I. Ahumada, P. Escudero, L. Ascar, J. Mendoza, and P. Richter, Extractability of Arsenic, Copper, and Lead in Soils of a Mining and Agricultural Zone in Central Chile, Communications in Soil Science and Plant Analysis, vol.33, issue.11-12, pp.1615-1634, 2004.
DOI : 10.1081/CSS-120038558

A. Beeby and L. Richmond, Evaluating Helix aspersa as a sentinel for mapping metal pollution, Ecological Indicators, vol.1, issue.4, 2002.
DOI : 10.1016/S1470-160X(02)00022-5

A. Beeby and L. Richmond, Do the soft tissues of Helix aspersa serve as a quantitative sentinel of 582 predicted free lead concentrations in soils? Appl Soil Ecol, pp.159-165, 2003.

A. Beeby and L. Richmond, Magnesium and the regulation of lead in three populations of the garden snail Cantareus aspersus, Environmental Pollution, vol.158, issue.6, pp.2288-2293, 2010.
DOI : 10.1016/j.envpol.2010.02.002

B. Berger and R. Dallinger, Terrestrial snails as quantitative indicators of environmental metal pollution, Environmental Monitoring and Assessment, vol.47, issue.2, pp.65-84, 1993.
DOI : 10.1007/BF00549793

N. Corp and A. J. Morgan, Accumulation of heavy metals from polluted soils by the earthworm, p.588, 1991.

F. Douay, C. Pruvot, H. Roussel, H. Ciesielski, H. Fourrier et al., 591 Contamination of urban soils in an area of Northern France polluted by dust emissions of two 592 smelters. Water Air Soil Poll, pp.247-260, 2008.

A. Vaufleury and R. Scheifler, Contamination of woody habitat soils around a former lead 595 smelter in the North of France, Sci Total Environ, vol.407, pp.5564-5577, 2009.

C. Fritsch, Utilisation intégrée de bioindicateurs pour la surveillance des sols et des 597 écosystèmes terrestres, p.598, 2010.

A. Vaufleury and R. Scheifler, Spatial distribution of metals in smelter-impacted soils of woody 601 habitats: influence of landscape and soil properties, and risk for wildlife, Chemosphere, vol.81, pp.141-602, 2010.

A. Grafen and R. Hails, Modern statistics for the life sciences, p.604, 2002.

J. Harmsen, Measuring Bioavailability: From a Scientific Approach to Standard Methods, Journal of Environment Quality, vol.36, issue.5, p.606, 2007.
DOI : 10.2134/jeq2006.0492

A. Hass and P. Fine, Sequential Selective Extraction Procedures for the Study of Heavy Metals in Soils, Sediments, and Waste Materials???a Critical Review, Critical Reviews in Environmental Science and Technology, vol.30, issue.5, pp.365-399, 2010.
DOI : 10.1016/S0048-9697(99)00024-8

P. H. Hobbelen, J. E. Koolhaas, and C. A. Van-gestel, Bioaccumulation of heavy metals in the 610, 2006.

L. Z. Li, D. M. Zhou, P. Wang, H. E. Allen, and S. Sauve, Predicting Cd partitioning in spiked soils and bioaccumulation in the earthworm Eisenia fetida, Applied Soil Ecology, vol.42, issue.2, pp.118-123, 2009.
DOI : 10.1016/j.apsoil.2009.02.007

K. Lock and C. Janssen, Zinc and cadmium body burdens in terrestrial oligochaetes: Use and significance in environmental risk assessment, Environmental Toxicology and Chemistry, vol.29, issue.9, pp.2067-72, 2001.
DOI : 10.1002/etc.5620200928

T. Lukkari, M. Taavitsainen, A. Väisänen, and J. Haimi, Effects of heavy metals on earthworms along contamination gradients in organic rich soils, Ecotoxicology and Environmental Safety, vol.59, issue.3, pp.340-348, 2004.
DOI : 10.1016/j.ecoenv.2003.09.011

J. C. Mcgeer, K. V. Brix, J. M. Skeaff, D. K. Deforest, S. I. Brigham et al., Inverse relationship between bioconcentration factor and exposure concentration for metals: 628 Implications for hazard assessment of metals in the aquatic environment. Environmental 629 Toxicology and Chemistry, pp.1017-1037, 2003.

