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Abstract
Purpose

We describe and validate a novel hybrid non-linear vessel registration algorithm for intraoperative updating of preoperati
magnetic resonance (MR) images using Doppler ultrasound (US) images acquired on the dura for the correction of brain-shift
registration inaccuracies. We also introduce an US vessel appearance simulator that generates vessel images similar in appeare
that acquired with US from MR angiography data.

Methods

Our registration uses the minimum amount of preprocessing to extract vessels from the raw volumetric images. This prevents
removal of important registration information and minimizes the introduction of artifacts that may affect robustness, while reducin
the amount of extraneous information in the image to be processed, thus improving the convergence speed of the algorithm. We
completed 3 rounds of validation for our vessel registration method for robustness and accuracy using (i)a large number of syntf
trials generated with our US vessel simulator, (i))US images acquired from a real physical phantom made from polyvinyl alco
cryogel (PVAc), and (iii)real clinical data gathered intraoperatively from 3 patients.

Results

Resulting target registration errors (TRE) of less than 2.5mm are achieved in more than 90of the synthetic trials when the initia
TREs are less than 20mm. TREs of less than 2mm were achieved when the technique was applied to the physical phantom, and
of less than 3mm were achieved on clinical data.

Conclusions

These test trials show that the proposed algorithm is not only accurate but also highly robust to noise and missing vessel seg
when working with US images acquired in a wide range of real-world conditions.

MESH Keywords Adult ; Aged; Algorithms; Brain; blood supply; surgery; Female; Humans Intraoperative PeriodMagnetic Resonance Angiographyale ; Middle
Aged; Neuronavigation methods Neurosurgical Procedure®hantoms, ImagingPreoperative PeriodUltrasonography, Doppler

Author Keywords Volumetric registration Brain-shift; Doppler ultrasound Digital Phanton Validation

Introduction

Modern neurosurgery relies heavily on computer assistance and image guidance to provide topological and locational info
surgeons, enabling them to accurately navigate within the patigain. Known as image guided neurosurgery (IGNS), these techn
typically use the preoperative image of the patehéad acquired through magnetic resonance imaging (MRI) for surgical plannir
navigation. Significant errors may be introduced into surgical navigation from image misregistration or through intraoperative det
of brain tissues in neurosurgery, also known as brain-shift. Displacements from brain-shift can vary greatly b&@veendn the
cortical surface3,8,15,18,2224,35,34,3GaHowever, even prior to dural opening, displacements caused by brain-shift can neverthe
quite significant. Hill et al. (1998%5 d@ave shown that even with the dura intact, the magnitude of brain-shifts observed was as
3.4mm pushing outwards and 8.1 mm collapsing inwards.

These tissue displacements, bbtfore and after dural opening, are quite significant and enough to render guidance usi
preoperative magnetic resonance (MR) image useless for surgical use, even after accurate initial patient to image registration.
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compensate for such displacements in the soft tissue, the preoperative MR image can be corrected by registering it to an int
image, which could be acquired using either intraoperative computed tomographyi@dintraoperative MR 24,27,37@or
intraoperative ultrasound (US) imagirk®,34@

US is a good candidate for intraoperative imaging. However, images acquired using US may be difficult to interpret by 1
users. This is due in part to its relatively small imaging field-of-view, its non-standard anatomical views, speckling in its acquirec
and the need for a craniotomy in order to do intraoperative brain imaging. Nevertheless, US imaging has many advantages the
these shortcomings. For instance, US imagers have the benefit of being significantly less expensive, capable of real-time i
more portable than either MR and CT imaging devices. As well, US imaging gives good resolution and contrast in soft tissues v
need to compromise surgical ergonomics or exposing the patient to ionizing radiation when compared to intraoperative MF
respectively. Intraoperative US images can be used effectively to correct and update the preoperative MR images to the intraop:
of the imaged tissues.

The challenge of registering images between US and MR modalities is that they have different image contrasts, noise pa
artifacts. This is due to the fact that the two imaging modalities are acquired using very different physical principles, with MF
depending on proton spin interaction and US images depending on the rsadenaktic properties. Two types of strategies are use
the literature to overcome the challenge of registering the images:

® Feature-based:Salient anatomical features that can be imaged on both MR and US such @&@uitiour outlines21 @or blood
vessels37,19,25,28,3%are used as alignment cues. These anatomical features are extracted and parameterized prior to tt
registration.

*® Intensity-based: This strategy typically employs image processing methods to relate the intensities of MR to US. For ir
gradient information in the MR imag87 @nay be used directly for registration, or the preoperative MR image may be segment
processed to generate a setffeudo-ultrasountdimages, which allows for better image correspondence and registiat@viutual
information could also be used to relate the intensities found in MR andiodh

Blood vessels are important and useful features for the registration of deforming soft tissues due to several of their propel
vessels are easily identifiable and also usually well distributed in most surgical regions-of-interest (ROI). Second, many image |
methods exist to extract vessels from the acquired images. For instance, the moving blood in a blood vessel is easily imaged us
US and can be implicitly segmented from the image background based on colour saturation alone. As well, vasculature fror
types of MR angiography can be extracted preoperatively using segmentation algorithms such as that of Descoté@mdceEFedngi>
11 @Finally, the vessea unique branching and stable relative paths and positions to surrounding tissues allow for high spec
registration. Therefore as vessels move and change shape with deforming tissues undergoing brain-shift, the correction of t
movements enable the detection and correction of the corresponding tissue deformations.

To date, blood vessels have been successfully used for linear and non-linear registration of deforming soft tissues such as
cortex 25,33@nd the liver29 @rom previous work in our lab, brain shift compensation using vascular images from Doppler US ¢
was characterized and shown to be highly accus&t@

Purely feature-based registration algorithms are fast and accurate techniques that typically rely on image preprocessing to p
and reduce the complexity in the raw data. For vessel registration, this preprocessing is typically done through skeletonizat
reduces and parameterizes the vessel image into a set of vessel centerpoints. This process dramatically reduces computa
registration since the amount of data that needs to be processed is often greatly reduced.

