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Dmitri D. Mungalov3, Ignaas Verpoest2 
1Department of Structural Engineering, Politecnico di Milano 

Piazza Leonardo da Vinci 32, 20133 Milano (Italy) 
2 Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven 

Kasteelpark Arenberg, 44, B-3001, Leuven, Belgium 
3 3TEX Inc., 109 MacKenan Drive, Cary, NC 27511, USA 

ABSTRACT 

The paper studies tension-tension fatigue behavior of a single-ply non-crimp 3D orthogonal weave E-

glass composite and of a laminated composite reinforced with four plies of a standard plain weave fabric. 

Both composites have same total thickness and very close fiber volume fraction. The paper presents the 

description of the materials, the results of quasi-static tensile and of tension-tension fatigue tests, 

including the damage development during fatigue tensile loading. The non-crimp 3D woven fabric 

composite, loaded in both principal in-plane directions (warp and fill), shows the best quasi-static tensile 

properties and, when loaded in the fill direction, exhibits much longer fatigue life than its laminated plain 

weave counterpart. During both quasi-static and fatigue loading, the latest damage initiation is observed 

for the 3D woven composite in both in-plane directions. The PW laminate develops delamination between 

the plies for each maximum stress in the cycle considered. Contrary to that, the 3D composite is not 

affected by delamination neither under quasi-static nor under fatigue loading conditions. 

 

Keywords: (A) Textile composites, (B) Mechanical Properties, Fatigue. 

1 INTRODUCTION 

A key factor driving the increased applications of composites over recent years is the occurrence of 

new advanced reinforcements developed for fiber reinforced polymer composites, new resin systems and 
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innovative manufacturing methods. A major driving force has been the development of manufacture and 

design methods for textile preforms, which permit the production of more sophisticated composites next 

to the more traditional two-dimensional laminated structures [1, 2]. 

Relatively thick, single layer non-crimp 3D orthogonal woven preforms are gaining fast growing 

interest in the composites industry. Composites reinforced with single-layer non-crimp 3D woven 

preforms are nowadays used in a broad range of applications: from personnel and ground vehicle 

composite armor, to load bearing structures such as bridge decks or windmill blades, marine structures 

like boats and yachts, and aircraft engines [3, 4, 5, 6, 7]. Efficient modern methods of low-cost 

manufacturing of non-crimp 3D single-layer preforms, see [2, 4, 8], increased the interest in the research 

activities to exploit the full potential of these materials. It is well understood and generally appreciated 

that 3D woven non-crimp reinforcements provide efficient delamination suppression, markedly improved 

fracture toughness [9], significantly increased damage tolerance as well as exceptional impact, ballistic 

and blast performances [5, 6, 7]. In addition, as shown in [10, 11, 12, 13], this kind of 3D reinforcement 

provides significantly higher in-plane strength properties than 2D woven fabric laminates. This is a very 

distinct positive factor, knowing that 3D interlock woven fabric composites suffer from substantial 

inherent crimp of the performs and, consequently, show significantly reduced in-plane stiffness and 

strength even in comparison with 2D plain weave composites [1, 10]. The difference between composites 

reinforced with 3D non-crimp orthogonal weaves and 3D interlock weaves is caused, primarily, by the 

absence of crimp in all inner warp and fill yarn layers. Only minimal deviation from straightness is 

observed in the surface fill yarn layers due to their interaction with through thickness (Z) yarns. The 

absence of other types of fiber waviness and misalignment is due to the specialty 3D orthogonal weaving 

process and machines used for manufacturing this type of non-crimp fabric, see further information in [2, 

4, 8]. 

The tensile properties and failure mechanisms of 3D woven composites have been investigated since 

the mid-1980s. Numerous works have compared the tensile properties of different kind 3D woven 

composites against two-dimensional plain weave laminates which were, in most of the cases, not 

equivalent, due to the principal parameters (such as fiber volume fraction and total thickness) were rarely 

matched, thus not allowing for a meaningful comparison. The exceptions can be found in [10] and in the 
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recent publications [12, 13]. The latter ones present a consistent experimental investigation of the quasi-

static in-plane mechanical properties and damage development of 3D orthogonal weave composites. The 

authors have compared the quasi-static tensile properties and progression of damage of non-crimp 3D 

orthogonal weave composites to respective properties of the plain weave laminates having nearly equal 

total thickness and fiber volume fraction. Also importantly, same constituent materials, same resin 

system, same composite fabrication method and equipment were used in the production of both types of 

composites. 

