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Abstract—Accurate prostate segmentation in Trans Rectal Gabor filters to achieve accurate prostate segmentation- Ho
Ultra Sound (TRUS) images is an important step in different ever, the method is computationally expensive and thezefor
clinical applications. However, the development of computer probably unsuitable for TRUS guided prostate intervention

aided automatic prostate segmentation in TRUS images is a o1 | i Cosi tal [7 ted t fi
challenging task due to low contrast, heterogeneous intensity[ ] In recent years, Cosio et al. [7] reported an automatic

distribution inside the prostate region, imaging artifacts like Method for prostate segmentation with active shape mo8ls |
shadow, and speckle. Significant variations in prostate shape, However, the optimization framework of the genetic aldorit

size and contrast between the datasets pose further challenges ysed is computationally intensive and unsuitable for TRUS
achieve an accurate segmentation. In this paper we propose toeis g jije intervention.

graph cuts in a Bayesian framework for automatic initialization . .
and propagate multiple mean parametric models derived from Cootes et al. [9] proposed an efficient framework to build

principal component analysis of shape and posterior probability @ Statistical model incorporating prior shape and texture i
information of the prostate region to segment the prostate. The formation in their work of active appearance model (AAM).

pftl)posefd (f)rgr;]:bvgogl&sachieves a meaaniﬁetsin;i_la;rity COEﬁ:Cieﬂtho address the challenges involved with prostate segnmemtat
value O . . mean mean absolute distance value Of; H H i
0.49+0.20 mm and m’ean Hausdorff distance of 1.240.56 mm In TRUS IMages we propose a novel apprqac_h using multiple
when validated with 23 datasets in a leave-one-patient-out vali- mean .parametrlc models derived from prmmpal compo.n.ent
dation framework. analysis (PCA) of prostate shape and posterior probabilist
values of the prostate region to segment the prostate in a
I. INTRODUCTION multi-resolution framework. The performance of our method
is compared with the traditional AAM [9] and also with our
Prostate cancer is the second most leading cause of deatvious work [10]. In contrast, to the use of intensity and
from cancer in American men [1]. Accurate prostate segmetine mean model as in [9] and to the use of texture from Haar
tation in TRUS may aid in biopsy therapy planning, motiowavelet features of [10], posterior probabilistic infotina of
monitoring, needle placement and multimodal image fusiahe prostate region obtained in a Bayesian framework is used
between TRUS and magnetic resonance imaging (MRI) to train, initialize and propagate multiple statistical aets
improve malignant tissue collection during biopsy [2]. Howof shape and texture. Statistically significant improvetrien
ever, accurate computer aided prostate segmentation irSTRathieved with the use of multiple mean models when validated
images encounters considerable challenges due to lowesbntwith 23 datasets, that have significant shape, size, andasont
of TRUS, heterogeneous intensity distribution and presengariations of the prostate, in leave-one-patient-outdzion
of micro-calcifications inside the prostate gland, specate framework. The key contributions of this work are:
shadow artifacts. Moreover, inter patient prostate shage, , The use of iterative graph cut in identifying the prostate
and deformation may vary significantly. and use of the probability information of the prostate
In the last decade, a number of semi-automatic prostate region obtained in a Bayesian framework in building the
segmentation methods have been reported. These methods statistical model of texture.
require expert intervention during initialization of theodel « The use of the texture model in training, automatic
or during refinement of the segmented contour. Often de- jnitialization, propagation and selection of the optimum
formable models and statistical shape models are used t0 mean model.

achieve segmentation in semi automatic methods like [3],

[4]. However, it is necessary to use an automatic prostate !l PROPOSEDSEGMENTATION FRAMEWORK
segmentation method for TRUS guided procedures. Shen eThe proposed method is developed on the following major
al. [5] and Zhan et al. [6] presented an automatic meth@@mponents: 1) the use of expectation maximization (EM) and
that incorporated a priori shape and texture informati@mfr Bayesian framework to determine the posterior probabdity
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Fig. 1. Schematic representation of our approach. Abbienstused EM = Expectation Maximization, MRF = Markov Randoield=

a pixel being prostate, 2) use of Markov random field (MRHjnages. In our model, the class prior probability is estedat

