A hybridizable discontinuous Galerkin method for solving 3D time-harmonic Maxwell's equations

Abstract : We study the numerical solution of 3d time-harmonic Maxwell's equations by a hybridizable discontinuous Galerkin method. A hybrid term representing the tangential component of the numerical trace of the magnetic field is introduced. The global system to solve only involves the hybrid term as unknown. We show that the reduced system has properties similar to wave equation discretizations and the tangential components of the numerical traces for both electric and magnetic fields are single-valued. On the example of a plane wave propagation in vacuum the approximate solutions for both electric and magnetic fields have an optimal convergence order.
Type de document :
Communication dans un congrès
Springer. 9th European Conference on Numerical Mathematics and Advanced Applications - ENUMATH 2011, Sep 2011, Leicester, United Kingdom. pp. 119-128, Andrea Cangiani, Ruslan L. Davidchack, Emmanuil Georgoulis, Alexander N. Gorban, Jeremy
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00681964
Contributeur : Stéphane Lanteri <>
Soumis le : vendredi 23 mars 2012 - 08:43:42
Dernière modification le : samedi 29 septembre 2018 - 15:12:05

Identifiants

  • HAL Id : hal-00681964, version 1

Citation

Liang Li, Stephane Lanteri, Ronan Perrussel. A hybridizable discontinuous Galerkin method for solving 3D time-harmonic Maxwell's equations. Springer. 9th European Conference on Numerical Mathematics and Advanced Applications - ENUMATH 2011, Sep 2011, Leicester, United Kingdom. pp. 119-128, Andrea Cangiani, Ruslan L. Davidchack, Emmanuil Georgoulis, Alexander N. Gorban, Jeremy. 〈hal-00681964〉

Partager

Métriques

Consultations de la notice

703