Fatigue data for non-crimp 3D woven composites are on a high demand by industry. Fatigue of cross-

ply prepreg tape laminates and 2D woven fabric laminates, have been extensively studied (see recent 

review works [14, 15]). At the same time, this topic has been barely touched even for the 3D interlock 

weave composites, see [16, 17, 18] among few publications. To the best of these authors’ knowledge, no 

fatigue test data are available in literature for non-crimp 3D orthogonal weave composites for either in-

plane or out-of-plane loading cases. Therefore, this work is viewed as initial effort to generate fatigue test 

data and get knowledge of fatigue behavior of this class of composites. For such initial effort, in-plane 

tension-tension fatigue loading in both principal reinforcement directions was chosen. The other fatigue 

loading cases, like in-plane tension-compression, flexure, in-plane and out-of-plane shear, are of a 

practical importance and have to be addressed in future work. Fatigue properties of composites reinforced 

with carbon, S-2 glass and ceramic fiber non-crimp 3D orthogonal woven performs are of a great 

practical interest too. 

The present work aims to provide a contribution to scientific understanding of fatigue behavior of non-

crimp 3D woven E-glass composites. One specific material of this kind has been manufactured and 

studied, side-by-side, with an equivalent thickness and fiber volume fraction plain weave reinforced 

laminate. The paper presents the characteristics of the two materials, the description of the quasi-static 

mechanical properties, the fatigue response to tensile-tensile cyclic loading and the transmitting light 

pictures observation aimed at comparing the damage patterns and their progression caused by cyclic 

loading at different applied stress amplitudes. 
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2 MATERIALS CHARACTERISTICS 

The materials investigated and compared in this study are (i) composite reinforced with a single-ply 

non-crimp 3D orthogonal weave E-glass fabric commercialized under trademark 3WEAVE® (as 

illustrated in Figure 1a) and (ii) laminated composite reinforced with four plies of plain weave E-glass 

fabric (shown in Figure 1b). These two materials are termed in the rest of the paper as “3D” and “PW” 

fabrics and composites, respectively. The 3D composite is nominally identical to one of the materials 

(reinforced with “96 oz” fabric) which was characterized in [12, 13] for quasi-static loading, but it 

belongs to a different batch of production. Due to the possible minor differences between the production 

batches and the different fiber volume fractions, the quasi-static tensile testing, similar to the reported in 

[12, 13], has been performed for the material studied here. The results of that testing are summarized in 

the following section. 

The non-crimp 3D single-ply orthogonal weave preform has the properties listed in Table 1a. The fiber 

architecture has 3 warp and 4 fill (a.k.a. “weft”) layers. The fabric construction results in 

~49%/~49%/~2% ratio of the fiber amounts (by volume) in the warp, fill and Z fiber directions. 

The properties of the plain weave preform given in Table 1b show slightly unbalanced reinforcement 

architecture with respect to the total fiber volume content in the warp and weft directions. In order to 

reach the overall fiber balance in the composite laminate, the fabric layer lay-up (0/90/90/0º) was used 

when making the four-ply composite. Due to the balanced warp- and weft-directional fiber content in the 

resulting composite laminate, it was assumed that its in-plane properties are identical, and its mechanical 

characterization has been performed in one direction only. 

The 3D woven fabric was produced by 3TEX Inc. on their proprietary 3D weaving machine, while the 

2D woven fabric was produced on a regular Dornier weaving machine. The fiber material in both cases 

was PPG Hybon 2022 E−glass. Sample panels of both composites were fabricated in identical laboratory 

conditions at 3TEX Inc. using Dow Derakane 8084 Epoxy-Vinyl Ester resin. Both single-ply 3D and 4-

ply PW composites were fabricated in a vacuum bag using Vacuum Assisted Resin Transfer Molding 

(VARTM) method at room temperature. The 3D and PW composites have (see Table 2) almost identical 

areal density, very close sample thickness and fiber volume fraction. 
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3 QUASI-STATIC TENSILE TESTS 

The experimental characterization of the composites included quasi-static in-plane tensile loading up 

to failure with acoustic emission (AE) registration, full-field surface strain mapping (SM), and direct 

damage observation on backlit samples (AE and SM devices are detailed in [12, 19]). 

The tensile tests were performed using an INSTRON 4505 machine (load cell 100kN) setting the 

crosshead speed of 2 mm/min. The prismatic samples had width 25 mm and total length 250 mm. 