However, such methods can remove important information for registration, such as vessel lumen diameter or voxel
differences in the vessels images themselves. As well, thin, low contrast vessels and important vascular features such as br
continuity can be eliminated altogether. Removal of this information introduces ambiguities that allows skeletonized branche
vessels to be incorrectly matched with thin vessels. Likewise, centerpoint fragments from different vessels can be incorrectly mi
single vessel. As well, the extracted center-points of densely situated vessels can be reduced to featureless point clouds, m:
iterative closest point (ICP) algorithn®dail and rendering the registration process impossible. For these reasons, purely featur
registration can produce poor results on clinical data.

Indeed our previous experience using ICP-based techniques yielded good results using vessel traces that were relatB4®
with distances between the vascular branches being greater than the magnitude of misregistration. However our recent expe
more complex anatomies containing many more blood vessels resulted in failed registrations.

Intensity-based registration methods are very accurate and quite robust to noise due to the amount of information available
alignment. As such, they are widely used for atlas, inter-subject, and various inter-modality registration tasks. Although more soj
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intensity-based methods may be developed to improve processing time, intensity-based registration methods capable of
free-formed non-linear deformations required to properly register cerebral vasculature are quite computationally intensive ani
several minutes for images of modest size. For this reason, their use is limited to offline registration tasks since they are not ¢
intraoperative registration, which should ideally complete in at mf@stznutes during the time needed to prepare for tissue dissectic

These issues inherent to feature or intensity-based registration methods, necessitate the investigation and creation of a
registration method capable of overcoming the reliance on extensive preprocessing to allow for the registration of MR and US vt
a high degree of accuracy in clinically acceptable time.

Motivation for Hybrid Registration

In this paper, we describe an algorithm for a hybrid feature and intensity-based non-linear registration of MR to US image
cerebral blood vessels using ANIMAK @Previous non-linear feature-based vessel registration algorithms by Reinertse83x@ald
Lange et al.29 @reprocess their acquired images by segmenting the vessels and skeletonizing them to a set of discrete vessel
for registration. In contrast, our registration method attempts to eliminate the background by extracting only the vessel informa
at the same time minimizing other forms of preprocessing to retain as much of the original vessel information as possible. To t
we use the whole volumetric vessels from the angiographic intensity images instead of relying on discrete points or lines produc
skeletonization of vessel data. In the following sections, we present our hybrid non-linear volumetric registration technique dev:
the registration of US vessels acquired on the dura with MR vessels. Our goal for hybrid registration was to be able to autome
robustly correct tissue displacements up to 20mm; a threshold that is more than twice the maximum recorded brain-s
displacement of 8.1mm prior to dura openig®

Validation data types

Our registration method was then validated using three types of data with increasing realism:

¢ Synthetic data generated from a digital phantom:Multiple synthetic US data sets were generated numerically from a clinica
image. This enables us to evaluate the behavior under controlled conditions where the ground truth is known. However, the sim
are not completely realistic and do not account for all possible imaging situations.

* Real data acquired from a physical phantomReal MRI and US data were acquired from a PVA phantom. This set of experil
permits evaluation of the algorithm with an object having a known gold standard, which produces images that are more realistic.
the spatial distribution of the image signal is quite simplistic and does not accurately replicate data gathered in clinical scenarios

® Real clinical data acquired from 3 patients:Real preoperative MRI and intraoperative US data were acquired from 3 patients
is the most realistic set of data and represents real surgery and clinical imaging. However the image registration results are
evaluate since the ground truth is not known exactly.

Overview

We will describe in detail our hybrid registration algorithm in Section 2. We will then describe the tool we created and im
acquired to validate the robustness and accuracy of our registration algorithm, including the digital phantom (Section 3.1), th
PVA-based phantom (Section 3.2), and clinical data from 3 patients (Section 3.3). The methodology for validating our re:
algorithm is detailed in Section 3.5 followed by the result of the validation in Section 4. We then conclude with a discussion o
results and future work in Section 5.

Hybrid Registration

Our hybrid registration method takes the raw MR and US clinical images and preprocesses them to extract vascular feai
retaining the intensities of the vessels in volumetric form. This combination of intensity and feature-based cues are used
registration. The source image for registration consists of a 3D contrast enhanced MR vascular imaging processed svitbdSengs:
filtering 21 @vhile the target image consists of an intraoperatively acquired and reconstructed 3D Doppler US volume with the v
vessels extracted from the background tissues by using a colour saturation threshold. Detailed descriptions of the preprocessing
target and source images can be found in Sections 2.1.

Using the minimally processed vessel data, registration proceeds in two phases, with multiscale linear registration prior to
registration. We noticed that although a large amount of registration error can be corrected with rigid-body transformations, the
of freedom of the transform do not allow for an adequate correction of all the non-rigid displacements observed between the pi
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and intraoperative images. It is for this reason that we register the images using full affine transformations after an initial
rigid-body registration for a first alignment, and then subsequently using non-linear transformations to correct the remaining brai
captured by the affine linear transformation.

Preprocessing

The first step in our registration method is to preprocess our source and target images to extract their vasculature. Our sot
were T1 weighted Gadolinium MR images that were processed using &naggielness methatll @vhich effectively enhances tube ar
vessel-like structures in the image. The parameters used for the filteriny @aamd aat 0.5, 0.5, and 0.BhaxHessianNormand five
filter scales with values 0.4, 0.74, 1.1, 1.64, and 2.5mm.

Our target images were 2D power Doppler US images, which were fused with the raw B-mode US images. The latter were
removing all pixels under a colour saturation threshold. The filtered 2D images were then reconstructed in a 3D volume using tt
information contained in each image. This was done by nearest-neighbour regridding of each pixel in the ultrasound image slic
volume with the same resolution as the MR image in a similar fashion as that@flthough other interpolation methods could ha
been used rather than the basic nearest-neighbour regridding method, we found that the other methods increased the 3D re
time and did not perceptibly improve registration accuracy. A thorough review of 2D ultrasound image reconstruction techniques
considerations can be found #1 @

Linear Registration Phase

The linear registration algorithm takes as input the aforementioned source and target intensity volumes which have been pr
for vessel features, then blurs them with a Gaussian kernel prior to each round of linear registration, using a smaller kerne
subsequent round. We used the reconstructed US vessel volume as the registration target image and the MR vessel volume
image.

