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Abstract. The aim of this paper is to construct a model which de-
composes a 3D image into two components: the first one containing the
geometrical structure of the image, the second one containing the noise.
The proposed method is based on a second order variational model and
an undecimated wavelet thresholding operator. The numerical implemen-
tation is described, and some experiments for denoising a 3D MRI image
are successfully performed. Future prospects are finally exposed.
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1 Introduction

Medical images obtained from MRI (Magnetic-Resonance-Imaging) are now a
very common tool for diagnosing human diseases. These images are often af-
fected by random noise arising during the acquisition process. Moreover, medical
images constituted of low-contrast objects are a major challenge for biomedical
researchers. The noise highly affects the visual interpretation of medical images,
but also most of the segmentation or clustering algorithms. Therefore, denoising
medical images is an important pre-step for medical image analysis.

Image denoising is one of the classical problems in image processing, and has
been studied for several years due to its important role in various applications.
Its goal is to remove noise and/or spurious details from a given corrupted image
while maintaining its important features. Many denoising methods have been
developed, such as methods based on variational methods, rank filters, frequency
domain filters or sparse representations (curvelets, beamlets,...).

The general idea behind variational denoising methods is to considered an
observed image f as a corrupted version of a noiseless image u. In denoising mod-
els, image u is then the solution of an inverse problem. One of the most successful
variational algorithms is the Rudin-Osher-Fatemi (ROF) model ([2, 4, 5]) which
uses Total-Variation regularization. The observed image to recover/denoise f is
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split into two components u and v, giving f = u+v, where u is the cartoon part
(the smooth component), the remaining term v := f − u being the noise. The
functional energy F on bounded variation space is:

F (u) =
1

2
‖f − u‖

2
L2(Ω) + λTV (u), u ∈ BV (Ω) (1)

where TV (u) represents the total variation of u ∈ BV (Ω) [10], and λ ≥ 0 is a
regularization parameter. Solving this problem leads to the minimisation of the
following expression:

inf
u∈BV (Ω)

F (u) (PROF )

It has been shown that this problem has a unique solution in BV (Ω) ([9, 1]).
However, the use of the BV -norm in the ROF model favours piecewise constant
solutions, causing unsatisfying ’staircasing effects’ [6]. This variational model has
been improved by using different functional spaces. In [9] it has been proposed
to use the second order functional space of bounded variation - the BV 2 space.
This model leads to the minimisation of the following expression:

inf
u∈BV 2(Ω)

F2(u) (PROF2)

where

F2 (u) =
1

2
‖f − u‖

2
L2(Ω) + λTV 2(u), u ∈ BV 2 (Ω) (2)

In the following section, we generalize the model ROF to the new functional space
BV 2 for 3D signals using second order total variation TV 2 [10]. The problem is
considered in the BV 2 discrete space.

2 Three-dimensional ROF2 model

2.1 Functional framework

Let Ω ⊂ R
3 be an open bounded set, we consider the finite-dimensional problem

where function FROF2:

FROF2 : BV 2(Ω) → R
+

u 7→ FROF2(u)

is defined by:

FROF2(u) =
1

2
‖f − u‖

2
L2(Ω) + λTV 2(u)

Solving the second order model (ROF2) leads to the minimisation of the following
expression:

inf
u∈BV 2(Ω)

1

2
‖f − u‖

2
L2(Ω) + λTV 2(u) (PROF2)

Theorem 1. [9] If λ > 0, it has been shown that the problem has an unique

solution.
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2.2 Discretization of the ROF2 model

In the sequel, we denote by X the Euclidean space R
N1×N2×N3 and Y = X ×

X ×X. The space X is endowed with the inner product:

〈u, v〉X =
∑

1≤i≤N1

1≤j≤N2

1≤k≤N3

ui,j,kvi,j,k

In the case of the ROF2 model, the second order total variation term TV 2(u)
can be discretized to J(u) (more details can be found in [9, 10]). The discretiza-
tion of the ROF2 model (PROF2) can be then defined as:

inf
u∈X

J(u) +
1

2λ
‖f − u‖

2
X (d-PROF2)

where J(u) stands for the discrete TV 2. The following theorem comes from the
convex duality theory [7], and gives the approximated solution:

Theorem 2. The solution to problem ROF2 verifies:

u = f − PλK(f)

where PλK is the orthogonal projector operator on λK, and

K := {H∗p | p ∈ X9, ‖pi,j,k‖R9 ≤ 1; 1 ≤ i, j, k ≤ N1, N2, N3}.

