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ABSTRACT: This article addresses the problem of the representation and creation of sound by 
synthesis in the context of music composition, as seen from the computer-aided composition (CAC) 
perspective. An important theoretical basis of this work is the concept of computer modelling, 
discussed in relation to the notions of sound representation and music composition. Modelling sound 
as a signal is extended to the musical domain by considering as an alternative modelling composition 
as an activity that aims to produce sounds. The visual programming paradigm is adopted for the 
representation and conception of the composition models, and therefore for the musical representation 
of sounds. A composition framework dedicated to electro-acoustic music and sound synthesis 
integrated in the OpenMusic CAC environment is presented. Temporal issues are also discussed and 
are the object of specific developments. 

 
 

1. Introduction  
The recording of sound signals has renewed the musical approach to sound material. Once stored on a 
physical support, sound could be observed, manipulated, and considered as a concrete object 
(Schaeffer, 1977). Meanwhile, transduction technologies allowed the creation of acoustic signals from 
electric signals, representing another important step: musical sounds could then be produced not only 
using acoustic instruments, but also using the logical modules of electronic devices. Since then, 
composing sound has become a new compositional challenge (Stockhausen, 1988a). 

Computers and digital technologies represent another significant step in this direction. The 
computer helps to improve and develop new sound synthesis techniques, but also turns sound into a 
“composable” object. On a digital support, sound is represented by a sequence of symbols (binary 
digits encoding sampled and quantized values from the signal), which provide accurate visibility, 
edition, and manipulation possibilities. In theory, the range of sounds that can be created with a 
computer becomes almost unlimited: it boils down to the matter of computing the sample values. 
Sound is therefore likely to be composed like any other musical structure. Being the intentional and 
the final perceived form of music it might even be considered as the overall musical structure. 
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This theoretical standpoint seems promising, and has inspired most of the computer music 
research carried out over the past 40 years. Many technologies have been developed in the field of 
digital sound processing (DSP) and now provide wide-ranging means for synthesizing artificial sounds 
or manipulating recorded signals—see (Moorer, 1977; Roads, 1996) for a survey. 

In the meantime, computer composition research focused on higher-level musical issues and 
resulted in composition systems and languages dedicated essentially to score creation, i.e. following 
implicitly the traditional schema of instrumental music. In this context, it is generally assumed that a 
musician will read this score and play an instrument in order to produce sound, or at least this is the 
presumed underlying process behind the representation: the score carries information about certain 
parameters of sound (event onsets, pitches, durations, intensity) and the main part of the signal 
information is concretely determined by the performance of the music. The role of a composition 
system therefore basically consists in the formalisation and representation of the processes leading to 
the creation of a score composed of specific musical objects. The same conceptual scheme applies 
when working with MIDI devices or software synthesizers, whose synthesis processes’ inputs are 
basically the same (and sometimes even more restrictive) than those of an acoustic instrument. In this 
case, the notes connect the fields of composition and interpretation, and from indivisible symbolic 
primitives in the first one, they become complex sonic structures in the acoustic world. 

With generalized sound synthesis, however, the compositional representation is converted into a 
real sound signal by a computer process. The multiplicity of existing sound synthesis techniques now 
makes it possible to extend the parameters of this process to any kind of data structures. In addition, as 
sounds must be entirely described (i.e. written) by the composer, the knowledge, experience, and 
sensibility of the human performer—as well as the mechanical properties and behaviours of the 
instruments—need to be balanced in order to reach equivalently rich sonic results, which leads to an 
increase in the complexity of the data and processes to be dealt with by the composer. 

In the majority of early computer composition systems, this alteration of the musical scheme 
induced by DSP technologies were not truly and formally integrated. In consequence, a solution for 
actually composing sound, for penetrating sounds with the composer’s formal ideas (Stockhausen, 
1988b) has not actually been found.  

Today, this issue raises an increasing interest from composers and computer music researchers. 
From the signal processing point of view, it consists of defining high-level representations of the 
sound signal according to a given underlying synthesis technique which corresponds to new 
parameters to be integrated in compositional processes. Hence, the tools for the control of sound 
synthesis generally provide (graphical) interfaces designed for an easier setting and organization (most 
often, in time) of these parameters. On the other side (i.e. computer composition systems), the focus is 
on the manipulation of abstract high-level parameters subsequently converted to low-level data and 
piped to specific sound synthesis software. In both cases, a clear boundary generally separates 
compositional and sound-related issues.   

The approach we put forward here rises from computer-aided composition, therefore from one of 
the two previously mentioned domains. However, it adopts an original standpoint as it does not try to 
build on predefined high-level synthesis parameters, but rather builds abstract sound representations 
based on compositional concerns. The issue of the representation of sound is addressed simultaneously 
in relation to the notion of computer modelling, considered as a way of formalizing implement 
compositional processes, and to that of visual programming presented as a possible means for the 
creation and representation of the compositional models in a computer system. This will provide, as 
we hope to demonstrate, a generic framework for sound composition and may help composers to 
develop their musical conceptions freely both within the field of formal composition and of sound 
synthesis and processing, and eventually to put these fields in relation to each other following a global 
musical thought.  

In section 2 we first discuss the general question of the representation of sound from a theoretical 
standpoint and particularly the possible connections between computer and musical representations. 
Section 3 provides a general discussion about computer-aided composition and the notions of 
computer and compositional models. OpenMusic, a visual programming language dedicated to music 
composition, will be presented in this section. In section 4 we will consider extending the CAC 
conceptual framework toward sound-related issues so as to consider sound as the object of 
compositional models. Previous related works will also be discussed. Section 5 will then introduce the 
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main development lines of OM-Sounds, a project developed in OpenMusic including new features for 
sound manipulation, representation, and synthesis. In this section the possible solutions for dealing 
with sound synthesis parameters starting from abstract compositional processes will also be 
considered. Finally, high-level representations and temporal issues are discussed in section 6, as well 
as the corresponding developments in the OM-Sounds framework.  