The starting estimates for registration depend on the method used for data acquisition. For our clinical cases (Section 3.3),
estimates are based on the transforms acquired from the facial skin landmark registration performed by a surgeon. In the
physical phantom data (Section 3.2), the initial registration is done by point-based registration on the container of the physical p
any case, the transforms puts the acquired US images into the same coordinate system as the MR image and provides the in
for registration.

Our linear registration is optimized using a downhill simplex algorit@@ith cross-correlation as the objective function. We fot
that it performed effectively and quickly for registering our images of similar image contrast: both processed MR and US ime
bright vessels on dark backgrounds. Although other objective functions such as mutual information may be used, we fou
preliminary tests that these methods were significantly slower and did not perform better than cross-corrrelation on our pre-
vessel images. In fact, observations from our preliminary test are in line with tigdt@fsho suggested that registration with mutt
information does not perform well in images with (1) thin structures such as the vessels in retinal images or (2) for cross
registration of MR to US images.

We performed a total of three rounds of optimization with sequentially smaller blurring kernels and sampling grids with suc
refined linear transforms. Due to the size difference between the US target and the MR source volume, cropping was aut
performed on the MR volume around the location of the US target to improve and speed up the calculation of registration tr
Cropping for the first round of registration is set to 50mm, since this is the largest value of brain shift recorded in the literature. F
defining the full-width-half-max (FWHM) of the blur (where the FWHM relates to standard deviati’=*%s: 20 @he sampling grid
used, the crop margin, and the type of linear transform used in each round are described in more detail in Table 1.

Non-Linear Registration Phase

Following the linear registration, which provides a robust global alignment, we used the ANIMAL registration algd@bn
compute a set of non-linear transformations that corrects for any local vessel deformations that cannot be accounted for by
transformations. ANIMAL hierarchically estimates 3D vector field at different scales, mapping deformations progressively from
smaller scales and produces a globally non-linear deformation field with point-to-point correspondence between the two volumes

The affine linear registration transforms recovered from the previous linear registration phase are applied to the pre
volumetric intensity source image, which is then used as the source image for this non-linear registration phase of our hybrid r
method. We performed two rounds non-linear registration, once at lower resolution, and once at higher resolution using ANIN
cross-correlation objective function, and relatively high stiffness to maintain smoothness in the deformation (See Table 1). The
transformation is applied in each round of non-linear registration only if the final value of the objective function is reduced f
starting value.
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Through the iterations of non-linear registration, we are able to attain correspondence between the US and the MR vessel in
on their grey scale voxel values. Even though the vessels are not sparse, there exists a significant amount of tissue in betweer
where the ANIMAL algorithm must interpolate or extrapolate the deformations. This is due to the fact that the algorithm ¢
registration and regularizes using only the non-zero vessel voxels of the images, and ignores the zero-valued voxels
non-vascular tissues have been removed. To address the limits of the local elastic regularization used in ANIMAL and to
continuous smooth deformation throughout the tissue, we apply the thin-plate spline (TPS) trah@ormpoints extracted from th
aligned US and MR vessels to regularize the transformation over the entire image.

One thousand points are randomly sampled from overlaps of the vessels from the two non-linearly registered volumes ani
transformed using the deformations recovered by ANIMAL. This produces 1000 pairs of homologous points, which are then u:
control points to define the displacements on an interpolating TPS.

Validation Methods
Digital Phantom

As part of the work to validate our hybrid registration algorithm, we developed a non physics-based digital phantom to s
images that simulate the appearance of Doppler US vessel images acquired from a brain distorted by brain shift. Qualita
observations were made between the vessels acquired using power Doppler US and MR imaging to enable and successfully
power Doppler US images from MR vessel data. We found that the US vessels in comparison to MR vessels tend to be:

® Thick: This is likely due to the fact that the US operator increases signal gain when acquiring the Doppler US image. This i
allow smaller and more distant vessels to be captured in the image.

® Uneven: The surfaces of the acquired US vessels are uneven due, in part, to speckling in US images and artifacts arising
artifacts caused by sudden probe movements.

* Noisy and containing artifacts:Both noise and US image artifacts can be due to the random scattering and reflection of US
the different tissue being imaged, as well as the noise introduced by the electronics of the US imaging equipment.

® Presence:Some vessels are dimmer or entirely not present in volumes of one modality versus the other (See Fig. 1). This co
to imaging artifacts such as occlusion, shadowing, and the angle of the US probe in respect to the imaged blood flow.

Our digital phantom simulates the appearance of a Doppler US vessel image by taking an MR vessel image as input. The w
the digital phantom is shown in Figure 2. The first step to producing the synthetic US vessel involves extracting and processi
angiographic image to act as the ground truth image. The second step is to generate a set of random linear and nonlinear tran:
as the registration ground truth and then applying the transform to an MR vessel image. The third step involves altering the tr
MR vessel image to exhibit the observed characteristic appearance of the US vessels listed above. Finally, noise and specklii
and the simulated US volume is masked into the shape of an US sweep. These steps are explained in detail below.

To show that the simulated US vessel volume behaves similarly to a real US vessel volume in MR vessel registration
compared the similarity of the cross-correlation objective function curves to each other.

The first step in creating the simulated US vessels involves extracting the vessel from a T1 weighted Gadolinium MR ime
manner described in Section 2.1. The extracted MR vessel image is then thresholded at a low intensity to capture anything thi
vessel and then cropped down to a ROI.

Random Transformations

Parameters for the linear transforms are chosen randomly within translationsd®otn 30mm, rotations fron# to 5 degrees
scalings from 0.9 to 1.1, and shears from 0.9 to 1.1, with the fixed transformation point located in the center of the ROI bounding
non-linear transforms are generated using a TPS since this method produces realistic deformations that are smooth and regul
pairs of control points are used to define the TPS transform, with the two points of each pair randomly located in relation to eau
distances between!Bmm. The first 8 point pairs are located on the corners of the bounding box around the ROI that has been sc:
by 50 to be inside the ROI. The last point pair is positioned in the center of the ROI bounding box (See Fig. 3). The rational
placement scheme is to localize the control points of the thin-plate spline in the center of the ROI where the anatomical strt
located, thereby increasing the local nonlinear deformations there. This set of linear and non-linear transformations are u
gold-standard for validating our registration method, beyond validation are also applied to the processed MR vessel image t
tissue displacement from brain shift.

