Existence and stability of solitons for fully discrete approximations of the nonlinear Schrödinger equation

Abstract : In this paper we study the long time behavior of a discrete approximation in time and space of the cubic nonlinear Schrödinger equation on the real line. More precisely, we consider a symplectic time splitting integrator applied to a discrete nonlinear Schrödinger equation with additional Dirichlet boundary conditions on a large interval. We give conditions ensuring the existence of a numerical soliton which is close in energy norm to the continuous soliton. Such result is valid under a CFL condition between the time and space stepsizes. Furthermore we prove that if the initial datum is symmetric and close to the continuous soliton, then the associated numerical solution remains close to the orbit of the continuous soliton for very long times.
Type de document :
Article dans une revue
Numerische Mathematik, Springer Verlag, 2013, 123, pp.461-492. 〈10.1007/s00211-012-0491-7〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00681730
Contributeur : Marie-Annick Guillemer <>
Soumis le : jeudi 22 mars 2012 - 11:21:43
Dernière modification le : jeudi 15 novembre 2018 - 11:57:05
Document(s) archivé(s) le : mercredi 14 décembre 2016 - 17:18:18

Fichiers

Soliton8.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Dario Bambusi, Erwan Faou, Benoît Grébert. Existence and stability of solitons for fully discrete approximations of the nonlinear Schrödinger equation. Numerische Mathematik, Springer Verlag, 2013, 123, pp.461-492. 〈10.1007/s00211-012-0491-7〉. 〈hal-00681730〉

Partager

Métriques

Consultations de la notice

617

Téléchargements de fichiers

291