Aluminum tabs (1.5 mm thick) were glued in the grip zones with a free length of 150 mm. Test samples 

were cut out in two principal reinforcement directions determined by the textile preform architecture, i.e. 

in the warp and fill directions of the 3D composite and in the warp direction of the surface layers in the 

PW laminate. 

The results of the quasi-static tensile tests are summarized in Table 3 for both composite materials and 

for each loading direction in terms of the Young’s modulus (E), ultimate stress (σult) and ultimate strain 

(εult). Each average value and standard deviation in Table 3 was obtained from six tested samples. 

The 3D composite exhibits very close Young’s moduli in both the warp and fill directions. The 

difference between elastic modulus of the PW composite and the 3D composite is slightly greater than the 

respective standard deviations, i.e. it is statistically meaningful. At the same time, as Table 2 shows, the 

total fiber volume fraction is slightly higher in the case of the PW laminate. We suggest that absence of 

crimp in the 3D composite vs. the PW reinforced laminate not only compensates for a slightly lower fiber 

volume fraction in the former one, but results in considerably higher in-plane Young’s moduli in both 

principal directions. 

When comparing the ultimate stress and strain values presented in Table 3, a significant difference, 

much beyond the scatter of experimental data, is observed for the 3D composite in fill direction vs. PW 

laminate. The average ultimate stress is 26% higher and the average ultimate strain is 19% higher than 

respective values for the PW laminate. It is also seen in Table 3 that the average ultimate stress of the 3D 

composite in fill direction is 22% higher, and the average ultimate strain is 21% higher than respective 

values for the same material in warp direction. The 3D composite shows slightly higher average ultimate 

stress and nearly the same average ultimate strain in warp direction than the PW counterpart, although the 

differences are within statistical scatter. 
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The trends seen in Table 3 are practically the same as the ones revealed in [12], where same kinds of 

composites were compared; this makes it unnecessary to repeat the explanations and interpretations 

presented in the above work. The most important conclusion from both studies, which is essential for this 

work, is that the studied non-crimp 3D orthogonal weave composite has significantly higher in-plane 

strength and failure strain in fill direction than in warp direction, and than respective in-plane properties 

of the studied PW laminate. As suggested in [12], the main reasons for this may be in: (i) the absence of 

yarn crimp in the 3D composite and (ii) the lowest fiber damage caused by weaving in the fill direction of 

3D preform, as discussed in [2, 8]. 

4 TENSILE-TENSILE FATIGUE TESTS 

The response to fatigue loading of the two composite materials was investigated by means of tension-

tension cyclic tests. The geometry of the samples is the same as adopted in the quasi-static tensile tests 

described in the previous section. 

4.1 Experimental Parameters 

Two hydraulic MTS testing machines (load cell 100kN) were adopted for the fatigue investigation. 

Tests were performed under constant stress amplitude, sinusoidal wave-form tensile-tensile loading and 

assuming the ratio R = 0.1 (ratio of the minimum to the maximum stress in the cycle). The stress was 

evaluated by using the sample cross-sectional area averaged from three measurements. Eight different 

maximum stress levels were considered, in order to get a complete characterization, from 350 MPa (close 

to the static failure stress) to the stress level at which complete failure did not occur at least before 5 

million cycles (σ5m). Complete failure means separation in two parts of the sample during cyclic loading. 

To avoid the influence of tab zones and grip pressure, a cyclic test was considered “valid” if the 

sample broke at a distance greater than 2 cm from the tabs. The tests were conducted till three samples 

showed valid failure for each considered stress level. 

To understand the influence of the loading frequency and the temperature on the mechanical response 

of the two composites in both principal in-plane directions, preliminary DMA (Dynamic Mechanical 

Analysis) bending tests were performed assuming frequency in the range 0.1÷80 Hz and temperature 

from the room up to 80oC (note that Tg temperature of Derakane 8084 resin used here is 115 oC). These 
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tests were done with the same number of cycles for all frequencies. The main conclusion of that 

preliminary study was that below 40oC the mechanical response of the materials does not vary for loading 

frequency between 1 and 30 Hz. Based on this conclusion, further fatigue characterization was performed 

for several loading frequencies in the range 1÷10 Hz, depending on the applied maximum stress and the 

correct response of the loading device, as detailed in Table 4. The temperature of the samples, measured 

by a laser thermometer, was not higher than 34oC during cyclic loading which in any case is much lower 

than the resin’s Tg. 