Simulation of Characteristics
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Once the MR vessels have been deformed using the set of random transforms, they are used to simulate the appearanc
images. The simulation occurs in two steps. First, the thick uneven surface and variable presence of the US vessels are simuli
the extensive use of Perlin noi€d @Afterwards noise and speckle are added onto the simulated vessels.

Perlin noise is a procedural texturing method commonly used in computer graphics to generate many types of continuous
pseudo-random textures with specific spatial frequencies. Random gradients are first defined at regularly spaced intervals in a
These gradients are used to determine the intensity of the field between the nodes of lattice through linear or cubic interpol.
simple technique allows us to generate random appearing textures of different scales and spatial frequencies that can easily
parameters for varying the appearance of generated US vessels. A more detailed explanation of Perlin noise and the te
generating it can be obtained 89 @

We used the intensity values of a Perlin noise texture with low spatial frequency as the parameter for determining whether tt
present in the image (vessel presence) by varying the contrast of a vessel to the background. The noise texture has a value bet\
which makes the vessel completely invisible and fully visible, respectively. This roughly simulates artifacts from shadowing or frc
dependant modulation of the US signal. Although power Doppler US (signal power) is not as sensitive to probe angle as colol
US (blood flow rate) the probe angle to a vessel may nevertheless alter the intensity of the power signal.

Perlin noise of high spatial frequency is used to determine the radius of a particulas ditibn on a visible vessel. The dilation
performed using a 3D isotropic Gaussian point spread function with a FWHM of betWeram3This higher spatial frequency Perl
noise, which has a value between 0 and 1, is used to determine extent of the vessel dilation. The value of 0 indicates that the v
dilated to 3mm and 1 indicates that the voxel will be dilated to 5mm. The combined uneven dilation of the original vessels prod
of resulting vessels that are thick and bumpy. When the resulting dilated vessel volume is thresholded and windowed for intens
disjoint vessels with uneven surfaces are created, which simulates appearance-wise the increased gain of the power Doppler
vessels and any amplified noise.

Accumulating Noise and Speckling

Various types of artifacts and noise commonly seen in US images and volumes are applied to the generated vessel volume
step to simulate the US vessel volume. Speckle artifacts generated via the methods of Pizuri8@ @ndl.grainy Perlin noise ar
multiplied to the expanded vessels. Gaussian noise and high intensity voxels from Perlin noise of high frequency are added tc
volume. The volume is then masked with a mask generated from the coordinates and orientation of a real US sweep to produ
shape volume similar to a reconstructed US vessel volume. The resulting simulated US vessels qualitatively show a close rese
the real US vessels in their thickness, uneven surfaces, noise, artifacts, and their variable presence (see Fig. 1).

Behavior of Simulated Vessels in Registration

To ensure that the simulated US vessels from our digital phantom performed similarly to real Doppler US reconstructed
registration, we measured their cross-correlation values through translations, rotations, and scaling. The simulated US vesse
corresponding real US vessels, were all registered and aligned to the MR angiography data. The gold-standard transform for ¢
real US image to the MR image was found by first calculating the affine linear transform between manually picked hon
anatomical landmarks between the US and MR image in the manner described in Section 3.3.

All the data sets were blurred with Gaussian kernels of 5 voxel FWHM and the two sets of US vessels were translated, r
scaled around their registered position on the MR vessel image. From the test results in Figure 4, we see similar profil
cross-correlation objective function for both sets of US data. The correlation of the objective function curves was greater thi
translation and more than 0.8 for rotation and scaling.

This indicates that there is high similarity between the registration performance of our simulated US vessels compared to
real US vessels. As well, the generated transforms and distortions from our digital phantom also vary smoothly and are
magnitude as that found in clinical cases in the literature. From this, we can conclude that simulated US vessel volumes
appearance of clinical US vessel images sufficiently well for testing our MR to US registration algorithm.

PVAc Physical Phantom

MRI and Doppler US vessel data of a polyvinyl alcohol cryogel (PVAc) physical brain phantom described and acquired by R
et al. 34 @vere used to validate our algorithm. The phantom is made of 3 types of PVAc of different hardnesses, containing -
plastic tubing with inner lumens of 1.57, 2.36, and 3.18mm, capable of circulating fluids for simulating blood vessels. The phai
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has an inflatable catheter located near its bottom center to simulate brain defor8@gdime T1 MRI data set from this phanto
consists of 2 image volumes for each catheter inflation of 0, 5, and 10ml of water, giving a total of 6 volumes (See Fig. 5). Thre
Doppler US images for phantom inflations of 0, 5, and 10ml were also acquired.

The MR images were acquired with a Siemens SonataVision 3T using T1 weighted MR imaging at a voxel resolutiorvbinbmr
™. mm. The tubes in the phantom were manually segmented from the MR images.

The Phantom US images are acquired with an ATL HDI 5000CV US imager using a ATL P7-4 phased-array probe on powe
mode. A passive target with markers spheres were attached to the US probe and optically tracked by a Polaris tracker (Nortt
Incorporated). The ultrasound probe was calibrated with a z-fiducial phantom descrii@@irhe US probe is swept smoothly ai
steadily by hand over the water-immersed phantom to minimize gaps in the reconstructed volume. The 2D Doppler images
using a colour saturation threshold and reconstructed using the same methods as described in Section 2.1.

Manually labelled homologous landmark points, consisting of 21 fluid filled bubbles, located and distributed evenly throug
phantom tissue material, were found in each of the 6 physical phantom MR volumes. These landmarks were used to vi
transformation of our algorithm. In 2 separate point picking trials to determine intra-rater variability, the mean difference bet
points around each landmark was approximately 0.7mm with a maximum distance of 1.1mm.

Clinical Data Acquisition and Vessel Extraction

Vessel structures in preoperative MR and intraoperative US images must be properly acquired and extracted prior to regis
acquire the preoperative image, the patient can be scanned using MR angiographic techniques, such as time-of-flight, T1-weig
42 @r contrast enhanced MR angiography.

