On growth rate and contact homology

Abstract : It is a conjecture of Colin and Honda that the number of Reeb periodic orbits of universally tight contact structures on hyperbolic manifolds grows exponentially with the period, and they speculate further that the growth rate of contact homology is polynomial on non-hyperbolic geometries. Along the line of the conjecture, for manifolds with a hyperbolic component that fibers on the circle, we prove that there are infinitely many non-isomorphic contact structures for which the number of Reeb periodic orbits of any non-degenerate Reeb vector field grows exponentially. Our result hinges on the exponential growth of contact homology which we derive as well. We also compute contact homology in some non-hyperbolic cases that exhibit polynomial growth, namely those of universally tight contact structures non-transverse to the fibers on a circle bundle.
Type de document :
Article dans une revue
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2015, 15 (2), pp.623--666
Liste complète des métadonnées

Littérature citée [56 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00682399
Contributeur : Anne Vaugon <>
Soumis le : dimanche 5 octobre 2014 - 15:19:02
Dernière modification le : mercredi 18 janvier 2017 - 01:05:46
Document(s) archivé(s) le : vendredi 14 avril 2017 - 14:52:48

Fichiers

vaugon_growth_rate.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00682399, version 2
  • ARXIV : 1203.5589

Collections

FMPL | INSMI | LMJL | CHL

Citation

Anne Vaugon. On growth rate and contact homology. Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2015, 15 (2), pp.623--666. 〈hal-00682399v2〉

Partager

Métriques

Consultations de
la notice

300

Téléchargements du document

450