Three-dimensional direct femtosecond laser writing of second-order nonlinearities in glass

Jiyeon Choi, Matthieu Bellec, Arnaud Royon, Kevin Bourhis, Gautier Papon, Thierry Cardinal, Lionel Canioni, Martin Richardson

To cite this version:

Jiyeon Choi, Matthieu Bellec, Arnaud Royon, Kevin Bourhis, Gautier Papon, et al.. Three-dimensional direct femtosecond laser writing of second-order nonlinearities in glass. Optics Letters, Optical Society of America, 2012, 37 (6), pp.1029-1031. <10.1364/OL.37.001029>. <hal-00680393>
Three-dimensional direct femtosecond laser writing of second-order nonlineairities in glass

Jiyeon Choi,1,2 Matthieu Bellec,3,* Arnaud Royon,2 Kevin Bourhis,2 Gautier Papon,2 Thierry Cardinal,1 Lionel Canioni,2 and Martin Richardson1

1Townes Laser Institute, CREOL, University of Central Florida, Orlando, Florida 32816 2700, USA
2LOMA CNRS/University of Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France
3ICMCB CNRS/University of Bordeaux, 87 Avenue Dr. Schweitzer, 33608 Pessac Cedex, France
*Corresponding author: bellec@unice.fr

Second-order nonlinear optical phenomena such as second-harmonic generation (SHG) and the Pockels effect are widely used in many photonic devices, enabling new laser source wavelengths and the high speed external modulation of light for multiple purposes [1]. These devices are, however, inherently restricted to using noncentrosymmetric materials such as nonlinear optical crystals or poled materials that exhibit second-order nonlinearities [2]. Despite the existence of a number of nonlinear optical crystals and the improving capabilities of poled materials, there are still essential gaps in the range and operability of these devices. Commercial applications relying on the second-order nonlinearity are still limited due to this narrow choice of suitable materials. There is thus a lingering need for a new class of nonlinear optical materials possessing second-order nonlinearities sufficiently large over a wide spectral range.

Glasses have been widely used as optical materials for many applications, in part because of the ease in tailoring their properties by changing their composition. Their remarkable properties, such as good mechanical and chemical durability, allow ease of preparation in various forms, such as fibers and curved substrates [3]. The possibility to incorporate in these vitreous materials noble metal ions allows one to increase their photosensitivity and to access to new or improved optical properties. If one can induce second-order nonlinearity by breaking their centrosymmetry, then perhaps glasses would become promising candidates for second-order nonlinear optical applications.

There are various techniques to break the centrosymmetry. One way is to polarize the glass, the so-called poling process, either optically in optical fibers [4] or thermally [5]. There have been many attempts to produce thermally poled glass systems in silicate [6], tellurite [7], and phosphate [8] matrices. The basic idea of thermal poling is to create a frozen electric field E_{dc} inside a nonlinear layer as an anodic depleted-ion region caused by the localized migration of mobile ions. The interaction between this permanent electric field and the third-order nonlinear susceptibility $\chi^{(3)}$ of the glass gives rise to an effective second-order nonlinear response $\chi^{(2)} = 3\chi_{\text{eff}}^{(3)} E_{dc}$, the well-known electric field-induced second-harmonic generation (EFISHG) effect.

Femtosecond laser direct writing is a technique that can be utilized in transparent materials to fabricate microstructures in three dimensions with modified physical properties thanks to multiphoton absorption [9]. This technique can be applied to induce localized second-order nonlinearities in glass, either by changing the crystalline phase from amorphous into crystallite [10,11], or by modifying the morphology of metal nanoparticles embedded in glass from spherical to ellipsoidal [12].

In this Letter, we propose another approach to create inside a silver-containing zinc phosphate glass a laser-induced frozen charge gradient, similar to the thermal poling process, but localized with three-dimensionality. We show that the inhomogeneous charge distribution produced in the laser-exposed glass can give rise to a second-order nonlinearity that can be exploited for nonlinear optical applications. We suggest a model for this process and demonstrate SHG from a silver microstructure to prove the concept. The polarization of the SHG is analyzed to confirm the theoretical EFISHG model. Finally, the SHG efficiency of a silver microstructure is compared to quartz to estimate the induced $\chi^{(2)}$.

The glass used for this study is a photosensitive zinc and gallium phosphate glass (40P$_2$O$_5$ - 55ZnO - 4Ga$_2$O$_3$ - 1Ag$_2$O) containing 1% (mol.%) of silver oxide. Details of the glass fabrication process and the material properties are described elsewhere [13]. A Yb-doped fiber 450 fs ultrafast laser (µJewel, IMRA America Inc.) operating at 1045 nm with a repetition rate of 1.5 MHz and a maximum pulse energy of 200 nJ was used for the irradiation.