4.2 Results 

The response to cyclic tensile loading at different stress levels allows one to deduce the stress level 

σ5m. According to the obtained experimental results, the σ5m value has been determined as 60 MPa for 

both cases of the 3D composite in fill direction and the PW laminate, while it was determined as 55 MPa 

for the 3D composite in warp direction. 

Principal information on the behavior of the composite materials during the cyclic loading is extracted 

from the observed variation of the shape of the fatigue stress-displacement cycles (further called a “cycle 

curve” for brevity) during the test. The plot in Figure 2a shows the comparison of some cycle curves of a 

3D sample loaded in fill direction with a maximum stress of 60 MPa (e.g. σ5m); this is in the range of 

“high cycle” fatigue. The slope of the cycle curve segment passing through the points of maximum and 

minimum stress (further called a “cycle slope” for brevity) continuously decreases up to two million 

cycles (see Figure 2a). Above two million cycles, the slope remains nearly constant. These observations 

are further confirmed by observing the evolution of the maximum and minimum displacements under 

increasing number of cycles (see Figure 2b). The reduction of the cycle slope within the initial two 

million cycles suggests that there is some stiffness degradation of the material caused, in turn, by the 

damage accumulation during cycling. 

Differently to what has been observed at σ5m maximum stress level, the evolution of the damage 

reflects in a continuous decrease of the material stiffness if the maximum stress is in the range of low 

cycle fatigue. In Figure 3a, some cycles of a 3D sample fatigued in fill direction with a maximum stress 

of 300 MPa (note that average static strength is 540 MPa) show a continuous decrease of the cycle slope 

(respectively, a continuous decrease of the stiffness). The increasing hysteresis area of the cycles and the 
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increase of the recorded maximum and minimum displacements (as seen in Figure 3b) demonstrate a 

gradual damage development, leading to the ultimate failure of the sample, as illustrated in Figure 4. 

The observations described above are valid for the fatigue tests in warp direction of the 3D composite 

and for the PW laminate. 

The fatigue tests performed in a wide stress range enable for depicting a Wöhler-type diagram for both 

the 3D and PW composites. In Figure 5a, twenty five valid tests in fill direction of the 3D composite 

(conducted at eight stress levels) are characterized by the variations of maximum stress in the cycle (σmax) 

vs. the number of cycles to failure N. The results of twenty seven valid tests in warp direction of the 3D 

composite (conducted at nine stress levels) and the results of twenty seven valid tests of the PW 

composite (conducted at eight stress levels) are shown in Figure 5b and Figure 5c, respectively. In each 

diagram of Figure 5, the respective average static tensile strength (given in Table 3) is also indicated in its 

correspondence to the extrapolated lowest number of cycles, N=1. 

A comparison of the fatigue behavior is detailed in Figure 6 and Table 5. Figure 6 shows the actual 

“fatigue life” (e.g. number of cycles to failure) for different stress levels. Table 5 presents a 

comprehensive statistical analysis for each stress level in term of average, standard deviation and 

covariance of the cycles to failure. The fatigue performance for each stress level of the 3D composite in 

warp and fill directions is found in exact correspondence with the trends observed in the static tests (see 

Section 3). Firstly, the PW composite shows, except for σ5m, significantly worse fatigue performance than 

the 3D composite tested in fill direction. Secondly, the fill-directional cyclic loading of the 3D composite 

vs. the PW composite results in the average number of cycles ~51% higher at 350 MPa stress, ~38% 

higher at 150 MPa stress, and ~31% higher at 70 MPa stress (see Table 5). Further on, the fatigue life of 

the 3D composite is much longer in fill direction than in warp for all of the applied stress levels. 

