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Graph Laplacian based Matrix Design for Finite-Time Distributed
Average Consensus

Alain Y. Kibangou

Abstract— In this paper, we consider the problem of finding a
linear iteration scheme that yields distributed average consensus
in a finite number of steps D. By modeling interactions
between the nodes in the network by means of a time-invariant
undirected graph, the problem is solved by deriving a set of D
Laplacian based consensus matrices. We show that the number
of steps is given by the number of nonzero distinct eigenvalues
of the graph Laplacian matrix. Moreover the inverse of these
eigenvalues constitute the step-sizes of the involved Laplacian
based consensus matrices. When communications are made
through an additive white Gaussian noise channel, based on an
ensemble averaging method, we show how average consensus
can be asymptotically reached. Performance analysis of the
suggested protocol is given along with comparisons with other
methods in the literature.

I. INTRODUCTION

Recently, a great effort was made by both control and
signal processing communities to provide coordination and
estimation algorithms for static and mobile wireless sensor
networks [1], [2], [3]. Such an effort is particularly due to
the great potential impact of mobile wireless sensor networks
(Mobile devices with sensing, computing and communication
capabilities) to numerous applications including surveillance
of hazardous plants, and more others. Consensus plays a
key role in most of the distributed algorithms proposed in
the literature. The fundamental aim of consensus is that the
nodes in the network reach an agreement on a common value
by negotiating with their neighbors. In particular, in this
paper, we focus on average consensus where the common
value consists in the average of the initial ones.

Average consensus can be reached using a linear iterations
scheme where each node repeatedly updates its value as a
weighted linear combination of its own value and those of its
neighbors. Therefore, at each time-step, each node only has
to transmit a single value to each of its neighbors. Based on
such a scheme, several algorithms have been proposed in the
literature. However, in the most of the proposed algorithms,
the weights are chosen so that all the nodes asymptotically
converge to the same value.

A key feature of a mobile wireless sensor network is
related to the network topology. It is common to represent the
nodes in the network as vertices of a given graph where edges
represent the existence of a communication between them.
This powerful modeling tool allows using spectral graph
theory for analyzing the associated algorithms and protocols.
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Indeed, several features of a network can be characterized
by means of spectral properties of the so-called graph
Laplacian. For example, the second smallest eigenvalue of
the graph Laplacian matrix is known to have the main role
in the convergence time of various distributed algorithms [4].
Therefore, computing the eigenvalues of the Laplacian matrix
is an important question, generally solved through standard
matrix tools that lead to centralized scheme. Recently, two
interesting attempts to decentralize the eigendecomposition
of a Laplacian matrix have been introduced in the literature.
The first one is that of Fransceschelli and his co-workers [5]
where the basic idea is to make the nodes states oscillate
only at frequencies corresponding to the eigenvalues of
the network topology. The problem is then mapped into a
signal processing one that each agent can efficiently and
independently solve by applying the Fast Fourrier Transform
(FFT). The second work is that of Sahai and co-workers [6]
where a similar concept based on the discretization of the
wave equation was used.

Motivated by these results, we investigate the use of
Laplacian eigenvalues for designing a sequence of weight
matrices that allow achieving consensus in finite-time.

A number of authors have studied finite-time consensus
in the framework of discrete-time systems. In [7], finite-
time average consensus was briefly discussed. However, the
described method requires the graph to be fully connected for
at least one time-step. A data aggregation based algorithm
was proposed in [8]. Such an approach requires additional
memory compared to linear iterations strategies. Another
approach requiring less memory, but linear iterations, is
derived in [9] by calculating weights so that the observability
matrix of the network is contained in some defined space.
The basic idea is that given enough time, the nodes will
have observed enough to reconstruct the initial state of the
system. At which time, they can compute the correct average.
In [10], the same authors have shown that each node can
calculate the consensus value as a linear combination of
its own past values over at most D time-steps, D being
the degree of the minimal polynomial of the associated
weight matrix. The computation of a given matrix rank and
nullspace is required. Knowing the computation cost of such
tasks, these approaches necessitates consequent computation
capabilities. In [11], based on properties of de Bruijn’s graph
and block Kronecker product, it has been shown that the
average consensus problem can be reached in finite time if
the number of nodes is an exact power of the out-degree of
the communication graph. Another interesting contribution
is that in [12] where finite-time average consensus problem