 

2. The representation of sound 

2.1. Structured representations 
The representation of sound is a major underlying issue in the general problem of sound composition. 
Digital sounds are basically represented by a sequence of sound samples, which is generally not a 
suitable musical representation. This representation does not carry any valuable knowledge about the 
sound, considered as a musical structure to be defined and manipulated in a compositional process. 
Moreover, to create sound by chaining sample values is not a viable compositional task. More 
structured representations are therefore needed. 

Different techniques for analysing or synthesizing sounds (generally called sound 
analysis/synthesis models) provide such structured representations (De Poli et al., 1991). The 
classification of these models vary according to authors and intents, but it is possible to identify some 
general categories. The dominant category certainly corresponds to spectral models, which provide 
frequential representations of the signal: a sound is decomposed in frequency bins, and the energy 
carried in each of these frequency bins is considered. These models can be implemented by means of 
digital filters and oscillators, or by using the Fourier transform and its extension to non-stationary 
signals, the short-term Fourier transform – STFT, see (Allen and Rabiner, 1977). Subclasses of 
spectral models are, for instance, the additive models  (McAulay and Quatieri, 1986) where the sound 
is represented with a set of partials (individual sinusoidal components), source/filter models where the 
sound is represented with a source signal associated to a filter bank structure, or granular models 
(Roads, 2002) where sound is considered as a cloud of primitive sound grains in the time/frequency 
plane. Another general type of sound synthesis model is called the abstract model. In abstract models, 
the sound signals are described using mathematical expressions. The more famous example is the 
frequency modulation (FM) synthesis (Chowning, 1973). Signal (or "time domain") models are based 
on pre-existent signals, generally represented in wave tables, which are processed in order to produce 
sounds (e.g. sampling, mixing, wave table synthesis, etc.) Finally, physical models are based on a 
mechanical description of virtual structures and actions, then converted into mathematical systems 
solved by the computer in order to create the corresponding sounds (Florens and Cadoz, 1991).  

 

2.1. Symbolic representations 
All the aforementioned models provide structured sound representations, which nevertheless do not 
insure any compositional significance. Composition requires the introduction of the notion of symbolic 
representations, that is, representations likely to be integrated in a general (musical) thought or a 
compositional approach. Generally speaking, a symbolic representation consists of the application of a 
set of signs used to substitute more or less complex realities in order to reduce, structure, and organize 
the information (Chazal, 1995). Symbols help memorize this information, but also to read, to 
understand or impart knowledge, to think about the represented object, or—and  particularly in 
computer systems—to perform calculus on it.  

Symbolic representations are therefore likely to be part of and to undergo mental processes as 
well as computer processes. A distinction must however be made here between what would be called 
symbolic at the computer level and at the composer's musical level. Bits are symbols in the computer: 
they correspond to a physical phenomenon interpreted as binary values. They can be combined in 
order to constitute bytes, characters, or numbers which are yet higher-level symbols, but neither a bit 
nor a number will usually be considered as musically relevant symbols likely to be interpreted and 
handled by a composer. However, their combination creating a note-like representation (pitch value, 
amplitude, etc.) might constitute a musical representation. This representation is compact and 
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structured enough to carry meaningful information and to be integrated mentally in compositional 
processes. It corresponds to a musical tradition and to a well-defined musical element.  

Indeed, the notion of symbolic representation for music composition is often related to the 
traditional musical notation system and to the corresponding score representation. This representation 
corresponds to instrumental practice and to a formal conception of musical sound divided in timed 
events, essentially defined by a pitch (i.e. notes) organized (particularly in time) by compound 
structures (chords, voices, etc.) The musical objects and structures in the score are symbolic 
representations for they carry a musical sense and are likely to be handled (read, understood, written) 
in a given (musical) context (e.g. composition or music interpretation.) 

On the contrary, the numbers that constitute a digital waveform in a straightforward 
representation of sound are not considered as symbolic elements. Individually, these elements do not 
hold any specific meaning for a composer and can hardly be put in relation with one another in the 
compositional process. We could relate these representations to the subsymbolic domain discussed in 
(Leman, 1993; Camurri, 1990) if (with some simplification to the original concept) we consider that 
this domain brings together processes and representations that carry relevant meanings for the bare 
computer processing of the data, while symbolic representations holds meaning for the system user 
(e.g. a composer). 

Compared to a digital signal, the spectral representation is a yet more structured representation. 
The separation of the frequential and temporal information brings additional knowledge and some 
more musical sense is given to the overall information. It allows more powerful manipulations on 
sound, in the computer side as well as for composers' formal invention (Arfib, 1991). Further on, this 
information can be reduced: in the additive representations, the signal is represented by a set of 
partials, each representing a perceptually meaningful part of the sound. In certain circumstances, such 
compact and structured representations are thus likely to be considered as symbolic compositional 
elements. However, general sound synthesis parameters rarely reach this symbolic level: in a few 
seconds of sound, the parameters for any sound synthesis system can contain thousands of elements, 
essentially related to complex time-varying functions. A symbolic representation for composition will 
therefore involve personal and context-dependent decisions, and multi-layered abstractions will be 
required in order to ensure this symbolism at the various structural scales. 

 

3. Computer-aided composition: modelling music composition 

3.1. Computer-aided composition and music representations 
Once a symbolic representation is defined, computer composition tools can help users to create music 
by providing alternative and improved ways to write the corresponding scores (using graphical user 
interfaces, editors, etc.) They would then follow the straightforward approach of the prevalent score 
editing tools and software, in which the generative part of the compositional process is carried out 
(mentally or using other supports) outside the computer system. 