model to impose spatial constraints and improve the proftem the frequency of the pixelsc) belonging to a class as

abilistic representation of the prostate region, 3) ediona senm

of the optimum label of the prostate region from graph cut P(Cprs) = =512 )

segmentation on the MRF, 4) adapting AAM to incorporate the ijl T

probabilities of the prostate region for training, initition where, P (C,,s) gives the class prior probability of being

and propagation of the parametric model and 5) selection gbostate,z; represents the pixels belonging to prostate region

one of the mean models depending on the error of fitting @btal given bypnm) andz; represents the pixels in all training

the posterior probabilities to segment the prostate. Thbajl images (given bym). The probabilities of intensity (being

schema of the method is given in Fig. 1. prostate) obtained in the EM framework, location (being

prostate) and class prior probability (prostate class)aes in

a Bayesian framework to determine the posterior probgbilit
In traditional AAM [9], the point distribution model (PDM) of a pixel being prostate. According to the Bayes rule,

[8] of the contour is aligned to a common reference frame P(X|Cy) P (C;)

by generalized Procrustes analysis [11]. Intensities amped P(Ci|X) = P EX) - 3)

into correspondence using a piece wise affine warp and sam-

pled from a shape-free reference to build the texture mod#ie posterior probability distributio® (C;| X') of a class is

However, intensity distribution inside the prostate reginay given by the priorP (C;) (i.e. P (Cys)) and the likelihood

vary significantly from one dataset to another dependindnen tP (X |C;). P (X) being equal for all classes can be removed

parameters of acquisition and nature of the prostate tiskae from the formulation. Considering class conditional inelep

patient introducing larger variabilities and hence pradgan dence, the likelihood could be formalized as,

inaccurate texture model. Therefore, to reduce inter datas

intensity variabilites we propose to use the PCA of the P(X|C;) = P (2ps|Cprs) -P (Tin|Cprs) 4

posterior probabilities of the image pixels being prostate In equation (4) the likelihood® (X |C;) is obtained from the

build our texture model. product of the probability of a pixel intensity being prdsta
Firstly, K-means clustering is used to roughly cluster th@” (z;,|Cprs)) obtained from EM frameworkag,, being pixel

pixels into two classes (prostate and non-prostate) froen timtensity) and the probability of a pixel location being state

intensities. The class means and standard deviationsnebtai(P (z,|Cprs)) Obtained from (1).

from this rough clustering are then used as the initial estid®  Further to impose spatial constraints over the pixel pasiti

in an EM [12] based algorithm on Gaussian mixture modgle use MRF modeling over the posterior probabilities oledin

to determine the probability of a pixel being prostate frorfrom equation (3). MRF is a random process defined on a dis-

intensities. The E-step assigns the probabilities to tkelpi crete lattice. For our case, the lattice is a 2D grid on thegina

depending on the current mean and standard deviation valp&mne. In 2D, we assume th&at= {1,2,... N} x {1,2,....N}

of the classes, while in M-step the means and standard deviathe set onN? points called sites. For a fixed site a

tion values are re-estimated. Maximum a posteriori estimamneighborhoodN(s) is defined. Cliquec is defined as a set

of the class means and standard deviations are used to sbfites, such that if;, s; € c thens; is in the neighborhood

cluster the pixels. The likelihood of a pixel location in arof s;, s; € N(i) and letC be the set of cliques. Assuming

image being prostate is obtained by normalizing the groudd, is a Markov chain we have,

truth values of all the pixels for all the training images as P(X,, = 2| X5 = 25,k £ 1) =

P(Xn = xn|Xn71 = xnthnJrl = anrl) (5)

A. Bayesian Framework

N
P ((Eps|cprs) = %Z GTz (1)
i=1 i.e. the conditional distribution ofX,, depends only on its
neighborsX,,_; and X, in 2D. According to Hammersley-
Clifford theorem [13],X,, is a Markov field if and only if it
follows a Gibb’s distribution given by,

where P (x,5|Cyprs) gives the probability of a pixel position
being prostate withx,s being the pixel locationg(s standing
for position) andC,,s denoting pixels being prostaterfs
stands for prostate)7T; represents the ground truth of the P(X.) — 1

training image, N being the total number of ground truth (Xn) = 7P [U(Xn)/T] ©)