H is the Hessian operator and H∗ its adjoint. We refer to [9, 2] for the proof of
this theorem. Moreover, in order to approximate the projection term PλK(f) of
theorem 2, the following problem has to be solved [2] :















min ‖λH∗p− f‖2
X

p ∈ X9

‖pi,j,k‖
2
R9 ≤ 1; 1 ≤ i, j, k ≤ N1, N2, N3

(3)

This problem can be solved by a fixed point method with an iterative scheme
on the solution p: p0 = 0 and

pn+1
i,j,k =

pn
i,j,k − τ

(

H

[

H∗pn −
f

λ

])

i,j,k

1 + τ

∥

∥

∥

∥

∥

(

H

[

H∗pn −
f

λ

])

i,j,k

∥

∥

∥

∥

∥

R9

(4)

The discretization of the three-dimensional Hessian operator H and its ad-
joint operator H∗ as well as a sufficient condition ensuring the convergence of
the algorithm can be found in [10].

Theorem 3. [10] Let τ ≤ 1/122, then λ(H∗pn)n converges to PλK(f) as n →
∞.
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3 3D Image Decomposition Model using Undecimated

Wavelet Shrinkage

In this section, a decomposition model based on the second order variational
model ROF2 is presented. Following the work of [15, 8], an undecimated wavelet
transform (the ’a trous’ algorithm) is introduced in order to better separate
geometry from noise during the iteration process.

3D decomposition model. The proposed method aims at dividing a 3D image
f into two components: the first component u ∈ BV 2 represents the geometrical
information (smooth part) while the second component v contains the noise,
with f = u + v. This decomposition model has been proposed in [8] and is
computed by minimizing a convex functional which depends on two variables
(u, v) as following:

inf
(u,v)∈X2

J(u) +B∗(v/δ) +
1

2λ
‖f − u− v‖

2
X (P)

where B∗(v/δ) is the Legendre-Fenchel transform of B of the noise component
v, [8]. Furthermore, let us denote δBE = {z/‖z‖E ≤ δ}. In order to solve the
problem (P), one considers to solve the two following problems:

1. v being fixed, we find u as solution of problem:

inf
u∈X

J(u) +
1

2λ
‖f − u− v‖

2
X (5)

2. u being then fixed, we search for v as the solution of:

inf
v∈δBE

‖f − u− v‖
2
X (6)

The solution of problem (5) is given by u∗ = f − v − PλK(f − v).
Solution of (6) is obtained using the universal threshold T during the iteration
process [8] on an undecimated wavelet transform, the ’à trous’ algorithm. So-
lution can be written v∗ = f − u − UWT (f − u, T ), where UWT denotes the
undecimated wavelet thresholding operator that is detailed in the next section.

The “ à trous” algorithm . The ’à trous’ algorithm [3] is a fast dyadic wavelet
transform and is implemented with filter banks. It is similar to a fast biorthogo-
nal wavelet transform but without subsampling. In our 3D implementation, the
scaling and wavelet functions φ and ψ are a cubic B-splines that enable a nearly
isotropic analysis of the 3D image, and filters are separable 1D filters.
For any resolution level j ≥ 0, the approximation aj and the details dj (wavelet
coefficients) are:

aj [n,m, l] =< f(x, y, z), φ2j (x− n)φ2j (y −m)φ2j (z − l) > (7)

dj [n,m, l] =< f(x, y, z), ψ2j (x− n)ψ2j (y −m)ψ2j (z − l) > (8)
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and discrete image values are assimilated to a0[n,m, l].
A filter x[n] is dilated to make the filter xj [n] by inserting 2j−1 zeros (’trous’)
between each sample. Let us denote x̄j [n] = xj [−n] and δ[n] the discrete Dirac.
h̄ is a low-pass filter associated with the scaling function φ and ḡ is a high-pass
filter associated with the mother wavelet ψ.
The “à trous” algorithm then enables to compute the fast dyadic wavelet trans-
form in the following way:

aj+1[n,m, l] = (h̄j h̄j h̄j ∗ aj)[n,m, l], (9)

dj+1[n,m, l] = ([h̄j h̄j h̄j − δδδ] ∗ aj)[n,m, l] (10)

where h̄j h̄j h̄ and δδδ are 3D filters obtained from h̄ and δ by tensor products.

As there is no downsampling of the original image, all the approximation and
wavelet images have the same size. The undecimated wavelet thresholding op-
erator UWT used for computing v∗ perform the 3D ’à trous’ decomposition of
the image, applies the universal threshold T on each 3D wavelet images and
reconstructed the 3D thresholded image by summing the details and the last
approximation.