Computer-aided composition aims at integrating this generative part, insofar as it relates to 
calculus and thus is likely to be represented with programs. Musical formalisms, compositional 
concepts or processes are therefore considered in relation to computer tools and formalisms. As 
opposed to other domains, however, music composition has the particularity of implying creative 
processes that are not well understood and formalized. As a consequence, providing composers with 
computer tools and programs that would make music does not actually make sense (at least until these 
creative processes can be formally described). The problem is therefore considered from a slightly 
different angle: computer-aided composition tools aim at providing the composer with means to use 
programs for musical creation by implementing previously self-formalized ideas (Assayag, 1998). 
According to the terminology mentioned in (Girard et al., 1989), we address here the problem of the 
sense and denotation of a program: the denotation being considered as a result, while sense deals with 
the way to obtain this result. Traditionally, the program semantics promoted the operating side, 
forgetting about syntactic aspects: the semantic of a program is determined by its result. In a creative 
process, however, the absence of a "correct" result (denotation) can bring the compositional process 
(sense) to the forefront. A composer might be more interested in exploring a processing space, which 
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takes place in the program writing, than in resolving a mere computing problem. The program writing 
can thus carry a semantic content: while the score denotes the piece, the program gives it sense. 

An important idea of computer-aided composition is that as compositional processes can be (at 
least partially) carried out and represented by programs, then programming languages are the most 
relevant compositional supports for computer-musicians. Composers should then be considered as 
programmers rather than just as simple users of a given program. Indeed, most computer-aided 
composition environments have been designed in the form of specialized programming languages 
(Hiller, 1969; Rodet and Cointe, 1984; Taube, 1991; Dannenberg, 1989). In these environments, 
programming techniques and paradigms are applied to music creation, and provide broad expressive 
power. Functional languages have proved to be useful in this scope (Dannenberg et al., 1997). The 
functional formalism derived from the lambda calculus (Barendregt, 1984) considers data and 
programs in a similar way; the abstraction mechanism makes data the source of programs, which can, 
in turn, generate new data. Considering a program as data thus allows to focus on the writing of 
programs. Other different programming paradigms were also considered for composition, such as 
object-oriented programming (Pope, 1991), or constraints programming (Laurson, 1996; Rueda et al., 
2001).  

The development of human-computer interfaces, and particularly the emergence of visual 
programming languages such as PatchWork (Laurson and Duthen, 1989) and its successors 
OpenMusic (Assayag et al., 1997a) or PWGL (Laurson and Kuuskankare, 2002) have considerably 
increased the creative potential of computer-aided composition environments. If we consider that the 
compositional process carries the sense of a musical piece, visual programming languages are then an 
appropriate means for expressing this sense. Programming is made accessible without requiring highly 
technical skills and the visualization and editing tools allow for a graphical representation of the 
processes and data structures involved (Assayag, 1995). 

 

3.2. OpenMusic: a visual programming language for music composition 
OpenMusic (OM) is a visual extension of the Common Lisp / CLOS (Common Lisp Object System) 
programming language (Steele, 1998). As it is used as a general support for the works we will present 
in this paper, we will give here a brief description of this environment.  

In OpenMusic, programs are represented in patch editors, where the composer/programmer 
assembles and connects functional units using graphical boxes. These boxes represent calls to the 
functions (basic Common Lisp primitive functions or user-defined functions) defined in the 
environment, and the connections between the inputs and outputs of these boxes define a graph that 
represents the functional composition of the program. The prevailing paradigm in OM is thus that of 
functional programming, although as we shall see hereafter, it also encloses substantial “object-
oriented” aspects. The program represented in a patch can be evaluated at any point; which initiates 
the recursive evaluation of the functional calls following the composition of the program, and 
corresponds to its execution.  

In addition, this visual programming environment is provided with special functions and data 
structures (classes), allowing to head programming toward musical applications. Figure 1 shows an 
example of a patch created in OpenMusic. 
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Figure 1. A patch (visual program) in OpenMusic: a score is generated from a rhythmic tree 
structure and a pitch generation algorithm. Each box represents a functional call. Factory 
boxes are used to represent the data structures (note, voices, break-point function.) The 
"interval" box encloses an abstracted processing unit (i.e. another patch.) and the "omloop" 
box contains the (graphical) description of an iterative processing of its input data. 

 
The language also provides a set of graphical control structures, such as iterations and conditional 

controls, as well as the possibility to carry out further programming concepts like abstraction or 
recursion.  

Functional abstractions let some elements of the programs become variables, which leads to the 
definition of functional objects. An abstraction is created by defining inputs and outputs connected to 
these variable elements and to the results of the patch. The resulting abstraction can then be embedded 
(applied) into other (higher-level) programs or abstractions and thereby be used in different contexts. 
This is a fundamental feature in a computer system for composition (and in a programming 
environment in general) since it makes it possible to organize and progress in the successive 
complexity and/or structural layers while carrying out compositional processes. 

In addition, OM takes advantage of the potentialities of the object-oriented programming from 
CLOS by allowing the user to create classes, methods, relations of heritage (Agon and Assayag, 
2003). Specialized libraries have also been created for constraints programming (Laurson, 1996; 
Rueda and Bonnet, 1998; Truchet et al., 2003). 

Various predefined classes (in the sense of object-oriented programming) of musical objects are 
available (e.g. notes, chords, chord sequences, break-points functions, etc.) and make it possible to 
manage musical material within the visual programs. They are represented through the concept of 
factory boxes, i.e. functional calls generating instances of these classes. These boxes allow the 
instantiation of objects by providing individual access to the values of their public slots, and to use 
these values in downstream computation processes. They also make it possible to visualize and edit 
the content of the most recently created instance via specialized graphical editors (e.g. score editors). 
The factories thus make possible to generate, store, and visualize the state of a given structured data 
set at a given moment of the calculus (i.e. in a given position of the calculus graph defined in a patch), 
and at the same time allow the manual editing of these data thanks to the associated editor, which 
constitutes a fundamental entry point for the intervention of the user (composer/programmer) in the 
calculus (Agon and Assayag, 2002). The dual representation and control over both the musical objects 
and data, and the processes in which they take part (or which they come from) constitutes another 
essential feature which distinguishes this environment from pure programming environments and 
emphasizes the particular approach of CAC that we will detail hereafter.  

Interested readers can find more information about OpenMusic and the concepts mentioned in 
this overview in (Agon, 1998; Assayag et al., 1999; Bresson et al., 2005). For concrete musical 
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applications, they might have a look at (Agon et al., 2006, Bresson et al., 2008), which report a 
collection of articles written by composers and describing the various ways OpenMusic can be used 
for composition. 