where Z = > exp[U(X,,)] is a normalizing constant calledin an iterative manner in three steps. Step 1 is done by simple
partition function,7 is a constant called the temperature andnumeration of thé,, values for each pixel. In step 2 Gaussian
the energyU(X,) = > V.(Xy).c is the sum of clique parameters the mean and covariance are estimated with ex-
potentialsV, over all possible cliqueg € C that depends pectation maximization algorithm in standard manner. Iiina
on the local configuration on the clique The local potentials in step 3 a global optimization is achieved using minimum
are determined using the Ising model [14]. cuts as done by Boykov and Jolly [17]. Iterative minimizatio
According to the Ising model each particle can have orieom steps 1 to 3 of the total energy with respect to the
of two magnetic spin orientations +1 and -1. Each partictbree parameters, 6, k ensures convergence at least to a local
interacts only with its neighbor and the contribution of racminimum of E [16]. The energy minimization assignsvalue
particle to the total energy of the system depends upon ttieeach pixel wherex = 1 corresponds to the foreground (the
orientation of its spin compared to its neighbor. Adjacemirostate) andx = 0 corresponds to background. However,
particles with same spin are in lower energy than thoske segmentation achieved does not incorporate any shape
with dissimilar spin. To model our problem using the Isingnformation of the prostate and hence produce some mis-
model we assign initial labels +1 to the pixels with postericclassified regions. To further improve the segmentationlres
probability greater than zero and assign -1 to other pixelse adapt AAM of Cootes et al. [9] to introduce probability

According to Ising model, values (obtained in the Bayesian framework) of the prostate
1 region (obtained with iterative graph cut) to build our texet

P(z) = Eewp[szil’j] (")  model and to impose shape restriction. AAM or statistical

i#] shape and texture model is discussed next with the adaptatio

wherez is a particularN x N configuration of+1, x; # z; Of the model to introduce probability values of the prostate
are pair of neighboring pixels] represents the strength of the'egion in building the texture model.
interaction between,; andx; that decrease the energy whe -
both have same values arjﬁ is the partition function. Use B. Statistical Shape and Texture Model (AAM)
of Ising prior in our models favors regions of coherence and The process of building the parametric statistical model
imposes spatial restriction. We use the Gibb’s sampling [1@f shape and texture variations involves the task of bugdin
to produce the Ising model. a shape model, a texture model, and a combined model of
The image now consists of pixels= (z1, 22, ....zn, ...2N) texture and shape and prior learning of the optimizatiortepa
with probabilistic values obtained with the Markov modelin from the combined model perturbation. To build the shape
The segmentation of the image is expressed as an arraymsidel, a PDM is built by equal angle sampling of the prostate
opacity valuesy = a, ...y at each pixel. In our case wecontours to determine the landmarks automatically. The PDM
use a hard segmentation to identify the prostate and hedthe contours are aligned to a common reference frame by
o, € 0,1 with 0 for background and for the foreground 9eneralized Procrustes analysis. PCA of the aligned PDMs
i.e. the prostate. The parameters mean and covariafice i(ientifies the principal modes of Shape variations. Paxteri
describe image foreground and background, representéd wAtobabilistic information (of pixels being prostate) obtheg-
two Gaussian mixtures model (GMM). An energy functisn mented region are warped into correspondence using a piece
is defined so that its minimum produces good segmentatigfse affine warp and are sampled from a shape free reference
and is guided by foreground and background GMMs and thgifnilar to the AAM. PCA of the posterior probabilities of
the opacity is coherent imposing spatial constraints. This the segmented region obtained with Markov random field

captured by a Gibbs energy given by, modeling and graph cuts algorithm is used to identify their
principal modes of variation. The model may be formalized
E(a,k,0,2z) =U(a,k,0,2) + V(a, 2) @) in the following manner. Let andt represent the shape and
depending on the GMM component variablesThe data term POSterior probability models, then
U that represents the GMM is defined as, s=5+ .0, t=1+,0, (11)
Ula,k,0,2) = Z Glan, kn, 0, 2n) (9)  wheres andi denote the mean shape and posterior probability

