Poisson-Dirichlet statistics for the extremes of a log-correlated Gaussian field

Abstract : We study the statistics of the extremes of a discrete Gaussian field with logarithmic correlations at the level of the Gibbs measure. The model is defined on the periodic interval [0,1]. It is based on a model introduced by Bacry and Muzy, and is similar to the logarithmic Random Energy Model studied by Carpentier and Le Doussal, and more recently by Fyodorov and Bouchaud. At low temperature, it is shown that the normalized covariance of two points sampled from the Gibbs measure is either 0 or 1. This is used to prove that the joint distribution of the Gibbs weights converges in a suitable sense to that of a Poisson-Dirichlet variable. In particular, this proves a conjecture of Carpentier and Le Doussal that the statistics of the extremes of the log-correlated field behave as those of i.i.d. Gaussian variables and of branching Brownian motion at the level of the Gibbs measure. The proof is based on the computation of the free energy of a perturbation of the model, where a scale-dependent variance is introduced, and on general tools of spin glass theory.
Type de document :
Pré-publication, Document de travail
29 pages, 5 figures. 2012
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00680873
Contributeur : Olivier Zindy <>
Soumis le : mardi 20 mars 2012 - 12:41:39
Dernière modification le : mardi 11 octobre 2016 - 14:10:21
Document(s) archivé(s) le : lundi 26 novembre 2012 - 11:40:23

Fichier

log-REM.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00680873, version 1

Collections

UPMC | INSMI | PMA | USPC

Citation

Louis-Pierre Arguin, Olivier Zindy. Poisson-Dirichlet statistics for the extremes of a log-correlated Gaussian field. 29 pages, 5 figures. 2012. <hal-00680873>

Partager

Métriques

Consultations de
la notice

227

Téléchargements du document

67