 

3.3. Computer modelling and compositional models 
Although the first uses of the computer for music composition practically date back to the birth of the 
computer, the current position of computer-aided composition that we wish to emphasize here presents 
significant differences with the former conceptions. Indeed, most of the early compositional works 
carried out with computers related to a certain “automated” approach, in which programs were 
designed following various formalisms (functional, rule-based, stochastic, etc.) and run in order to 
produce music. Our present conception presents a slightly different point of view, and promotes the 
interaction between the composer and the program execution by the manual setting of the initial or 
intermediate material, the trial-and-error, and the progressive construct and complexification of the 
musical processes developed under the form of programs.1 This conception is also closely related to 
the emergence of graphical tools and editors in the composition environments and gives rise to a new 
way of imagining the use of computing tools by the composers. As we shall demonstrate forthwith, it 
can be related to the notion of (computer/compositional) modelling. This idea is fundamental in our 
conception of CAC, and may help understand the general approach adopted for the problem of the 
musical representation of sound, or more generally, that of sound composition.  

By modelling an object we mean considering it through a set of concrete or abstract elements 
referring to this object and interacting in a formal discourse (Berthier, 2002). This object is considered 
through certain components that interact in the model structure. The model therefore reflects a 
particular way of thinking about an object; the same object can be modelled in many different ways 
according to subjective approaches to this object. Hence, a model representation (implemented in a 
computer program, for example) puts forward some particular aspects of this object. This 
representation is not a neutral tool and suggests the possible operations to be carried out with the 
model by bringing out a particular operating viewpoint and a user interaction framework. This 
subjective character therefore supports the aesthetic interest of an open and unrestricted model 
representation (Risset, 1991; Eckel, 1992). 

As mentioned above, the term of model is used in the DSP domain to classify the different types 
of existing techniques available for representing or synthesizing sounds. A certain way to consider 
sound corresponds to each of these techniques that explicit its structure: a sound model allows the 
production of a sound as well as its formal representation (Eckel, 1993). The synthesis models are 
implemented in the form of programs in computer systems, that is, processing tools which can produce 
sounds from a set of values which we call parameters (De Poli and Rochesso, 2002). From this point 
of view, the synthesis tools constitute experimental domains in which compositional processes must 
bring into being particular sounds (Eckel, 1993) by setting concrete values to each one of these 
parameters. 

Computer-aided composition, on the other hand, places the compositional process in the centre of 
the modelling activity (Malt, 2003), leading to the introduction of the term “compositional models”. In 
this new perspective, the modelling process is what actually abstracts music from its raw acoustic 
manifestation to the realm of composition, under the form of formal structures and processes.  

In a computer-aided composition system, the compositional models are therefore represented with 
programs including the internal representations of their formal components (compositional data), but 
also with their structural relations which constitute the core of the compositional process. These 
programs are created, corrected, stimulated by the composer in order to obtain musical results. While 
being constructed the components, as well as the structure of the model, become concrete along with 
the definition of the object (Berthier, 2002). The creative musical sense of the composition model then 
arises from these different representations of the components and structural aspects of the model.  

                                                        
1 Laske (1981) was one of the first articles that suggested the importance of this interaction between the composer and the 
computer. 
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4. Sound representation and modelling in computer-aided composition 

4.1. General approach and summary of the conceptual framework 
In order to address our problem of the musical representation of sound, we will now follow our 
approach of computer-aided composition (considered as a framework for the development of  
compositional models) and insert sound in this conceptual context.  

First we must consider sound as the intentional object of a compositional process, and therefore 
as a structure likely to be represented by a program. Through the general structuring of the programs 
via the abstractions or hierarchical constructs, compositional models are created, made of organized 
component and structural aspects and corresponding to particular situations or compositional 
approaches. In this context, sound is therefore not considered only from the acoustic signal production 
point of view, but rather as the product of a compositional process that aims to create this signal. By 
determining particular components and structural contents of these models, certain aspects of the 
programs are put forward of the representation, thus establishing implicit symbolic abstraction levels 
within this representation.  

This representation of sound, especially using visual programming interfaces, might therefore 
allow for the symbolic access and control of the corresponding compositional models, whether they 
concern symbolic or subsymbolic structures. The synthesis processes are then integrated within a 
network of structural relations and components, uniting the low-level sound synthesis aspects and the 
symbolic layers of composition, and providing both a sound producing entity and a logical object 
musically meaningful (Eckel and Gonzalez-Arroyo, 1994), that is, a representation allowing to 
formulate compositional intentions. The musical sense is made explicit by recovering (mentally and/or 
physically) the musical object of the model as a formal structure (for the composer-at-work) or 
eventually as a sound according to a sound production process.  

4.2. Related works 
To meet this objective CAC systems must be adapted with new representations for the compositional 
model components, and structurally extended down towards sound synthesis processes with an 
additional part, in charge of interpreting these components in order to recover sound signals.  

Various works were carried out to further this purpose. Some sound synthesis languages provide 
high-level programming features which make it possible to embed sound synthesis processes in 
algorithmic composition processes. One of the most representative of this type of environment is 
SuperCollider (McCartney, 1996). Dannenberg (1997), Rodet and Cointe (1984), Eckel and Gonzalez-
Arroyo (1994), Hanappe (1999) represent other attempts to work with sound synthesis using 
programming languages. As for visual programming environments, the practice up to now in 
PatchWork and OpenMusic was to format synthesis parameters computed by compositional programs 
and dedicated to specific sound synthesis softwares (most frequently, scores for the Csound synthesis 
language). PWGL proposes more advanced features since it is enriched with a real-time sound 
synthesis framework (PWGLSynth, see Laurson et al., 2005). With PWGLSynth, direct interaction is 
possible between the score or other high-level musical structures calculated in visual programs, and 
sound synthesis processes designed in the same environment using a distinct but integrated engine. An 
implicit “score level” thus separates these two domains; however, the integration of real-time 
synthesis with (“non-real-time”) compositional processes allows powerful possibilities. 