We demonstrate that direct femtosecond laser writing in silver containing zinc and gallium phosphate glass enables generation of three dimensional (3D) optical second order nonlinear microstructures having an $\chi^{(2)}$ value about 2.5 times that of quartz. The proposed physical model involves photo reduction, photo dissociation, and migration of silver species within the glass matrix. 3D laser written second order nonlinear structures could become a new class of nonlinear optical components.

OCIS codes: 190.4400, 160.5335, 160.1245, 140.3390.
A microscope objective (NA = 0.25) focused the laser beam into the glass sample mounted on a computer controlled three-dimensional (3D) stage. Silver microstructures consisting of fluorescent silver clusters \(Ag_{m}^{+} (m < 10) \) were created by irradiating the samples for 1 second at an irradiance of 5.6 TW cm\(^{-2} \) in a 4 \(\mu m \) diameter spot. The key mechanisms contributing to this clustering is a combination of photo-reduction (\(2Ag^{+} → Ag^{0} + Ag_{2}^{2+} \)), photo-dissociation, and thermal and chemical diffusions, due to heat accumulation resulting from the high repetition rate laser pulses \([14,15]\). As a result, these fluorescent clusters are arranged into a ring shape in 2D (see Fig. 1(a)), a pipe shape in 3D. Figure 1(b) depicts schematically and hypothetically the laser-induced distribution of the silver species. Permanent static electric fields with circular symmetry are formed between the hole-trap color centers, such as \(Ag_{2}^{2+} \) located inside the rim and the electron-trap silver clusters \(Ag_{m}^{+} \) situated on the outside of the rim of the microstructure \([15]\). Although the spatial distribution of the silver species is clearly radial, their exact repartition inside the rim shape in 2D (see Fig. 1(a)), a pipe shape in 3D. The scale bar is 5 \(\mu m \). (b) Schematic representation of a possible radial distribution of the silver species inside the ring. The permanent electric field is \(E_{dc} \).

The SHG measurements were performed with the same laser (see Fig. 2(a)), but with a power reduced by \(\sim 57\% \) of the power needed for structuring of the material. The SH signal from the structured sample was collected through a microscope objective (NA = 0.4) and a set of filters. The SH signal was coupled into an intensified CCD (ICCD) camera attached to a spectrometer via a fiber-optic delivery. A CCD beam profiler was used to visualize the SHG distribution. The SHG measurements were performed with the same setup as in Fig. 1(a), with filters added to protect the camera from the intense fundamental beam. The irradiance was monitored using a power meter located before the microscope objective. The SH signal was collected with a SHG-sensitive camera and analyzed using software provided by the manufacturer.

The SHG measurements were performed with the same laser (see Fig. 2(a)), but with a power reduced by \(\sim 57\% \) of the power needed for structuring of the material. The SH signal from the structured sample was collected through a microscope objective (NA = 0.4) and a set of filters. The SH signal was coupled into an intensified CCD (ICCD) camera attached to a spectrometer via a fiber-optic delivery. A CCD beam profiler was used to visualize the SHG distribution. The SHG measurements were performed with the same setup as in Fig. 1(a), with filters added to protect the camera from the intense fundamental beam. The irradiance was monitored using a power meter located before the microscope objective. The SH signal was collected with a SHG-sensitive camera and analyzed using software provided by the manufacturer.

The SHG measurements were performed with the same laser (see Fig. 2(a)), but with a power reduced by \(\sim 57\% \) of the power needed for structuring of the material. The SH signal from the structured sample was collected through a microscope objective (NA = 0.4) and a set of filters. The SH signal was coupled into an intensified CCD (ICCD) camera attached to a spectrometer via a fiber-optic delivery. A CCD beam profiler was used to visualize the SHG distribution. The SHG measurements were performed with the same setup as in Fig. 1(a), with filters added to protect the camera from the intense fundamental beam. The irradiance was monitored using a power meter located before the microscope objective. The SH signal was collected with a SHG-sensitive camera and analyzed using software provided by the manufacturer.

The SHG measurements were performed with the same laser (see Fig. 2(a)), but with a power reduced by \(\sim 57\% \) of the power needed for structuring of the material. The SH signal from the structured sample was collected through a microscope objective (NA = 0.4) and a set of filters. The SH signal was coupled into an intensified CCD (ICCD) camera attached to a spectrometer via a fiber-optic delivery. A CCD beam profiler was used to visualize the SHG distribution. The SHG measurements were performed with the same setup as in Fig. 1(a), with filters added to protect the camera from the intense fundamental beam. The irradiance was monitored using a power meter located before the microscope objective. The SH signal was collected with a SHG-sensitive camera and analyzed using software provided by the manufacturer.