Specifically, the average number of cycles to ultimate failure is ~39% higher at the stress 350 MPa, ~50% 

higher at the stress 150 MPa, and ~239% higher at the stress 70MPa (Table 5). The PW composite shows 

a shorter fatigue life vs. the 3D composite in warp direction for stress level 350 MPa (the number of 

cycles is ~7% higher for 3D warp). However, for the stress levels 150 MPa and 70 MPa the average 

numbers of cycles till ultimate failure are higher in the case of the PW composite (by ~9% and ~160%, 

respectively, see Figure 6 and Table 5). 
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Appropriate fitting equations, applied to the obtained experimental fatigue data, may enable for 

reliable predictions of the fatigue life for the other stress levels, which were not investigated in the present 

experimental study. Such a fitting is not aimed at determining the best possible fitting of the obtained 

experimental data. The diagrams in Figure 5 show the fitting of experimental results by means of three 

linear segments (for the 3D composite in fill direction the two segments coincide along the same straight 

line) in three maximum stress ranges: (I) σ5m ÷100 MPa, (II) 100÷350 MPa, (III) 350 MPa÷ σult. This 

separation into the three distinct stress ranges correlates with different dominating damage types imparted 

during the cyclic loading (see further details in section 5 for two stress levels in range (I) and (II)) and has 

an analogy with the separation of the modes of fatigue damage in [14]. 

Here, the following fitting by a semi-logarithmic function is used: 

     cNm +=σ log max     (1) 

In eqn. (1), ‘m’ and ‘c’ are parameters to be defined by the least squares algorithm. The proposed 

fitting of the fatigue life over the entire stress range is depicted in Figure 7. The quality of the fitting is 

related to the coefficient of correlation R2 [20]. Values of R2 close to 1 confirm the reliability of the 

fitting. All curves in Figure 7 have the coefficient of correlation in the range 0.95÷1. 

A comparison of all of the obtained fatigue curves for both composites is presented in Figure 7. The 

3D composite fatigued in warp direction exhibits considerably lower fatigue performance in comparison 

to the PW counterpart for the lower stress levels; both show comparable performance for the intermediate 

stress levels; the 3D composite shows slightly better performance for the higher stress levels. The 

difference in the fatigue performance of the 3D composite in the warp and fill directions can be attributed 

to several reasons. Firstly, there is more of a fiber damage imparted to the warp yarns than to the fill ones 

during weaving. As hypothesized in [12], this may also be the major reason causing significant difference 

in the static strength values (and also observed in the static testing of the present work, see Table 3). The 

significance of this effect has been recently confirmed by a comprehensive experimental study performed 

at 3TEX for all of the dry E-glass yarns used in the “96 oz” 3D non-crimp orthogonal woven preform. 

Results of that study will be published elsewhere. Secondly, as illustrated by Figure 1a, in a 3D 

orthogonal weave composite the presence of Z yarns creates multiple local “pockets” of pure matrix. It 

has been discovered earlier for various types of 3D reinforced composites (stitched and Z-pinned [21, 22, 
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23, 24, 25, 26, 27, 28]) that through-thickness matrix channels increase local stress concentration and 

reduce resistance of a composite to initial damage formation. It was also shown experimentally that the 

presence of such channels may significantly, up to 30%, reduce the in-plain static strength of stitched and 

Z-pinned composites under tensile and compressive loads. However, there is important difference in our 

case: as is seen in Figure 1a, there are no through-thickness matrix channels between adjacent fill yarns; 

instead, there are only relatively thin matrix pockets limited in their thickness to the thickness of the fill 

yarn layer. Yet, as experimental data show, even such small matrix pockets play significant role in the 

crack initiation process of 3D woven composites. 

It is also worth noting that in the warp-directional loading case Z yarns are directly subjected to the in-

plane load, while in the fill-directional loading case they are not loaded directly. Possible effect caused by 

this aspect is, that the cyclic frictional contact between warp and Z yarns differs between the two loading 

cases. Under tensile loading in warp direction, the tensile stress is applied to warp and Z yarns, while the 

reduction of the sample width takes place due to Poisson’s effect. The latter one results in a respective 

reduction of the distance between adjacent Z and warp yarns. These yarns could get in a contact and, due 

to both of them are exposed to cyclic tensile stress, their mutual friction effect may become sufficient to 

significantly reduce the overall fatigue life of the sample. This hypothesis will be the subject of a more in-

depth investigation in the future work. 

5 FATIGUE DAMAGE DEVELOPMENT 

Damage initiation and development during tensile-tensile fatigue tests have been investigated by 

means of taking pictures of backlit samples subjected to cyclic loading. The same technique was used in 

[13], together with microscopical investigation of the cross sections of the damaged samples, and it was 

shown that for the studied material the backlit damage characterisation is an accurate tool. For fatigue 

loading the backlit technique has a great advantage: it allows continuous registration of damage 

development for the same sample, which cannot be done via micrography. Tensile-tensile fatigue tests 

with accompanied damage observation have been performed for the 3D and PW composite materials 

loaded in the same principal in-plane directions as described before. The following two maximum stress 

levels were used in the cycle: σ5m (stress level contained in range I of the Wöhler diagram, see Figure 7) 
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and 200 MPa (in range II of the Wöhler diagram, see Figure 7). Samples fatigued at the stress level σ5m 

have been monitored up to 3 million cycles, while for samples loaded at 200 MPa stress the damage 

evolution has been monitored till complete failure. 