As we will demonstrate, our approach in OpenMusic deliberately favours the compositional part, 
attempting to make it get as closer as possible to the final sound level, and delegate the sound 
rendering to external sound synthesis tools. The role of the CAC environment is therefore not only to 
link compositional parameters to sound synthesis processes but to make musical thought correspond 
with the sound domain in order to provide sound design with a musical dimension.  
 

5. Visual programming framework 
OM-Sounds is a visual programming project that completes the computer-aided composition 
environment OpenMusic inspired by the theoretical framework described above. It proposes new tools 
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and features for the creation of composition models using sound representations and synthesis 
processes (Bresson, 2006). 

Figure 2 shows an example of a complete synthesis process developed with the OM-Sounds tools 
that will be presented in this section. 

 
Figure 2. A sound synthesis process developed in OpenMusic using the OM-Sounds 
framework. Symbolic data structures (a) are converted into synthesis parameters under the 
form of SDIF structures (b) in a sub-process (abstraction) and then transferred to a synthesis 
system (c) in order to compute a sound (d). 

 

5.1. Sound processing 
Contrary to the major part of the aforementioned CAC systems oriented toward sound synthesis, 
sound synthesis is not performed within OpenMusic. A deliberate choice has been made to use 
external and pre-existing tools and standards so as to favour an openness of the system, 
interoperability, and to better concentrate on compositional issues. As we shall demonstrate in this 
section, these external tools, although they correspond to radically different paradigms and 
technologies, should be coherently integrated in the compositional framework. Sound synthesis 
processes can take on a large variety of forms, compositions, and complexity, and can inspire the 
corresponding possible (and subjective) representations. They are considered as an abstract variable 
element in our compositional models.  

Different (possibly complementary) options are possible in order to compute the digital sounds 
from external sound processing tools. OM-Sounds can communicate with these tools by sending 
system commands and writing/reading external files (see Figure 2-c). Such interfaces were designed 
for synthesizers like Csound (Boulanger, 2000), SuperVP (Depalle and Poirot, 1991), or CHANT 
(Rodet et al., 1984). Various predefined processes are available through specialized functions that 
convert their input data to adequately formatted parameter files. Computer languages for programming 
DSP processes—e.g. the Music N languages (Mathews, 1969) like Csound, but also functional 
languages (Orlarey et al., 2004), or real time DSP visual programming systems (Puckette, 1991; 
Puckette, 1996)—allow the compositional activity to deal with sound synthesis programs design. As a 
complete programming language, Csound allows greater possibilities than precompiled synthesizers. 
An "orchestra" edition tool makes it possible to define the DSP processes in Csound within our visual 
programming environment. Through the possibility of creating and sending data in the form of events 
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in the OSC protocol (Wright and Freed, 1997) it is also possible to use, or define external sound 
synthesis processes in real-time environments such as Max/MSP or PureData and communicate the 
input data of these processes to them. 

5.2. Sound descriptions 
We use the generic term of sound description to refer to the data related to sound signals in the 
compositional processes. Sound descriptions generally correspond to the parameters of a targeted 
sound synthesis process, or higher-level structures built upon these parameters. They constitute a first 
abstraction for describing sounds following a particular angle defined by the model. The sound 
descriptions should be as general as possible so as not to constrain the development of compositional 
models with predefined assignations. We manage them with general-purpose objects like the envelope 
(evolution of an abstract parameter value) or the matrix (see Figure 2-a and b). The matrices represent 
the joint description of various parameters. Gathering them in a sole structure facilitates the setting of 
relationships between these parameters and their evolutions. It also clusters them in a single object, 
which then acquires a stronger symbolic status in compositional processing, since it represents a more 
consistent reality. Matrices were especially used in the implementation of the OMChroma project, 
now integrated in our environment, which has been described in previous articles (Stroppa et al., 
2002; Bresson et al., 2007). 

Digital sounds are the final intended representations of the object of our compositional models, 
and they might come into play in the processes as initial or intermediate material. In OpenMusic, the 
class sound represents an audio file, i.e. a sound under the basic digitalized waveform representation, 
which is also a particular form of sound description (see Figure 2-d). In a patch, this object is 
principally instantiated using a pathname assigning a file on the disk. The inner data of a sound are 
thus stored in an external file. They can be processed in the programs using a functional toolkit built 
on the underlying audio architecture:2 cascading pointers facilitate combining and embedding various 
treatments and manipulations of abstract audio resources without handling the samples’ data directly. 

The cross-conversions between sounds and low or high-level representations of sound allow 
composers’ personal processing and the possible subsequent definition of musical abstractions. The 
intermediate levels between symbolic entities and low-level data may indeed have a particular 
importance: in our comparison with instrumental sound creation, they may correspond to the steps that 
substitutes (and should balance) the contribution of the human performer. For this purpose, 
complementarily to the usual approach consisting in automatically converting data from composition 
to sound synthesis systems (on the reverse operation), we propose making it possible to apply the 
symbolic calculus directly on these data.  

The conversion to standard data formats ensures the communication and transfers between 
composition and synthesis processes. While MIDI became to be the standard in instrumental-like 
controlled systems, the SDIF format (Sound Description Interchange Format) was created for 
generalized sound analysis/synthesis data, providing an open standard for the codification, storage and 
transfer of sound descriptions (Wright et al., 1998). Basically, an SDIF stream is a sequence of timed 
frames, each containing one or various types of matrices of parameters. Considering this format as a 
generic support for sound descriptions allows us to provide generic tools for the low-level processing 
of sound description data (Bresson and Agon, 2004). The standard unifies all types of sound 
representations with the same format, and therefore allows for their manipulation by using the same 
programming toolkit. At the same time, it guarantees the compatibility of these data in possible 
communications and interchanges with external applications. Like sound, the SDIFfile class points to 
an external file containing sound description data. SDIF-formatted data can be created and processed 
thanks to the internal SDIF structures (frames, matrices, type declarations, etc.) available among the 
visual programming tools, and read/written from/to SDIF files (see Figure 2-b). Finally a 3D editor 
(Bresson and Agon, 2004) is used to visualize these files, and control the data transmitted across the 
system. 