In our institute, open cranial surgery involving such procedures as tumour resection almost always involve Gadolinium (Gd
enhanced MR imaging for enhancement of the pathology, usually within a week prior to their procedure. This also provides
contrast enhanced MR vascular image for use in computer assisted neurosurgical guidance. The images were acquired using
Excite 1.5T with double-dose Gd enhanced T1 weighted MR imaging at an in-plane resolution®ffhfm and a slice thickness 1
1mm. The MR vessels are extracted by filtering the angiographic MR images usingsFrasgelness method with the same parame
as those described in Section 2.1.

We note that although MR angiographic or contrast enhanced MR imaging may not be routinely performed in all institutes fc
surgery, we nevertheless believe that the development of improved image processing methods may allow blood vessels to k
from standard T1-weighted images thus allowing for the use of a technique such as ours.

During the stabilization of the patiemtead for operation, the pre-operative MR image was rigidly registered to the pateaak by
the surgeon through manually picking nine facial landmark point pairs. These point pairs were chosen between the skin surfi
actual patient and the segmented patient MR image identified using optically tracked pointer and a mouse pointer, respectively
pairs consist of the patiestlateral and medial canthus on the left and right eye, the tragus and tragus valley on the left and rigl
well and the most posterior part of the nasal bridge.

The clinical intraoperative US images and their tracking data were acquired and processed in the same manner as the physi
data to build the US volume from 2-dimensional slices and extract its vessels (see Section 2.1). The probe was swept in a f
manner over the dura of the patient after the craniotomy in a smooth and steady manner to minimize gaps in the reconstructed v

Manually labelled landmarks for anatomical features found between the MR volume and the US volume were used as a silve
to evaluate registration success. These landmarks consist of blood vessel bifurcations, conjunctions of sulci, and unambig
portions of ventricles located throughout the volume from 4 sets of real clinical data acquired from 3 patients (See Table 2). Deg
the size of the volumes and the availability of landmarks, between 7 and 18 unambiguous points were labeled by an expert. Fc
point picking trials were done to determine intra-rater variability. The mean difference between the points at each landmark w
with the maximum distance of 2.1mm.

Given the clinical nature of these images and their acquisition conditions, it was difficult and took significant amounts ol
accurately identify unambiguous landmark points in both the US and MRI images. This process involves cross-checking be
preoperative and intraoperative images, re-verifying the landmarks, and correcting any inaccuracies, which can take3fronindites
per case or around}2 minutes per landmark point. This was especially true for US acquisition 3, where the sweep amounted to a
less than 2 cm in width and only 7 unambiguous landmark points could be indentified.

TRE Calculations
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We use the target registration errors (TRE) as a quantitative measure to test and validate our registration methods on
phantom trials, physical phantom trials and also our clinical trials.

¢ Digital phantom trials : The TRE were calculated using an initial set of points, which were evenly sampled from throughout t
delimited sweep cone of the US images. The initial points were then transformed using both the gold-standard transformatio
recovered transformations from our technique. The root mean square (RMS) errors between the latter two sets of points
calculated to give us our TRE.

® Physical phantom: The TRE were calculated using the labelled homologous fluid filled bubbles in the physical phantom im
each catheter inflation. The transformations recovered through registration of the source MR vessel image to the target US vess
a different inflation was applied onto the points picked from the source MR image. The RMS errors between transformed sou
and the set of points picked from the target inflation image was then calculated, giving us our TRE.

® Clinical trials : The TRE were calculated through a set of silver-standard point pairs, which were manually picked from hor
intra-cranial anatomical landmarks in the source MR image and the target US image. The transformations recovered using our
technique were applied onto the source points and compared with the locations of the target points through computation of the
as TRE.

Registration Validation

The hybrid registration algorithm was evaluated with the digital phantom (Section 3.1), the PVAc Phantom (Section 3.2), anc
real clinical data (Section 3.3). Although it is common in the literature to report translation and angular errors, we elected to us
validation of our registration method since it can effectively encompass the displacements incurred from the full affine transforn
degrees-of-freedom) used in our linear registration phase. This includes scaling and shear transformation on top of the transl
rotational transforms used in rigid-body registrations.

The TRE measure is also useful since it allows us effectively compare the quantities of error corrected between our |
non-linear registration phases. Validation of the registration were done in the following manner for the digital phantom, the
phantom, and the clinical trials datasets:

* Digital phantom : Using the digital phantom, we created 2100 registration trials, each with a randomly generated vessel inst
transform, and deformations which were used as the gold standard. TREs greater than 2.5mm are considered as failed registrat

® Physical phantom: Validation using the physical phantom was performed by registering each of the 6 MR volumes with eac
3 US volumes to estimate the non-linear transforms. This was done to account for deformations generated from inflating with 0,
of water.

¢ Clinical trials : Registration validation of the clinical trial was accomplished using manually defined landmark points usec
silver-standards that were chosen from homologous intra-cranial anatomical landmarks in the source MR image and the target L

Results
Digital Phantom

We found that our registration method was quite robust and accurate in correcting the simulated brain-shift of our digital
with a high success rate given the 2.5mm threshold criteria. In applying our full registration method (linear and non-linear phas
digital phantom we found that our method was successful for 98 , 92 , and 90 of the digital phantom trials at 5, 10, 15 and 20n
initial misregistration, respectively (see Fig. 6, Non-Linear).

It is interesting to note that the linear step completed in the first phase of registration can significantly reduce the initial Tk
same trials as above, when initial misalignment RMS error is less than 5mm, 10mm, 15mm, and 20mm, the linear registratior
TRESs less than 2.5mm for 8768 , 65 , and 64 of the trials, respectively (see Fig. 6, Linear). These lower values are expecte(
linear transforms cannot completely correct for the local non-linear deformations we generated for our digital phantom. Furtherrr
linear registration completed with a TRE of less than 6mm in these trials, the non-linear registration was successful morethiaea
time, correcting the TRE to below 2.5mm.

Given the initial design criteria of 20mm maximum displacement on the dura, onlypflthe trials failed with TREs greater the
2.5mm. We found that only 3 of the registration trials attained a greater TRE than the initial alignment (see Fig. 7). The mean re
in TRE through non-linear registration from the linear registration results is 0.62mm and quite significapt, witi3 ™0®4in a
two-tailed t-test. This significant reduction in TRE can also be seen in that the mean TRE after linear registration s{a62h# with
the first and third quartile being 1.84mm and 2.66mm, respectively, which reduced after non-linear registratios #7mé4 with the
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first and third quartile being 1.32mm and 1.82mm, respectively. In general, we found that the regions of the US volume with
blood vessels had the highest TREs while regions surrounded by vascular structures had consistently low TREs.

