S., 2010. Regulatory networks under ellip-
soidal uncertainty - optimization theory and dynamical systems, to appear in the
book on Data Mining, D. Holmes, ed., Springer.

(21) Mysovkikh, I. P., 1968. On the construction of cubature formulas with the smallest
number of nodes. Soviet Math. Dokl., 9, 277 – 280.

(22) Li, P., 2007. Prozessoptimierung unter Unsicherheiten. Oldenbourg-Verlag.
(23) Li, P., Arellano-Garcia, H., Wozny, G., 2008. Chance constrained programming

approach to process optimization under uncertainity. Comput. Chem. Eng., 32, 24
– 45.

(24) Li, P., Wendt, M., Arellano-Garcia, H., Wozny, H., 2002. Optimal operation of
distillation process under uncertain inflows accumulated in a feed tank. AIChE J.,
48, 1198 – 1211.

(25) Nemirovski, A., Shapiro, A., 2006. Convex approximation of chance constrainained
programs. SIAM J. Optim., 969 – 996.

Page 26 of 32

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

September 24, 2010 16:46 Engineering Optimization MonoSparseCCOPT-R2

REFERENCES 27

(26) Novak, E., Ritter, K., 1999. Simple cubature formulas with high polynomial exact-
ness. Constr. Approx., 15, 499-522.

(27) Novak, E., Ritter, K., 1997. The curse of dimension and a universal and a univer-
sal method for numerical integration. In Multivariate Approximation and Splines,
Nürnberger, G., Schmidt, J. W., Walz, G.(eds.); International Series in Numerical
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