 

                                                        
2 LibAudioStream audio library, by GRAME (http://libaudiostream.sourceforge.net) 
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5.3. Compositional issues 
As previously explained, the sound descriptions and sound synthesis processes are generally close to 
the subsymbolic domain, and must generally represent complex time-varying values precisely. In 
consequence, they can hardly be taken up entirely and extensively in a compositional thought. The 
tools of the visual programming framework, principally the abstraction and iteration features, might 
make it possible to manage this complexity by structuring the processing aspects of the models. 
Additional features also allow the handling of the complexity of the data using computational or 
behavioural features, or by using data derived from existent sounds. 

When high precision is required in the sound description data, the values can be specified either by 
extension in a straightforward (but generally tedious) way, or by intension using either algorithmic or 
mathematical means. Programming and calculus allow for the generation complex data, or for the 
transformation and computation of these data from initial minimal ones (for example using sampling, 
linear, or polynomial interpolations—see Figure 3-a). An envelope, for example, can often be 
represented with few points (a break-point function) at the compositional level, since the user does not 
generally need to control the full values of a parameter evolution, but essentially its profile (e.g. for a 
dynamic envelope). Such functions can be interpreted and converted later in computing processes in 
order to recover more precise descriptions. The matrix class is also provided with particular features, 
and can be instantiated either by extension or by symbolic means, interpreted in the matrix processing. 
The number of elements is fixed, and the different fields are filled in appropriately according to the 
type of input data: constant values, lists repeated until completion of the matrix, envelopes sampled 
accordingly to the size of the matrix, or even user-defined functions evaluated, also accordingly to the 
elements of the matrix. 

User-defined procedures can also be assigned to the matrix in order to specify how the elements 
should be processed in order to produce the final data (Agon et al., 2000). Subclasses of matrix might 
even enclose the underlying synthesis process specification. A behavioural aspect can thus be 
associated to the sound descriptions, or is sometimes implicitly contained in the classes themselves. 
The symbolic means provided by the visual programming tools therefore allow the formulation of 
generative rules in order to create complex descriptions. This particular aspect was also discussed in 
(Bresson et al., 2007). 

Another widespread method to obtain complex parameters values for sound synthesis processes is 
to use signals from the real, physical world. These signals ensure the richness and diversity of the 
corresponding material, subsequently handled by programs in compositional processes. This is one of 
the main advantages of real-time systems, where gestural control, sliders, or other motion capture 
devices enable easy experimentation and direct integration of natural data within the synthesis 
processes. In contrast, the computer-aided composition approach favours an overall view over the 
musical structures and considers data from sound signal analysis as achieved entry-level material. 

OM-Sounds provides a specialized toolkit for extracting data from sounds by analysis processes. 
These processes are carried out by external tools for which specialized interfacing functions were 
developed. The SuperVP program is used here again to process STFT analysis on sound files (and 
return the spectral analysis data), fundamental frequency estimations (Doval and Rodet, 1991), or 
transient detection analysis (Röbel, 2003). Pm2 is another additive tool from IRCAM used to process 
partial tracking or "chord sequence" analysis. The results of these analysis processes are stored in 
SDIF files. The data in these files can be accessed in the visual programs via a set of functions for 
extracting localized or selected data, likely to be later processed in downstream visual programs or 
converted into higher-level data structures (see Figure 3-c).  

Figure 3 illustrates the process previously shown in Figure 2 with supplementary components for 
sound description data generation corresponding to the methods mentioned in this section. 
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Figure 3. Generation of complex data for sound synthesis processes. In this patch, derived 
from the patch in Figure 2, the input data of the parameter setting function (“make-
sdifframes”) are generated by an interpolation process producing multiple envelopes (a), by a 
simple arithmetic series producing regular time frames (b), and by the fundamental 
frequency analysis of an audio file and symbolic processing of the analysis data (c). 

 
 

The specificities of the environment described up to this point can thus be summed up with the 
following few points. First, it is possible to manage sound synthesis processes and sound 
representation using structured and visual processes. The specificities of CAC systems (namely the 
possibility of formatting a model following abstract compositional ideas, of experimenting with this 
model and refining it until the targeted results are reached) are therefore applied to the design and 
creation of sounds. Graphical editors and representations allow a trace of the processes to be kept and 
to efficiently apprehend, store, and experiment with the sound processing tools and operations. The 
programming features then make it possible to design complex algorithms in order to define the 
parameters of these processes as well as the possibility to carry on iterative processes in order to 
manipulate large data bases or sound material banks. As this toolkit is integrated in a general-purpose 
CAC environment, it is also possible to link the sound synthesis process to traditional musical 
structures and tools (such as score editors or symbolic data manipulation features). Finally, all these 
possibilities are combined in one functional execution and under a common calculation and 
representation paradigm. 

 

6. Time and structure 

6.1. Visual programs and temporal structure 
By using the OM-Sounds framework along with the general visual programming tools of the 
OpenMusic environment, composers are thus provided with means to develop complete processes in 
relation with sound processing issues. In this context, the functional program structures let them 
manage the complexity by maintaining hierarchical control from musically relevant abstractions down 
to DSP processes. 
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However so far we have omitted a fundamental aspect of composition models: the relation of 
musical material and processes with time structures. Music composition is indeed essentially a 
question of organizing time structures; and sound synthesis also requires a particular attention to the 
temporal evolution of the parameters. The control of sound synthesis processes thus obviously 
involves control over time aspects including the temporal behaviours of the individual components as 
well as the organisation, sequencing, and articulations of a global musical form. 

In the environment we have described up to now, time is only considered as one of many musical 
parameters in the programs. The musical objects could be compared to the out of time structures from 
(Xenakis, 1992), i.e. structures containing their internal composition rules, but that have not yet been 
unfolded in time. They have an internal temporal dimension but a musical time structure remains to be 
defined in order to develop musical forms. 