_ _ S information respectively, the, and ®, contain the first
where( is a Gaussian probability distributiol’, the smooth- ,, eigenvectors (obtained from 98% of total variations) of
ness term in equation (8) that maintains coherence in r8giqRe estimated joint dispersion matrix of shape and posterio
of similar probabilities and is given as, probability information andéd represent the corresponding

_ _ 2 eigenvalues. The model of shape and posterior probability

V(e 2) = 7( Z)EC [n 7 cvmJexp ( Blizm =zl ) (10) " \ariations are combined in a linear framework as,

T -
where [¢] denotes the function taking valuésl for a pred- = [ V[g&s } = { V[;q;é ]E‘i_;) ]
icate ¢, C is the set of pairs of neighboring pixels amd ¢ a )

a constant that encourages smoothness in region of simildrerelt” denotes a weight factor (determined as in AAM [9])
contrast. The energ¥ defined in equation (8) is minimized coupling the shape and the probability space. A third PCA of

12)



the combined model ensures the reduction in redundancy 22 Model fitting errors with dataset 1 as reference
the combined model, and is given as, 14000

12000
b=Ve (13) toooo
. . ) .;;n 8000 / \ il i
where V' is the matrix of eigenvectors andthe appearance g :222 N/ \ \/ .
parameters. € wm | \ I \ / | / \l \ /
0 N/ N/ \J w4 1700

C. Optimization and Segmentation of a New Instance T —

In our model, we incorporate the traditional AAM opti- Dataset Number
mization. The objective function of our model is similar to
AAM. However, instead of minimizing the sum of squared @
difference of intensity between the mean model and targe
image, we minimize the sum of squared difference of the
posterior probability of the mean model and the target image
The prior knowledge of the optimization space is acquired by
perturbing the combined model with known model parameter:
and perturbing the pose parameters (translation, scale ar
rotation). A linear relationship between the perturbatihe
combined model dc¢) and the residual posterior probability (b)
values §t) (obtained from the sum of squared difference
between the posterior probability of the mean model anc
the target image), and between the perturbation of the pos
parametersdp) and the residual posterior probability values P#=
are acquired in a multivariate regression framework as,

dc = R.5t, Op = R,dt (14)

where R, and R,, refer to the correlation coefficients. Given (d)
a _neW mstanc_e, equation (14) '_S used as deate parametﬁ!f-z. (a) Mean models fitting errors for with dataset 1 asresfee. (b),
Given a test image, the posterior probability values of th&) Segmentation without multiple mean model, (c), () Segmientatith
pixels being prostate is determined in the Bayesian framlewdnultiple mean model. The white contour gives the ground truthtae black
section (Il-A). The sum of the squared difference of thceontour gives the obtained result. Each row shows a diffguatient.

posterior probability values with the mean model is used to

determine the residual valdeé. The combined modeb¢) and _ _
the pose parametersy( are then updated using equation (14§rrors for the test datasets with dataset 1 as reference (Fig
to generate a new shape and combined model and hence, Ré%). Consequently, the reference dataset is changed from
posterior probabilities. The process continues in an tilwra 2 through 23 and the entire process is repeated for all the
manner until the difference with the target image remairitasets (23 in total). The entire procedure yields 23 graph

unchanged. model fitting errors (one for each dataset). We have analyzed
] these 23 model fitting error graphs and have observed that
D. Multiple Mean Models with less fitting error € 2000 units) we have higher accuracy

The statistical shape and texture model assumes the shipsegmentation (in terms of different validation measures
and the texture spaces to be Gaussians. However, intenpatighis is not surprising considering the fact that the objecti
prostate shape and their intensities may vary significantfunction of our optimization framework tries to minimizeeth
In such circumstances, a single Gaussian mean modelfifgng error between the mean model and the target image
inefficient to capture the variations of shape and textuaesp. with respect to the pose parameters. Hence, an increase in
To address this problem, we propose to use multiple Gaussfiting error indicates a reduction in segmentation acaesac
mean models. The scheme is as follows; initially the 1ststdtaAn empirical error value is determined from these graphs,
is chosen as the reference to register datasets 3 to 23akbmve which, the segmentation accuracy is reduced (in Gar ca
produce a mean model of shape and texture. This mean maitiel threshold value is 1700 units). The reference datasét th
is used to test dataset 2. The sum of squared difference of tias a fitting error less than the empirical value for maximum
posterior probabilities between the mean model and datasamber of test datasets is identified (dataset 1 in our c@ke).