The SHG measurements were performed with the same laser (see Fig. 2(a)), but with a power reduced by \(\sim 57\% \) of the power needed for structuring of the material. The SH signal from the structured sample was collected through a microscope objective (NA = 0.4) and a set of filters. The SH signal was coupled into an intensified CCD (ICCD) camera attached to a spectrometer via a fiber-optic delivery. A CCD beam profiler was used to visualize the SHG distribution. The SHG measurements were performed with the same setup as in Fig. 1(a), with filters added to protect the camera from the intense fundamental beam. The irradiance was monitored using a power meter located before the microscope objective. The SH signal was collected with a SHG-sensitive camera and analyzed using software provided by the manufacturer.

The SHG measurements were performed with the same laser (see Fig. 2(a)), but with a power reduced by \(\sim 57\% \) of the power needed for structuring of the material. The SH signal from the structured sample was collected through a microscope objective (NA = 0.4) and a set of filters. The SH signal was coupled into an intensified CCD (ICCD) camera attached to a spectrometer via a fiber-optic delivery. A CCD beam profiler was used to visualize the SHG distribution. The SHG measurements were performed with the same setup as in Fig. 1(a), with filters added to protect the camera from the intense fundamental beam. The irradiance was monitored using a power meter located before the microscope objective. The SH signal was collected with a SHG-sensitive camera and analyzed using software provided by the manufacturer.
versus the angle of the electric field vector for parallel (HH) and crossed (HV) polarizers and analyzers. As expected, the ratio of the intensity maxima for each polarization is $I_{HH}^{\text{max}} : I_{HV}^{\text{max}} = 9 : 1$ for horizontal and vertical directions, as given by the Kleinmann symmetry relation $\chi^{(3)}_{\text{xxxy}} : \chi^{(3)}_{\text{xyxy}} = 3 : 1$ in glass [2]. The theory is in good agreement with the experimental images, except for the central region where a signal is observed. This signal seems to be insensitive to the analyzer orientation and is quite directional. The physical origin of this signal is not clear and is still under investigation. It could be due to a pump leakage, a contribution of the longitudinal component of the focused beam, a guiding effect that depolarizes the SH signal, or the 3D organization of the structure (pipe), which is not taken into account in our 2D model (ring).

Finally, in order to estimate the SHG efficiency of this microstructure, it was compared with that of z-cut quartz and normalized to the SH intensity of the quartz crystal exposed to the same probe irradiance (Fig. 4). The estimated $\chi^{(2)}$ is 2.5 that of quartz, corresponding to $\sim 1.2 \text{ pm/V}.^1$. Thus the laser-induced value of $\chi^{(2)}$ is comparable to that achieved with thermal poling of glass of similar composition, i.e., $\sim 1.8 \text{ pm/V}.^1$ [16]. The third-order susceptibility of the silver-containing zinc phosphate glass is of the same order of magnitude as that of fused silica, i.e., $\chi^{(3)} = 2.5 \times 10^{-22} \text{ m}^2 \text{ V}^{-2}$. The internal electric field can therefore be estimated to be $\sim 1.6 \times 10^5 \text{ V.m}^{-1}$. This value is extremely large and is close to the electric field of an electron-ion dipole in an atom. Note that one possibility to get a higher $\chi^{(2)}$ value could be to modify the glass composition and the introduction of hyperpolarizable ions in order to increase the third-order nonlinearity of the material.

In conclusion, we have proposed and demonstrated a new method based on femtosecond laser-induced depletion to create high second-order nonlinear optical properties in silver-containing photosensitive glass. This nonlinearity was produced in μm-scale structures, consisting of charged silver clusters, inducing an inhomogeneous space charge distribution with an associated permanent static electric field. We have estimated the induced second-order susceptibility of these structures to be ~ 2.5 times that of quartz. This new laser-based method of creating new nonlinear optical materials opens a new pathway in the development of active and nonlinear optical components. Moreover, since this laser writing method allows for the micron-scale structuring of this nonlinearity in precision-designed 3D configurations, it opens the door to the development of many new classes of optical systems and components including multifunctional lab-on-chip devices, active 3D optical storage devices [13], and high damage threshold optical converters.

The authors acknowledge the Conseil Régional d’Aquitaine, the GIS AMA, and the ANR (grant 2010 BLAN 946 03) for their financial support, as well as P. Legros and the BIC for the confocal fluorescence microscopy images.