For this purpose, we use the maquette interface of OpenMusic, which is able to put visual 
programs in a temporal context, thus improving the modelling framework with time structures. The 
maquette is an extension of the notion of visual program with additional spatial and temporal 
dimensions, allowing to put the elements of the composition framework (data structures and 
processes) are in close relation to these new dimensions.  

In a maquette editor, the boxes (called temporal boxes) represent functional units (programs) 
producing musical outputs (see Figure 4). These boxes can either refer to a standalone object factory, 
or to a program (patch). The position and graphical properties of these boxes are associated with a 
temporal and structural sense; particularly, the horizontal axis of the editor represents time, so that the 
position and horizontal extension can be related to offsets and durations. The graphical and temporal 
characteristics (size, position, etc.) of the temporal boxes can be edited manually in the maquette 
editor and are also accessible within the boxes' built-in patches. The calculus of musical outputs could 
then possibly depend on these external properties.  
 

 
Figure 4. Example of a maquette in OpenMusic. Each temporal box encloses a patch that 
produces a musical output. Some of them can use data coming from other boxes using 
functional connections. In this example the pitches from a chord sequence are reversed and 
used in the second one. 
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The temporal boxes can also be linked by functional connections so that the whole maquette may 
finally be considered as a program, holding functional and temporal semantics. Temporal relations and 
constraints (synchronization, relative offsets, etc.) can therefore be set between the boxes by setting 
the temporal parameters in their corresponding patches. Hence, the calculus can determine the time 
structure. Processes are unfolded in time, but they can also process temporal information making the 
computing time of the program, the musical time of the data, and the general time structure interact 
(Assayag et al., 1997b). This point may be related to the need formulated in (Boulez, 1987) to let 
external compositional criteria (organisation of the musical objects) act on internal criteria 
(construction of the musical objects) and modify the objects in order to link them in a coherent 
development and place them in a formal context. In addition, the possibility of embedding another 
maquette in a temporal box allows for the construction hierarchical temporal structures. 

Upon execution of the program, each box is computed individually or following the possible 
functional connections. Provided their outputs have a musical meaning, they can be gathered in an 
inclusive object integrating them, given their temporal organisation. This object can be related to the 
object of a composition model, that results from a particular configuration of the components 
(temporal boxes) and the structure of the maquette. It can also be played and heard as a musical object. 

 

6.2. Temporal issues and sound synthesis processes 
One of the first questions when trying to define temporal structures for sound synthesis is that of the 
nature of their components. As explained in (Honing, 1993) the notion of structuring depends on the 
possibility of decomposing a representation into meaningful entities, which the author calls primitives. 
With sound synthesis, these primitives are not necessarily self-meaningful musical entities (like notes, 
as in Figure 4, or sounds) but can be any particular aspects of a sound representation. The definition of 
these primitives will, moreover, condition the representation since it will determine the part of the total 
information hidden in terms of explicit control (in the time structure), and that which will pass up to 
the foreground of the organisation. 

Most of the sound synthesis parameters require a description of their continuous evolution in 
time. Here continuous denotes an evolution in which the user/composer cannot distinguish 
independent (discrete) meaningful entities. This can be compared to the previously discussed 
subsymbolic/symbolic division; and here also, the discrete aspect of the structures, perhaps better 
expressed as discontinuity, provides landmarks for transitions and separations, and at the end is what 
gives rise to composition in its many dimensions (Boulez, 1987). 

For the construction of a sound representation unfolded in time, we are thus led to define 
symbolic event-like objects, as abstract sound description data computed by programs and that take 
part in the temporal structure, and then to consider their (possibly continuous) expansions and 
interpretation in another lower structural level.  

A new element is attached to the maquette for this purpose, in the form of an auxiliary patch. This 
patch defines a process responsible for the interpretation of the components that make up the time 
structure. Typically, it will make use of sound processing and low-level features in order to compute a 
sound with the information provided by the primitive elements (events) temporally organized in the 
maquette (Bresson and Agon, 2006). 

Figure 5 shows a simple example of a maquette including the aforementioned aspects. In this 
maquette each box is an abstraction defined by the user, i.e. a program having some possible inputs 
but, above all, an output that produce some part of a sound description (in this case, a matrix of 
parameters), which constitutes an event in the high-level temporal structure. The execution of the 
program represented in the maquette is therefore now carried out in two successive steps. After the 
events were computed and temporally organized, the second step of the program execution processes 
them in order to expose their complete contents and/or to interpret them in order to recover a sound. 
The access via programming to this process (represented by a patch visible at the bottom left-hand part 
of the maquette editor) therefore permits specific and subjective interpretations of the data. 
Continuous phenomena and evolutions can thus be handled in the inner program contents of the 
events, or in this final synthesis process (particularly when transitions between different events are to 
be specified). 
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Figure 5. Extended maquette for the representation of sound synthesis processes. The boxes 
in the maquette temporal structure (a) refer to the various instances of patches producing 
sound description data (b) and interpreted by a general synthesis process (c). This process is 
represented in the bottom left-hand corner of the maquette editor, and is visible on the left-
hand side of the figure.  

 
The “discretization” strategy (i.e. the definition of the primitives of the temporal structure) 

therefore depends on the user of the system: the events can correspond to any kind of data, and not 
necessarily to musically independent structures, i.e. structures carrying their full musical meaning (this 
meaning being recovered later on by the interpretation process). In addition, such a maquette can 
concern a microscopic structure (to be integrated in a higher-level musical form) as well as a macro-
structure defining the form of a whole musical piece. 

There are then three conceptual levels on which the composer can interact in the global 
composition/synthesis process. At a “subsymbolic” level he can work on the definition of events as 
abstract programs or data structures (Figure 5-b). At a “symbolic” level, he can manipulate the 
maquette components in order to move, resize, duplicate, and organize the different types of 
previously defined events (Figure 5-a). Finally the interpretation process, back to the subsymbolic 
level, makes it possible to work and experiment on the semantic of the overall structure, i.e. on the 
process by which it will be converted into a sound (Figure 5-c). 