2 is recorded as the fitting error after the final segmentaticatasets below this fitting error are grouped together $dtta
Likewise, with the fixed reference (dataset 1), we build the, 6, 8, 10, 15 and 21 (Fig. 2(a))) and are removed from
second mean model registering datasets 2 and 4-23 to tesfwther grouping. The process is repeated until all thes#dsa
dataset 3 and record the fitting error. The process is reppease grouped. These groups of datasets provide individuahme
for all datasets from 4-23. This provides 22 model fittingnodels (5 mean models in our case). However, increasing the



TABLE |
PROSTATE SEGMENTATION QUANTITATIVE COMPARISON(HD, MAD AND MAXD IN MM, SPEC., SENS., AND ACC., ARE FORSPECIFICITY, SENSITIVITY
AND ACCURACY RESPECTIVELY)

Method DSC HD MAD MaxD Spec. Sens. Acc.
AAM [9] 0.92+-0.04 3.80+1.98 1.26+0.76 3.814+-2.00 0.914-0.04 0.98+0.01 0.97+0.05
Ghose et al. [10]| 0.94+0.03 2.59+1.21 0.914+-0.44 2.64+1.19 0.914-0.04 0.98+0.01 0.97+0.05
B-AAM 0.95+0.06 2.53+1.94 0.87+1.23 2.35+2.10 0.92+-0.04 0.97+0.04 0.97+0.03
Our Method 0.97+0.01 1.24+0.56 0.49+-0.20 1.30+0.74 0.96+0.01 0.99+-0.00 0.98+0.00
TABLE I

QUALITATIVE COMPARISON OF PROSTATE SEGMENTATION
Reference Area Accuracy Contour Accuracy Datasets Time
Shen [5] Error 3.98:0.97% Distance 3.20.87 pixels 8 images 64 secs
Ladak [4] Accuracy 90.1#3.2% | MAD 4.4+1.8 pixels 117 images -
Cosio [7] - MAD 1.65+0.67 mm 22 images 11 minutes
Our Method DSC 0.940.006 MAD 1.82+0.76 pixels / 0.49:0.20 mm | 23 datasets / 46 images 22 seconds

number of mean models (decreasing the fitting error threé§hothe segmentation accuracy of an algorithm. In this context,
improves segmentation accuracy. In Fig. 2(b) and 2(d) wee obtained better segmentation accuracies compared to [9]
observe that segmentation error is high with one mean modeid [10]. As observed in Table I, B-AAM (that uses posterior
in the Bayesian framework. However, segmentation accurgagobability and a single mean model) produces better esult
improves with multiple mean models in the same framewodompared to AAM justifying the use of posterior probability
(Fig. 2(c), 2(e)). of the prostate region instead of intensity. However, oudeho
which uses both posterior probability and multiple mean mod
els, produces superior results compared to B-AAM, sugggsti

We have validated the accuracy and robustness of dhat the use of both posterior probability and multiple mean
method with 46 axial mid gland TRUS images of the prostatgodels are essential to improve segmentation accuradies. T
with a resolution of 348237 pixels from 23 prostate datasetgmprovement in segmentation accuracy with multiple mean
in a leave-one-patient-out evaluation strategy. Durinidga model is evident from the last two rows in Table I.
tion, a test dataset is removed and 5 mean models are built wit A quantitative comparison of different prostate segméonat
the remaining 22 datasets. All the 5 mean models are appliméthodologies is difficult in the absence of a public dataset
to segment the test dataset. The mean model with the least standardized evaluation metrics. Nevertheless, te Aav
fitting error is selected for accurate segmentation. Themggo overall qualitative estimate of the functioning of our nuh
truth for the experiments are prepared in a schema similae have compared with some of the 2D segmentation works
to MICCAI prostate challenge 2009 [19], where manual segf the literature in Table 1l. Note that we may consider area
mentations performed by an expert radiologist are valitlate overlap and area accuracy equivalent to that of DSC values,
an experienced urologist. We have used most of the populehile average distance equivalent to that of average MAD.
prostate segmentation evaluation metrics like Dice siitjla Analyzing the results we observe that our mean DSC value
coefficient (DSC), 95% Hausdorff Distance (HD) [19], meais comparable to area overlap accuracy values of Ladak et al.
absolute distance (MAD) [2], maximum distance (MaxD)[4] and very close to the area overlap error of Shen et al. [5].
specificity, sensitivity, and accuracy [3] to evaluate o@thod. However, it is to be noted that we have used more images
Furthermore, the results are compared with the traditionedmpared to Shen et al. Our MAD value is comparable to
AAM proposed by Cootes et al. [9], Ghose et al. [10] and t®], [4], and [7]. From these observations we may conclude
B-AAM (that uses posterior probability of the prostate myi that qualitatively our method performs better in overlag an
and a single mean model for segmentation). contour accuracy measures. Qualitative results of our adeth