We also tried to examine the behavior of the vessel registration algorithm when we push it beyond the 20mm operating ran
that in this case the success in the non-linear registration was only @4 , and 70 for 25mm, 30mm, and 35mm initig
misregistration.

PVAc Phantom

In our tests with the physical PVAc phantom, our non-linear registration algorithm was able to correct the deformations in all
to TREs 2mm or under (See Table 3). This correction corresponds to a reductiont@f4® in TRE remaining from the linea
registration step after non-linear registration, with the TREs decreasing in all cases in these tests on the physical phai
demonstrates that the algorithm is likely converging towards the correct solution.

It should be noted that since the chosen landmarks on the PVAc phantom are spread out evenly over the entire volume of tt
the actual amount of non-linear displacement an their corresponding correction through registration has been diluted in calcule
TRE. To illustrate this, we used the results of the Oml to 5ml registration trial and calculated the TRE from 5 landmark points lo
region of the phantom closer to the catheter balloon. From this, we noted a reduction of TRE from 2.4mm to 1.3mm, which equ

reduction in the TRE of this region from our non-linear registration alone. The differences in the magnitude of non-linear defc
throughout the image can be seen in Figure 8. The degree of non-linear deformation was as high as 3.01 mm, in the region
center of the imaged volume where the deformation inducing catheter resides.

Images showing a 5ml inflated phantom corrected with the recovered transformations from registration with a Oml inflated
can be seen in Figure 9. Note that there is almost a complete overlap of the vascularized cerebral region of the phantom image
the more highly deformed parts of the phantom near the catheter.

Clinical Data

The initial registration of the MR to the patienhead attained from the facial landmarks for the clinical data was achieved wi
standard homologous landmark point-pair method described in Section 3.3. Only one starting point was evaluated for each cli
since experiments using the synthetic phantom data have indicated the algadtunstness to the starting location. These initial m
TREs from facial registration using the manually identified silver standard landmarks on the four datasets were 7.25mm,
4.61mm, 3.742mm. It is important to note that although our surgeons sought to keep the root mean square errors of their facie
fiducial registration errors (FRE) lower than 1.5mm, the resulting TREs from the initial skin-based registration are nevertheless q
The magnitude of the TREs is likely due to the configuration of skin landmarks in relation to the surgical target. If the geometric
gravity of the fiducials is not close to the surgical target, the landmark configuration may lead to a lever effect, accentuating the -
a decorrelation between the measured FRE from the measured TRE has been noted i18&,pagt

After the US to MR registration process consisting of the linear and nonlinear registration steps, the TREs were reduced t
1.23mm, 3.38mm, and 1.70mm on these clinical datasets with improvements of TRE by@¥ 2 , 26.7 , and 54.5 , respectively.
Resulting images from registration of Patient 1 (See Table 2) can be seen in Fig. 10 and 11, which are respectively the regist
images and the T1 MR image corrected with the recovered transformation. Resulting registered images for Patient 4 in Fig. 1.
T1 MR image corrected with the recovered transformation. It can be seen that the amount of non-linear deformations from datas
are not negligible, with 15.2 and 11.2 of the TRE uncorrected by affine-linear registration (See Table 4). The magnitude of non
deformations in Patient 4 was as high as 2.5 mm in some local regions of the brain, and can be seen in Fig. 13.Note that this «
was recovered from our vessel based registration after completion of our linear registration phase, from images acquired pri
opening. This indicates that full affine-linear registration alone is insufficient to capture and recover all the brain-shift
deformations even prior to dural opening.

The average execution time for vessel registration is rougf@lyrénutes on a 2.4 GHz Intel Q6600 processor. In this time spar
multiscale linear registration takes approximatel Biinutes and non-linear registration takes approximatgyr8nutes, with the rest o
the time taken up by US preprocessing and volume reconstruction, which takes less than a minute.

Discussion

The validation results indicate that the hybrid registration algorithm outlined in this paper can be applied to correct for re
errors due to inaccurate fiducial registration and to update preoperative images to account for brain shift.

Validation
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Our method can successfully correct for brain shifts with displacements as large as 20mm in more thfa®@ases (See Fig.
and 7) in our digital simulations. As well, we have found in our clinical cases that we can significantly reduce the registration ~
either only linear registration or both linear and non-linear registration (See Table 4). However, we note that these results 1
interpreted with care given that our digital simulation is not entirely physically realistic and that we have evaluated the technique
patients in our clinical trials. We plan to apply the method to a larger cohort of patient data in the future to further validate and
the generalisability of the results. We also intend to improve our methods for simulation of US blood vessels to make th
physically realistic. We also note that while our clinical cases used specified facial landmarks for initial registration, it is also pc
use a random iterative closest point method such as th#d dbr initial rigid body registration, before applying our hybrid method
non-linear soft tissue registration.

Our digital phantom occasionally removes large regions of vessel segments in its random vessel presence simulation. C
these simulated US images, our hybrid registration algorithm fails catastrophically, with the resulting TREs significantly hig
2.5mm even when the initial TREs are less than 20mm. We realized that the removed vessel segments was the cause of the
we qualitatively examined several of the generated US digital vessel phantom images that resulted in registration failures. The
US volumes were indeed significantly sparser due to vessel removal and as such they aligned themselves to the wrong vessels
sized MR vessel volume image. When the same images were not processed with the random presence portion of the simula
with the same initial misalignments, registration of these same images converge and succeed even with the added noise, artifac
vessel dilations.

The reason for the catestrophic failure in registration is clear. Since the initial vessel images used in digital simulation is alre
sparse, masking and vessel removal can further weaken the global minimum to the point as to cause the algorithm to be trapp
the many local minima. This introduced ambiguity in effect increased the possible alignments of the smaller and sparser US i
the large amount of vasculature in the MR vessel image. The problem was further exacerbated when the misalignment disti
images was greater, which required the algorithm to traverse across more local minima and increased the chances that it woul
any one of them before reaching the global minimum. Should the vessel removal be extensive enough, the global minimum for
could be eliminated, causing the registration algorithm to never converge to the correct solution. Although these large f
alignments are not favorable, there are nevertheless benefits to such a behavior since it allows technicians and surgeons to eas
registration failure through visual inspection, which limits the chance that a wrongly registered image is accepted by the surgeo
for guidance.