To highlight important peculiarities of the observed local damage patterns and explain the evolution of 

the local damage events for the 3D and PW composites and different loading directions, pictures of the 

backlit samples have been taken during loading after different numbers of cycles and were compared in 

Figure 8 and Figure 9 for maximum stress σ5m and 200 MPa, respectively (the loading direction is 

horizontal; vertical direction corresponds to the sample width ). These pictures show a frame of width 25 

mm and length 30 mm focused on the center of the sample. 

First interesting observation is that certain damage was imparted during the first stage of fatigue 

loading (see Figure 8 after 10,000 cycles). No significant damage has developed if σ5m level stress was 

applied quasi-statically, as indicated by the AE registrations. The comparison of pictures for a fixed 

number of cycles shows that in the PW laminate there is a higher density of initiated transverse cracks 

(see Figure 8 after 10,000 cycles). This shows that, similarly to the case of the quasi-static tensile loading, 

the 3D composite is less prone to transverse cracking within the yarns or at the yarn-matrix interfaces as 

compared to the PW composite counterpart. 

When increasing the number of cycles, longitudinal cracks appear in the PW composite after 

approximately 100,000 cycles, while in the 3D composite only transverse cracks with increasing length 

and density are observed at that number of cycles. Longitudinal cracks in both loading directions of the 

3D composite are still not visible below 3 million cycles. This observation confirms that, similar to the 

quasi-static loading case, under the cyclic loading the 3D woven composite is less prone to longitudinal 

cracking. 

The main differences observed for the two loading cases of the 3D composite under maximum stress 

σ5m are: 

• for warp-directional loading the existing transverse cracks increase in their length and more 

significantly in their width; 

• for fill-directional loading the transverse cracks increase in number and mutually interconnect. 
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• for warp-directional loading the growth of the length of the transverse cracks is faster than that 

of the transverse cracks produced during the fill-loading. 

Pictures in Figure 8 show that for the 3D composite, after 1 million cycles, the damage patterns do not 

change significantly in regard of transverse cracks density; only few cracks continue to increase in width 

and length. This observation matches the conclusion deduced in section 4, where nearly constant cycle 

slope was observed after approximately same number of cycles has been reached. The PW laminate 

shows a stable pattern of transverse cracks developed after 1 million cycles. A continuous development of 

longitudinal cracks gradually increasing their length takes place. 

The damage evolution during fatigue tests under maximum stress 200 MPa is illustrated in Figure 9. 

The damage pattern after the first cycle is similar to that seen in a quasi-static tensile test under the same 

stress level. In fill-directional fatigue loading of the 3D composite, the transverse cracks saturate after 

approximately 100 cycles; at that number of cycles the longitudinal cracks and the cracks on Z yarn 

surfaces in fill direction are initiated. Further cycling induces a gradual growth and multiplication of the 

aforementioned longitudinal cracks; the immediate predecessor of ultimate failure is an intensive 

formation of transverse and longitudinal cracks inside the yarns, which leads to a macro-splitting of 3D 

woven composite, subsequent fibre breakage in the loading direction, and separation of the sample into 

parts. 

Under warp-directional fatigue loading of the 3D composite, the transversal cracks increase in length 

and in width faster than it occurs under fill-directional loading. The predecessors of ultimate failure are 

longitudinal cracks and local debonds around Z yarns (see Figure 9 after 1,000 cycles). The cycling of the 

PW laminate causes delamination associated with intensive development of the longitudinal cracks. 

Moreover, in the PW laminate the longitudinal cracking begins right after the first cycle, while in the 3D 

composite only few longitudinal cracks had appeared even after 100 cycles of the fatigue loading. 

The main conclusions from the damage monitoring during fatigue tests are as follows. 

The different slopes of the fatigue curve in range (I) and (II) (see Figure 7) could be related to the 

different predominant damage mechanism: transverse cracks in range (I) and longitudinal cracks in range 

(II). 
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Inherent crimp of the PW fabric and irregularities of the fabric ply nesting during lamination induce 

stress concentrations and facilitate damage development during cyclic loading. The damage is initiated 

earlier during fatigue loading in the PW laminate than in the 3D woven composite. 