Proposed Algorithm. Consequently, our decomposition model is solved by
the following iterative algorithm:

1. Initialization: u0 = v0 = 0,
2. Iterations on n:

un+1 = f − vn − PλK(f − vn) (11)

vn+1 = f − un+1 − UWT (f − un+1, T ) (12)

3. Stopping test: if the following condition is fullfilled:

max (|un+1 − un|, |vn+1 − vn|) ≤ ǫ (13)

4 Application to 3D medical image denoising

The proposed method has been applied on the MRI of a trisomic mouse (Fig.
1). The mouse brain volume is the stack of 104 MRI images. This is a difficult
case because the contrast between different objects in the brain is low, and there
is moreover some acquisition noise (see top image of figure 3).

Our 3D image decomposition method has been applied to this data, for dif-
ferent values of regularizing parameter λ (see figure 2). Since in practice there
is no denoised volume to compare to, tuning of parameter λ often relies on vi-
sual inspection. The stopping criterion has been set to a maximal number of
iterations which can be chosen arbitrary large.

One can observe that the algorithm is able to separate the initial MRI image
into a component u that contains the regularized (denoised) image, and a com-
ponent v that contains mostly noise with some texture and contours information.
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Fig. 1. Original 3D MRI of a Mouse Brain.

Original image u (λ = 1) u (λ = 10) u (λ = 50)

v (λ = 1) v (λ = 10) v (λ = 50)

Fig. 2. Comparison of the u + v decomposition for different value of regulizer λ.

The good ability to denoise the initial 3D image is confirmed on figure 3, which
shows one slice on the 3D image represented as a 2D surface, its regularized
component u and its noise component v (λ = 10). In figure 3, component v can
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be viewed as a very highly oscillating function. In addition, one can notice in the
denoise part that edges are not oversmoothed. Moreover, its behaviour is quite
stable with respect to λ (for a large value of λ = 100, geometric details appear
in the noise component v).

Fig. 3. Surface representation of one slice of the original 3D volume (top). The u com-
ponent (middle row) and its v component (bottom row). The proposed decomposition
model with undecimated wavelet shrinkage (left column) and a comparison with no
wavelet shrinkage (right column).

A comparison using the same decomposition model without undecimated
wavelet shrinkage has also been performed (using the same value for λ = 10).
It can be noticed on Fig. 3 (right column), that the u component is a bit over-
smoothed and thus region borders are blurred.

5 Conclusion

This article describes a new 3D decomposition method which separates a 3D
image into two components: the first one containing the geometrical structure of
the image, the second one containing the noise. The proposed method is based
on a second order variational model and an undecimated wavelet thresholding
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operator. The numerical implementation is described, and an experiment for
denoising a 3D MRI image of a mouse brain has been successfully performed.
In future works, we shall focus on extending this model to a three component
model f = u+ v + w, which could discriminate between geometrical structures
(u), textures (v) and noise (w). Application of this method to video is also under
consideration.

References

1. Bergounioux M. On Poincare-Wirtinger inequalities in spaces of functions of
bounded variation. [hal-00515451] version 2, 10 June 2011.

2. Chambolle A. An algorithm for total variation minimization and applications.
Journal of Mathematical Imaging and Vision Volume 20 (2004), 89–97.

3. Holschneider, M., R. Kronland-Martinet, J. Morlet, and P. Tchamitchian (1989).
A real time algorithm for signal analysis with the help of the wavelet transform. In
Wavelets, Time-Frequency Methods and Phase Space, pp. pages 286–297. Springer-
Verlag. Berlin, Allemagne.

4. Chambolle A., Lions P.L. Image recovery via total variation minimization and
related problems Numerische Mathematik. Journal of Mathematical Imaging and
Vision 167-188, volume77, 1997.

5. Chan T. Esedoglu S., Park F., Yip A. Recent Developments in total Variation
Image Restoration. CAM Report 05-01, Department of Mathematics, UCLA 2004.

6. Louchet C. Variational and Bayesian models for image denoising: from total
variation towards non-local means. Universite Paris Descartes, Ecole Doctoranle
Mathematiques Paris-Centre, December 10,2008.

7. Ekeland I., Remam R. Analyse convex et problemes variationnels. Etudes Math-
ematiques. Dunod, 1974.

8. Jean-Francois Aujol and Antonin Chambolle Dual norms and image de-
composition models. IJCV, volume 63, number 1, pages 85-104, June 2005.
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