is formulated as a matrix factorization problem. However,
the proposed approach is fully centralized and requires
scheduling of nodes connection. Recently, for time-invariant
topologies and in the perfect information exchange case,
i.e. without channel noise nor quantization, we have shown
that the finite-time average consensus problem can be solved
as a matrix factorization problem with joint diagonalizable
matrices [13]. By following the same concept, in this paper,
we synthesize a new family of finite-time consensus matrices.
In fact, we show that adequately selected consensus matrices
based on Laplacian eigenvalues allow achieving average
consensus in a finite number of steps.

Then, by adequately and periodically restarting the finite-
time consensus algorithm, we show that, in the noisy case,
average consensus can be achieved asymptotically with de-
sirable asymptotic properties.

II. PROBLEM SETTING

Let us consider a network modeled as an undirected
connected graph ¢4 = (27, &) consisting of a set of nodes
Z = {x1, - ,xy} and a set of edges & C 2 x 2. We
denote by .4 the set of nodes that can transmit information
to node x;. Its cardinality is denoted »;. The graph Laplacian
L is defined as the matrix with entries /;; given by:

N, ifi=j
l; = —1 if JjE J%
0 elsewhere

Since the graph is undirected, the graph Laplacian is sym-
metric (L = L7). Its eigenvalues, 1; <A, < --- < Ay, contain
very significant information about the topology of the graph
% . In particular, we have A; = 0 that admits 1y, an N-length
all ones column-vector, as eigenvector.

Now, let us assume that each node n holds an initial
scalar value x,(0) € R and x(0) = ( x;(0) xn(0) )T
denotes the vector of the initial values on the network. We
are interested in computing the average of the initial values
by means of a distributed algorithm, in which the nodes
only communicate with their neighbors. A common way to
achieve such task is to resort to linear iterations schemes
where each node repeatedly updates its value as a linear
combination of its own value and that of its neighbors:

Xn (k+ 1) = WnnXn (k) + Z WnmXm (k), (D
mey,

or in matrix form:
x(k+1) = Wx(k), (2)

where the off-diagonal entries w; ; of W are nonzero if and
only if x; € 4. The average consensus is reached if

lim x(k) = Jyx(0),

k—o0

1
ith = —1y1%,.
with  Jy vy
The statement above means:

lim W = J.

koo

It is now well known that consensus is achieved if and only
if W admits 1 as a simple eigenvalue while the remaining

eigenvalues have magnitude strictly less than 1, the left and
right eigenvectors of W associated with the eigenvalue 1
being ﬁl. With these conditions asymptotic convergence
is guaranteed. That is the case for the Laplacian based
consensus matrix W =T— YL, with 0 < ¥ < 1/Nyuax, Nipax =
max {Ny, -+ ,Ny} [14].

Speed of convergence of consensus algorithm is generally
governed by the second largest eigenvalue of W. Therefore,
several authors have proposed different methods to speed
up the convergence of consensus algorithms [4], [15], [16].
Although fast convergence is sufficient in numerous cases, it
is sometimes desirable to achieve convergence to the exact
value in a finite number of steps.

In [13], the finite-time consensus problem was formulated
as a matrix factorization problem: Find a set of matrices
{Wi}i=1.m,D’ consistent with the network topology, so that

D
[Twi=Jn. (3)
i=1

Recall that a matrix is said to be consistent with the network
topology if its off-diagonal (i, j)th entry equals to zero for
j¢

In [13], a family of matrices parameterized as W; =
(0 + NypaxB)I — BL was synthesized. These matrices do not
fulfill the conservation property; they are not left stochastic.
In this paper, our goal is to derive a set of Laplacian based
consensus matrices, W; = I — o;LL so that (3) is fulfilled. It
is equivalent to design a sequence of step-sizes ¢ so that
exact average consensus is achieved in finite-time.