It is observed from Table | that a probabilistic represeatat is illustrated in Fig. 3.
of the prostate texture in TRUS images and the use of multipleOur method is implemented in Matlab 7 on an Intel
mean models significantly improves segmentation accuraCpre2Duo T5250, 1.5 GHz processor and 2 GB RAM. The
when compared to traditional AAM and to [10]. We usednean segmentation time of the method is 2055 seconds.
posterior probability information for automatic initiafition Our mean segmentation time is better compared to Shen et al.
and training of our statistical shape and texture model. 4S] and Cosio et al. [7] with an un-optimized Matlab code.
opposed to manual initialization of traditional AAM andDue to off-line optimization of our statistical model of gea
[10], our model is initialized automatically. We achieved and probability prior the mean fitting time is 0.68 seconds
statistically significant improvement ifrtest p-value<0.0001 which may be reduced further in an optimized C++ or GPU
for DSC, HD and MAD compared to the other two approachesnvironment. The process is computationally expensiveein d
A high DSC value and low values of contour error metriceermining the posterior probability from MRF regularizati
of HD and MAD are all equally important in determiningHowever, near real time implementation of MRF regularizati

IIl. EXPERIMENTAL RESULTS



Fig. 3. Performance of our algorithm against shape, size anttast variations for different patients. The white cemtgives the ground truth and the
black contour gives the obtained result. Columns 1, and 3 sfegmentations with traditional AAM and 2, and 4 show corresijity segmentations with
our model.

exists [18]. We plan to exploit the GPU environment with an[s] D. Shen et al., “Segmentation of Prostate Boundaries ftditrasound

optimized C++ code to produce close to real time segmentatio Images Using Statistical Shape ModdEEE Trans. on Medical Imag-
ing, vol. 22, pp. 539-551, 2003.

of the prostate. [6] Y. Zhan and D. Shen, “Deformable Segmentation of 3D Ultuasb
Prostate Images Using Statistical Texture Matching Meth¢HEE
1V. CONCLUSION AND FUTURE WORKS Trans. on Medical Imagingvol. 25, pp. 256-272, 2006.

[7] F. A. Codo, “Automatic Initialization of an Active Shape Model of the
A novel approach of multiple statistical models of shape and Prostate,Medical Image Analysjsvol. 12, pp. 469-483, 2008.

. e . . ] T. F. Cootes et al., “The Use of Active Shape Model for Liirg
posterior probability information of prostate region wite Structures in Medical Imageslinage and Vision Computingol. 12,

goal of segmenting the prostate in 2D TRUS images has been pp. 355-366, 1994.
proposed. Our approach is accurate, and robust to sigrtificafi] T. Cootes et al., "Active Appearance Models,” roc. of ECCY
shape, size and contrast variations in TRUS images compayeg SPringer. 1998, pp. 484-498.

- . - a{ﬁ)ﬁj S. Ghose et al., “Texture Guided Active Appearance Md&depagation
to traditional AAM and some existing work in literature. il for Prostate SegmentationfICCAI workshop PCI, LNCS, Springer
the proposed method is validated with prostate mid gland vol. 6367, pp. 111-120, 2010.

images, effectiveness of the method against base and apH:HI gb"é?_"gﬁe"lg?;*"era"zed Procrustes Analysfsychometrikavol. 40,

slices will be validated in our future work. [12] R. O. Duda et alRattern Classification2nd ed. Wiley-Interscience,
USA, 2000.
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