We noticed a reduction in the TRE in all the physical phantom registration trials, and although the values were not below 1n
inspection of the registration results show marked improvements in the alignment of the blood vessel tubes in the phantom (£
This is similarly true with the registration results using clinical data, where the corrections showed good alignment not only in ve
Fig. 10) but also in anatomical structures such as the ventricles and sulci (see Fig. 11 and 12). Although anatomical stru
ventricles can be useful in registration, they are not as topologically distinct as branching vessels and are not well distributed
the brain tissue. Nevertheless, structures such as ventricles and sulci can be used as additional registration features in conji
vessels in registration. While we realize we cannot generalize with 4 clinical data sets, these tests do demonstrate that our algol
successfully used to register real clinical images acquired intraoperatively during an operation.

Hybrid Vessel Registration

Ideally, we would have liked to compare our techniques to other US to MR registration techniques sutB @sa@B7 @however
these techniques are dissimilar to our own in that (1) they recover linear transformations only and do not recover non-linear de
in their registration, (2) nor do they take advantage of the vessel information in their images for image registration. As w
techniques are not publicly available and trying to both implement and run them ourselves might introduce bias. Nevertheless, w
several tests against Reinertsen eBaf@vhich show that our technique, although slower, is more accurate, more robust, and has
probability of converging to the correct solution when run on real clinical data and image data from our digital phantom. We
continue investigating the use of our technique after and during tumour resection since these situations will likely be more challe
to the higher tissue distortion and tissue removal. In both cases, the amount of resected tissues will be quite large, but since our
technique relies on blood vessels for registration and not the removed tissue and can deal with missing vessels segments we
should work well in such situations.

While the total time of 8 minutes required for hybrid registration is perhaps pushing the limits of clinical acceptance, this wc
done with the intention of evaluating a technique to first determine its functionality and robustness on clinical data prior t
optimization. We believe that optimizing the code for the algorithm as well as adapting it to use hardware acceleration can 1
registration time required. However, since the present algorithm is highly robust for misalignments up to 20mm (more $hane33,
See Fig. 6), it should be possible to account for large absolute displacements by progressively estimating smaller relative dis
during the procedure. For example, the deformation estimated using the algorithm before dural opening will be used as tl
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transformation for the subsequent deformation estimations during or after a surgical procedure. While this method remains tc
with additional clinical data, we believe each application of registration algorithm could correct for the continual deformatign
15mm that occur throughout a procedure.

In this work, we concern ourselves solely to problem of registering US data acquired on the dura. We believe that by bei
correct brain-shift first on the dura, we can subsequently evaluate our registration algorithm in surgery before proceeding to
potentially more difficult problems of image registration after dural opening and tissue resection. We realize that the charact
brain shift and the performance of the algorithm may be altered depending on the size and location of the craniotomy or the
tumour tissues, however this is outside the scope of our paper and will be addressed in the future research.

Conclusion

In conclusion, we have presented a new method for correction of preoperative MR images using intraoperative US for 1
hybrid vessel registration. Since our vessel registration algorithm does not depend heavily on image preprocessing for robust a
results, it is able to avoid the pitfalls of feature-based registration methods that relies on their preprocessing methods sucl
centerline registration algorithms. The minimum processing to extract the vessels allows us to complete registration in less
purely intensity-based registration techniques.

In this work, we also developed a digital phantom capable of synthetically generating volumes with the appearance of D¢
vessel images. These images are processed from a MR vessel image and have known ground truths for testing the registratio
and accuracy of various non-linear MR to US vessel registration algorithms.

Our registration algorithm was then validated for robustness and accuracy through multiple trials using synthetic US vess
generated from our digital phantom, along with US and MR images scanned from a real physical phantom, and finally 4 s¢
clinical data from 3 patients consisting of preoperative MR vessel images and intraoperative Power Doppler US images. Results
tests show that the estimated transforms recovered by our novel registration algorithm are not only accurate but also ro
processing images that contain large quantities of noise, artifacts and missing vessels commonly seen in clinical vessel images.
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Fig. 1
Three different cross-section views of the actual T1 Gado-enhanced MR image (MR image), the actual ultrasound volume (Actt
the simulated ultrasound volume (Simulated US) imaged in the same brain region.

MR image Actual US Simulated US
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Fig. 2
Workflow of the Digital Phantom showing each step of the Doppler US appearance simulation process. Images used and outp

processing step are also shown.
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Fig. 3

The placement of TPS control point pairs in relation to a region-of-interest (blue dashed box) for the creation of non-linear disto
control point pairs (gray) are located at the corners of the &taled (red box) version of the bounding box (black box) surroundil
region of interest. The ninth point pair (gray) is positioned in the center of the bounding box.

Fig. 4

Crgoss-correlation curves graphs of the simulated US (red) versus that of the real US (blue) when the vessels are translated (tof
(middle row), or scaled (bottom row). The horizontal axes of the translation graphs, rotational graphs and the scaling graph ai
millimeters of translational displacement, radians of rotation, and magnitude of scaling about the center of gravity of the US ves
respectively. All vertical axes of the graphs are cross-correlation values. Cross-correlation between the translation curves in th
directions are 0.91, 0.98, and 0.99, respectively. Cross-correlation between the rotation curves in the x, y, and z directions are 0
0.88, respectively. Cross-correlation between the scale curves is 0.86.
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Fig. 5
T1 MR images of the PVAc Phantom inflated with 0, 5, and 10ml of water in the implanted catheter, which can be seen at the b
of each image.

Oml

5ml

10ml

Fig. 6
Digital phantom registration percent success on test cases of different initial misalignment RMS errors using the linear and non-I

of our registration algorithm. Registration trials with RMS errors of less than 2.5mm are defined as successful.
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Fig. 7

Digital phantom registration results showing the TRE for all the trials after the nonlinear phase of the registration process. The ho
indicates the initial TRE prior to correction while the vertical axis indicates the final TRE after non-linear registration. The blue circ
results after non-linear registration and the pirg ate the results after linear registration. The black diagonal line shows where a rec
trial resulted in the reduction in TRE (point is below the line) or whether it increased the TRE (point is above the line). The greer
line shows our cutoff for success (2.5mm). The mean reduction of 0.62mm TRE from linear to non-linear phases of registratic

significant, withP < 2 ™ 0®4in a two-tailed t-test.