The absence of crimp and nesting provides better fatigue performances of the 3D composite (in terms 

of delayed damage initiation) when tested in both fill and warp directions. 

A worse fatigue performance of the 3D composite under warp-directional loading could be attributed 

to the type of damage and the rate of damage development during fatigue loading. The fabric architecture 

of the 3D woven preform (see Figure 1a) explains this phenomena: when the load is applied in warp 

direction (which is, at the same time, the direction of the Z yarn crowns), both the warp and Z yarns are 

loaded in tension. As the consequence, the stress concentration induced by the Z yarn in its crossover area 

with the fill yarn becomes significant. This is confirmed by the damage pattern observed during cyclic 

warp-directional loading of the 3D composite. Indeed, longitudinal cracks appear in the Z yarn crossovers 

(see pictures in Figure 9 at failure), and local debonds start from the crossovers due to relative 

displacements between adjacent warp and Z yarns. 

It appears that the influence of Z-crowns depends more on the number of cycles than on the applied 

stress level. In fact, the static strength of the 3D composite in warp direction is higher than that of the PW 

laminate, yet the fatigue performance of the 3D composite in warp direction at relatively low stress levels 

appears to be worse than that of the PW laminate. This behaviour could be the consequence of the 

frictional forces acting cyclically between warp yarns on one side, and through thickness segments of Z 

yarns on the other, as described above. 

6 CONCLUSIONS 

The experimental study presented in this work addressed the fatigue tensile mechanical response of a 

single-ply non-crimp 3D orthogonal weave E-glass composite and of a laminated composite (reinforced 

with four plies of a standard plain weave fabric). The tensile–tensile fatigue tests have shown that: 

1) The fatigue performance of the PW composite is significantly worse than that of the 3D composite 

tested in fill direction for all the studied stress levels, except for the σ5m stress level. 
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2) The 3D composite has significantly longer fatigue life when tested in fill direction than when 

tested in warp direction for all of the applied stress levels. 

3) The 3D composite tested in warp direction has slightly longer fatigue life for the low-cycle fatigue 

stress range, ≥350 MPa, but significantly shorter fatigue life for the high-cycle fatigue stress range, 

≤150 MPa, than the PW laminate. 

The reliability of these three conclusions, in term of fatigue life, can be assessed by the confidence 

level index [20]. The confidence levels in Table 6 show that, in strict statistics terms, the hypothesis “the 

3D composite in fill direction has a longer fatigue life than the PW laminate” is valid with confidence 

level 95÷99% (except for σ5m); the hypothesis “the 3D composite in fill direction has a longer fatigue life 

than the 3D composite in warp direction” is valid with confidence level 98÷99%; the hypothesis “the 3D 

composite in warp direction has a shorter fatigue life than the PW laminate for stress levels ≤ 150MPa” is 

valid with confidence level 98÷99%. 

The damage observations made during tensile-tensile fatigue loading suggest that: 

1) When cycling at the stress level σ5m, longitudinal cracks appear in the PW laminate, while in the 

3D composite only transverse cracks develop. 

2) The 3D composite exposed to cyclic maximum stress σ5m shows transverse cracks increasing in 

length and width under warp-directional loading but increasing in number and interconnections 

under fill-directional loading. 

3) Fatigue loading at stress level 200 MPa facilitates in the 3D composite a faster increase of the 

length and width of transversal cracks under warp-directional loading than under fill-directional 

loading. 

4) In the PW laminate the longitudinal cracking begins after the first loading cycle with maximum 

stress of 200 MPa, while in the 3D composite only few longitudinal cracks appear even after first 

hundred cycles. 

In general, inherent crimp of the PW fabric and irregularities of the fabric ply nesting during 

lamination induce local stress concentrations and facilitate earlier damage initiation and development in 

the PW laminate during cyclic loading in comparison with the 3D composite. The absence of crimp and 
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ply nesting makes, obviously, a strong positive effect on the fatigue behaviour of the non-crimp 3D 

woven fabric composite in the fill-directional loading case. 
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Figure 1. Internal architecture of the: (a) non-crimp 3D orthogonal weave single-ply preform (fill 

yarns on the surface, warp yarns underneath them, and Z-crowns oriented in warp direction over 

fill yarns); (b) 2D plain weave fabric. 
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Figure 2. 3D composite loaded in fill direction, max stress 60 MPa: (a) some stress vs. displacement 

curves; (b) maximum and minimum stress and displacement vs. number of cycles. 
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Figure 3. 3D composite loaded in fill direction, max stress 300 MPa: (a) some stress vs. 

displacement curves; (b) maximum and minimum stress and displacement vs. number of cycles. 