The maquette can therefore constitute a general representation of a sound in the compositional 
modelling framework. In this representation, the high-level compositional processes are developed 
along with the DSP processing of the data, which is an independent and flexible part of the model. At 
the same time, it plays the role of the score, where symbolic objects (events) are generated by 
programs, and organized following a structure defined by temporal or functional relations. The 
dimensions of the sound representation space are reduced in the high-level interface (the maquette 
editor), which constitutes a personalised representation of a musical form. This external visible part 
puts forward a subjectively relevant aspect of the global process, principally by the choice of the 
internal parameters related to the external box characteristics. On this external part, direct hand 
manipulations can be applied, enabling the experimentation with forms and temporal organizations. 
While the external representation is simplified in the high-level interface, the access to the low level 
through calculus is not restricted and still allows for a complete control of the deployment of the 
descriptions at the moment of their transformation to a sound signal. 
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6.3. Discussion: further works on time structures 
Composition models facilitate the creation and development of some partial aspects of a musical work. 
Various models may then possibly be considered when put together in higher-level musical forms, that 
is, in higher-level models including sub-models as elemental components. The temporal dimension 
and musically relevant result of the maquette (the object of the model) indeed make it possible to 
imagine higher-level temporal contexts, or more generally higher-level composition models, in which 
a representation such as that carried out in the maquette might be considered only as a part of a whole 
compositional process. Moreover, we have previously mentioned that a sound could possibly be the 
result as well as the entry-level material of a compositional process, which theoretically supports this 
notion of self-nested structures in the composition framework. 

Maquettes (as well as simple patches) can embed other sub-maquettes in hierarchical temporal 
structures. In this case, the various sub-models must also be able to interact with one another in order 
to constitute a logical structure. The hierarchy is thus extended to the general structural domain by the 
possibility of setting up abstractions in the maquettes (i.e. to make some of their parameters variable, 
as would be done with classical programs – patches) and to define functional relations. However, this 
hierarchical view poses some interesting problems that will need to be solved in further works on the 
system’s temporal structures. Particularly, the role of the synthesis process added to the maquette 
(which would not necessarily produce sound but could be a component in a higher-level structure) 
must be re-envisaged, and raises the question of the real consideration of (temporal) programs as first-
class objects in the visual programming language: a maquette must be seen as a higher-order function, 
i.e., a function dealing dynamically with other functions to produce a musical object (sound), but also 
a first-class object able to be integrated in other higher-order functions. Moreover, this “functional 
programming” view must be considered in parallel with the temporal structures which organization 
must be preserved and accessible through the different hierarchical levels. The possible relations 
between elements that do not share a direct hierarchical relation might also be problematic. 

Although functional and temporal relations can also be implemented between the temporal boxes 
in a maquette (through the corresponding patches) some tools for a direct integration of logical 
relations, not subjected to the calculus of the maquette and of the included boxes, might also improve 
considerably the musical efficiency of this tool. This is the focus of current works by Allombert et al. 
(2007) on the integration of real-time logical relations in the maquette. 

Finally the combination of heterogeneous temporal systems such as that of rhythmic musical 
notation is also the object of developments in a new score editor to be integrated in OpenMusic. This 
editor should make it possible to manage rhythms, linear time systems (such as that of the maquette), 
as well as other (discrete or continuous) musical object possibly involved and interrelated in musical 
and sound synthesis processes (Agon and Bresson, 2007).  

  

7. Conclusion 
Digital sound synthesis techniques provide powerful sound representations likely to be manipulated by 
calculus. Meanwhile, computer-aided composition considers the formal models of musical ideas and 
provides representations for their development in a compositional context. The computer constitutes 
the environment where these two domains take place: it makes it possible to work on the formalisation 
of musical structures and on the creation of synthetic sounds, that is, at all the different levels of music 
creation. The issue we tried to address in this paper therefore goes beyond this elementary coexistence 
and moves towards environments able to integrate the concepts, data, and processes from these two 
domains in a complete and coherent compositional approach.  

We first underlined the relevance of programs as a possible representation for music, revealing its 
compositional aspects, and that of the programming languages as corresponding compositional tools. 
The concept of computer modelling applied to sound processing and to compositional fields then 
allowed us to devise a musical representation of sound, determined by the structure of a compositional 
model. Sound considered within this conceptual basis is no longer represented only by some data 
intended to be sent to a synthesis program, but by a program corresponding to a compositional process 
likely to generate these data and the subsequent sound result. As the object of a compositional model, 
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a sound does not actually have any predefined representation, this representation being defined along 
with the creation of the model.  

On these theoretical bases we have presented the main development lines of a computer-aided 
composition framework oriented towards sound synthesis, created within the OpenMusic visual 
programming environment. In this framework, the main advantages we have emphasised are the 
modularity allowed by abstractions and structuring of the processes, the relations between structures, 
time, and calculus, as well as the possibility of dealing with continuous and subsymbolic issues in a 
symbolic environment. The complex objects involved in the setting of sound synthesis parameters are 
handled concretely or by intension starting from symbolic initial data structures associated with 
programs or behavioural rules, and connections to the sound domain are provided through 
communication with sound synthesis and analysis programs. Furthermore, the general-purpose 
computer-aided composition environment ensures that the sound synthesis issues can be directly 
connected to the macro-compositional processes or structures.  

The temporal outlook and structuring of the processes allow the free determination of a symbolic 
musical level and further manipulations on it, as well as on the resulting subsymbolic levels of the 
process. It includes the different elements of a musical work—from sound conceptions to the global 
piece forms—and enables a constant interaction with the materials and processes at every step and 
structural level.  

This framework therefore constitutes a complete system for modelling compositional processes 
and creating musical sound representations. It makes it possible to compose and manipulate sounds 
within a symbolic framework defined by composers. In The OM Composer’s Book 2 (2008) 
composers like Tolga Tüzün or Hans Tutschku give some good examples of pieces composed using 
parts of the visual programming and temporal representation tools presented in this paper. We believe 
that future improvements may also provide other innovative potentials in the field of sound 
composition and contemporary music creation. 
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