30 1 i ’
|
Non-Linear
Linear :
25 . ... Threshald for decrease in TRE . = :
Threshhold for success (2.5mm) * '
T 20 5 .
£ . T
¥ 15- E et
'_ - —"I - . - ot
7 G : .
£ 104 et : . !
o H
Initial TRE (mm)
Fig. 8

PVAc Phantom with 5ml inflation (Left) and its corresponding magnitude of deformation when non-linearly registered to the Om
phantom (Right). The magnitude of non-linear deformation is highest around the center of the phantom where the inflation catt
with the maximum recovered deformation of 3.01mm and the minimum of 0.008mm.

.01mm

5ml MR Image Deformation Magnitude (mm)
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Fig. 9

PVAc Phantom with 5ml inflation image (red) being registered to its Oml inflation image (green). The image initial alignmer
considerable misalignment. After linear registration, alignment is greatly improved but a large amount of misregistration can be
left side of the image and close to the inflatable catheter. Following non-linear registration, most of the phantom is well aligned.

Initial

Linear

Non-Linear

Fig. 10
Registration results showing improved alignment of the preoperative MR vessels (Green) with the intraoperative US vessels

images show a transverse slice plane of the US volume and the same slice plane through the misaligned MR volume before (L
(Right) applying the transformations recovered using our hybrid registration method. Notice that the MR vessels previously mis:
out of plane to the US vessels are now well registered. The images are from Patient 1 in Table 4.
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Fig. 11

Rggistration results using clinical data, with overlays of the dual-mode US (Red) on the Gadolinium-enhanced T1 MR images (!
images show a coronal slice plane of the US volume and the same slice plane through the misaligned MR volume prior to (Le
registration (Right). The TREs for this subject (Patient 1 in Table 4) before registration is 7.46mm and 2.88mm afterwards. Note tf
alignment of the sulci and ventricle borders.

Fig. 12

Rggistration results using clinical data from Patient 4 (see Table 4), with the non-overlayed Gadolinium-enhanced T1 MR image
overlays of the hot-metal toned dual-mode US on the MR images (Right) in both coronal (Top) and sagittal planes (Bottom) prior
registration. The TRE before registration is 3.75mm and 1.7mm afterwards. The arrows on the non-overlayed registered MR im
areas of improved alignment at the vessels, sulci, and ventricular borders through the use of our registration method.

Prior Registration After Registration

Fig. 13

Imgages from Patient 4 (see Table 4) showing a coronal slice from the reconstructed US image (Left), the Doppler US vessel ima
and the magnitude of non-linear deformation recovered after the linear registration phase (Right). This reveals that significan
deformation occurs even prior to dural opening. The magnitude of non-linear deformation recovered from MR to US registratio
high close to the Doppler vessels with the maximum recovered deformation of 2.5mm and the minimum of 0.006mm. No
deformation field can be high in the borders of the image where there are no veskelk-town°the amount of deformation in the
regions.

B-mode Image Daoppler Image Deformation Magnitude mm)
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Table 1
Parameters used in multiscale linear registration (Top) and multiscale non-linear registration with ANIMAL (Bottom)

Round Blur FWHM Sampling grid Crop margin Transform
1st 3.3mm 2.5mm 50mm Rigid-body
2nd 2.2mm 1.8mm 16mm Affine w/lsotropic Shear
3rd 1.5mm 1mm 10mm Affine w/Anisotropic Shear
Round Lattice Diameter Sampling grid Rigidity
1st 15mm 5mm 0.9
2nd 10mm 2.5mm 0.8
Table 2
Patient information and US scanning parameters for our 4 sets of clinical data
US Scan Patient
Hz Focus Age Sex Pathology Location
1 4 8cm 70 Male Glioblastoma Left Frontal
2 4 8em 40 Female Glioblastoma Right Parietal
3 4 8cm
4 6 8cm 49 Male Oligodendrocytoma Left Frontal
Table 3

TRESs resulting from applying the non-linear registration algorithm on 6 linearly registered physical phantom MR images (Final) and the initial TREs (Initial). The MR images were acquired by infl
the physical phantoms twicé, ) with 3 different volumes of water (0, 5, 10ml). The transforms are computed by registering each physical phantom MR source image with the remaining phanton
target images of dissimilar inflation volumes. Source images are listed as rows while target images are listed as columns in the table.

Ooml 5ml 10ml
1 2 1 2 1 2
Volume Initial Final Initial Final Initial Final Initial Final Initial Final Initial Final
oml 1 ™ ™ ™ ™ 18z1.1 26z19 1.7z1.1 27220
2 ™ ™ ™ ™ 18z1.6 14z13 1.7z14 19z17
&l 1 26220 14213 L g M g 14z1.2 26220
2 1.7z15 14z1.1 M i ul ux 16z1.3 18z1.6
o 1 27218 18z1.1 16z1.1 262z1.8 2 w M g
2 19z1.0 26z19 1.8z1.0 26220 ™ ™ il ™
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Table 4
Full registration TREs for our 4 sets of clinical data. The first row shows the TRE from intra-operative patient facial registration, the second row shows the results of our method after the
registration phase, the third row shows the final results of our method after the linear and non-linear registration phases, the forth and fifth rows show the percent reduction of TRE from th

registration to the linear and both linear and non-linear registration phases, respectively. The sixth row shows the additional percentage of TRE reduction following the non-linear registration afte
registration. The last row indicate the number of landmarks used to determine TRE on each patient dataset.

Data sets 1 2 3 4
Facial Registration TRE 7.25mm 3.51mm 4.61mm 3.74mm
Linear Registration TRE 3.48mm 1.32mm 3.50mm 2.12mm
Non-linear Registration TRE 2.38mm 1.23mm 3.38mm 1.70mm

Linear Reduction 52.0 62.3 24.2 43.3

Non-linear Reduction 67.2 64.9 26.7 54.5

Difference 15.2 2.6 25 11.2

of Target Landmarks 18 7 15 8
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