 

 

Figure 4. 3D composite loaded in fill direction, max stress 300 MPa: fatigue failure of a sample. 
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Figure 5. Maximum stress σmax vs. number of cycles to failure N for: (a) 3D composite loaded in fill 

direction; (b) 3D composite loaded in warp direction; (c) PW laminate. (‘→’ means no failure). 
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Figure 6. Comparison of the fatigue life at different maximum stress levels: (a) 350 MPa, (b) 150 

MPa and (c) 70 MPa. Vertical lines indicate average fatigue life. 
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Figure 7. Fitting and comparison of the fatigue life curves. 
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Figure 8. Damage development during fatigue loading for σmax=σ5m. 
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Figure 9. Damage development during fatigue loading for σmax=200 MPa. 
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Fabric plies 1

Areal density  [g/m2] 3255
Warp Insertion density [ends/cm] 2.76
layer Top and bottom layer yarns [tex] 2275

Middle layer yarns [tex] 1100
Weft Insertion density [picks/cm] 2.64
layer Yarns [tex] 1470

Z-yarns Insertion density [ends/cm] 2.76
Yarns [tex] 1800

3D non-crimp woven preform

    

Plain weave preform
Fabric plies 4

Areal density  [g/m2] 3260
Ply insertion density: Warp [ends/cm] 1.95
                                Weft [picks/cm] 1.6
Warp and Weft Yarns [tex] 2275  

    (a)       (b) 

Table 1. Properties of the preforms: (a) 3D and (b) PW. 

 

3D PW
Panels thickness [mm] 2.58 ± 0.05 2.57 ± 0.09
Fiber volume fraction [%] 53.22 ± 0.63 54.42 ± 0.65  

Table 2. Properties of 3D and PW composites (± means standard deviation). 

 

E

3D-Fill 26,34 ± 0.63 540 ± 20 2,92 ± 0.05

3D-Warp 26,39 ± 0.76 441 ± 26 2,41 ± 0.13

PW 24,68 ± 1.51 427 ± 23 2,45 ± 0.18

σult

[MPa]

εult

[%][GPa]

 

Table 3. Average values and standard deviations of the quasi-static mechanical properties. 

 

Maximum Stress [MPa] 350 300 200 150 ≤95

Frequency [Hz] 1 2 4 8 10  

Table 4. Frequency of the cyclic loading adopted for the fatigue tests at different stress levels. 
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Stress level
[MPa] Average Stand. Dev. Covariance Average Stand. Dev. Covariance Average Stand. Dev. Covariance

55 5,000,000 n/a n/a
60 5,000,000 n/a n/a 2,393,181 33,563 1.4% 5,000,000 n/a n/a
70 2,263,028 104,676 4.6% 666,110 93,163 14.0% 1,731,774 162,194 9.4%
80 771,452 184,724 23.9% 153,056 38,828 25.4% 433,181 190,699 44.0%
95 192,313 34,368 17.9% 55,018 17,772 32.3% 105,785 37,825 35.8%
150 13,595 995 7.3% 9,083 164 1.8% 9,883 233 2.4%
200 3,372 118 3.5% 2,506 268 10.7% 2,723 292 10.7%
300 344 6 1.7% 256 22 8.4% 299 11 3.6%
350 118 13 11.1% 84 15 17.2% 78 32 41.3%

3D-Fill 3D-Warp PW

 

Table 5. Statistical parameters of the fatigue life at the different stress levels. 

 

 

Stress level Confidence Level for a hypothesis
[MPa] 3D-Fill > PW 3D-Fill > 3D-Warp 3D-Warp < PW

70 99.75% 100.00% 99.99%
80 96.08% 99.97% 98.72%
95 99.28% 99.99% 98.81%
150 99.93% 99.97% 99.77%
200 99.20% 99.89% 82.80%
300 99.93% 99.95% 98.64%
350 95.24% 98.49% 61.27%  

Table 6. Confidence levels for three hypotheses (‘>’ means longer fatigue life, ‘<’ means shorter 

fatigue life). 

 