M. H. Martin and P. J. Coughtrey, Biological monitoring of heavy metal pollution: land and air, p.631, 1982.
DOI : 10.1007/978-94-009-7352-7

K. Mellanby, Applied Science Publishers, pp.253-271

E. Meers, D. Laing, G. Unamuno, V. Ruttens, A. Vangronsveld et al., Comparison of cadmium extractability from soils by commonly used single extraction 634 protocols, Geoderma, vol.633, issue.141, pp.247-259, 2007.

J. E. Morgan and A. J. Morgan, The accumulation of metals (Cd, Cu, Pb, Zn and Ca) by two ecologically contrasting earthworm species (Lumbricus rubellus and Aporrectodea caliginosa): implications for ecotoxicological testing, Applied Soil Ecology, vol.13, issue.1, pp.9-20, 1999.
DOI : 10.1016/S0929-1393(99)00012-8

J. Nahmani, M. E. Hodson, and S. Black, A review of studies performed to assess metal uptake by earthworms, Environmental Pollution, vol.145, issue.2, pp.402-424, 2007.
DOI : 10.1016/j.envpol.2006.04.009

M. J. Notten, A. J. Oosthoek, J. Rozema, and R. Aerts, Heavy metal concentrations in a soil???plant???snail food chain along a terrestrial soil pollution gradient, Environmental Pollution, vol.138, issue.1, pp.178-190, 2005.
DOI : 10.1016/j.envpol.2005.01.011

O. J. Owojori, A. J. Reinecke, and A. B. Rozanov, Influence of clay content on bioavailability of copper in the earthworm Eisenia fetida, Ecotoxicology and Environmental Safety, vol.73, issue.3, pp.407-414, 2010.
DOI : 10.1016/j.ecoenv.2009.03.017

W. J. Peijnenburg and T. Jager, Monitoring approaches to assess bioaccessibility and bioavailability of metals: Matrix issues, Ecotoxicology and Environmental Safety, vol.56, issue.1, pp.63-77, 2003.
DOI : 10.1016/S0147-6513(03)00051-4

. Development-core and . Team, R: a language and environment for statistical computing. R 647 Foundation for Statistical Computing, 2010.

S. Sauvé, M. B. Mcbride, and W. H. Hendershot, Speciation of Lead in Contaminated Soils, Environmental Pollution, vol.98, issue.2, 1997.
DOI : 10.1016/S0269-7491(97)00139-5

S. Sauvé, W. A. Norvell, M. Mcbride, and W. Hendershort, Speciation and Complexation of Cadmium in Extracted Soil Solutions, Environmental Science & Technology, vol.34, issue.2, pp.291-296, 2000.
DOI : 10.1021/es990202z

. Pb, Zn in a soil-plant-invertebrate food chain: A microcosm study, Environ Toxicol Chem, vol.25, issue.654, pp.815-822

B. Speiser, Food and feeding behaviour., p.660, 2001.
DOI : 10.1079/9780851993188.0259

D. J. Spurgeon and S. P. Hopkin, Risk assessment of the threat of secondary poisoning by metals 662 to predators of earthworms in the vicinity of a primary smelting works. Sci Tot Environ, pp.167-663, 1996.

S. Sauvé, Speciation of zinc in contaminated soils, Environ Pollut, vol.155, pp.208-216, 2008.

. De-calais, Conseil Régional du Nord-Pas de Calais

T. Sterckeman, F. Douay, N. Proix, H. Fourrier, and E. Perdrix, Assessment of the 670 contamination of cultivated soils by eighteen trace elements around smelters in the North, p.671, 2002.

. France, Water Air Soil Pollut, pp.173-194

I. Suter and G. W. , Exposure Ecological Risk Assessment, pp.153-172, 1993.

C. A. Van-gestel, Physico-chemical and biological parameters determine metal bioavailability in soils, Science of The Total Environment, vol.406, issue.3, pp.385-395, 2008.
DOI : 10.1016/j.scitotenv.2008.05.050

V. Vliet, P. C. Van-der-zee, and S. E. , Heavy metal concentrations in soil and earthworms in a floodplain grassland, Environmental Pollution, vol.138, issue.3, pp.505-516, 2005.
DOI : 10.1016/j.envpol.2005.04.010

K. Veltman, M. A. Huijbregts, and A. J. Hendriks, Cadmium bioaccumulation factors for terrestrial 679 species: Application of the mechanistic bioaccumulation model OMEGA to explain field data, 2008.

P. Williamson, Age determination of juvenile and adult Cepaea, J Mollus Stud, vol.45, pp.52-60, 1979.