III. LAPLACIAN BASED CONSENSUS MATRICES
STEP-SIZE SEQUENCE DESIGN FOR FINITE-TIME
AVERAGE CONSENSUS

The Laplacian matrix L being symmetric, its diagonaliza-
tion yields
L=UAU", UTUu =1, UU” =1,

where A =diag(A1,22,--- ,Ay) and U= ( ﬁl U ) with
UTU=1Iy_; and UT1=0.

As a consequence, the consensus matrices W; can be
written according to the eigenvectors and eigenvalues of the
Laplacian matrix as follows:

W, =U(I—aA) U,

We can now rewrite equation (3) as:

U (ﬁ - a,-A)) U’ =y, )

i=1

or equivalently:

D
U (H (I— oc,-A)) U” = Udiag(1 0---0)UT. (5
i=1

We can now state the following theorem:
Theorem 1: Let Ay # A3 # --- # Ap+1 # 0 be the D distinct
nonzero eigenvalues of the graph Laplacian matrix L, then



the set of consensus matrices W; =1 — /l-lﬂ L,i=1,---,D,
allows reaching average consensus in D steps.
Proof: From equation (5) we get:

D 1forj=1
l.l;[l(l — k) = { 0 elsewhere
Since A; =0, we have to solve

D

[T —ai) =0, j=2,3,-- ,N.

i=1
By taking into account multiplicities of the eigenvalues, we
have only D distincts equations. A solution of the resulting
system of equations is then given by setting each ; equal
to the inverse of a given Laplacian eigenvalue. [ ]
Owing to the above theorem, we can build D! different
sequences. Both give rise to the exact average consensus
after D steps but the transient behavior could be very
different. Selecting the best sequence is out of the scope
of this paper. However, we will emphasize the impact of
such a choice in the next section by considering noisy data
exchanges.

Example 1: Consider the undirected graph depicted in
Fig. 1[4]. The weights on the nodes and edges indicate the
optimal weights to maximize the rate of convergence for the
system, as provided by the method in [4]. The associated

0.2

0.2
Graph with optimal weights according to [4].

Fig. 1.

graph Laplacian has the following distinct nonzero eigen-
values {1.5226, 3.6972, 4.5519, 5.0000, 6.9254, 7.3028}.
Therefore exact average consensus can be achieved in D =6
steps. Let us consider two sequences of consensus matrices.
In the first one the distinct nonzero eigenvalues are placed in
ascending order while in the second they are in descending
order. As depicted in Fig. 2, even the optimal fast consensus
algorithm needs several iterations to give accurate results. As
explained before, we can also note that the two sequences of
consensus matrices give rise to different transient behavior
(see also Fig. 3 depicting the nodes trajectories.

IV. ANALYSIS IN NON-IDEAL CASES

The results derived in the previous section allow reaching
the exact average consensus in a finite number of steps when
perfect data exchange is considered. In this section, we first
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Fig. 2. Comparison between finite-time consensus and fast consensus as
proposed in [4].
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Fig. 3. Nodes trajectories obtained with two sequences of Laplacian based
consensus matrices.

study the effect of errors on Laplacian eigenvectors and then
the effect of additive noise on average consensus.

A. Effect of estimation errors on Laplacian eigenvalues

Let us assume that the distinct nonzero eigenvalues A;. 1,
i=1,---,D, are known up to an error €. The consensus
matrices are then built with erroneous eigenvalues ii+1:

1
W,=1-—L.
i+1

Due to the errors on the eigenvalues the product of these
consensus matrices is no longer equals to Jy. In the sequel,
we quantify the corresponding square error.

The product of the consensus matrices can be written as:

D
[Tw:=vau’, (6)

i=1

where A = diag( 1 Aol Api1lpy,, ) with m;
. D .
the multiplicity of A;, and A; = —< ] (1__/1, )

Ait1

Equivalently, we can rewrite (6) as:

D J—
W; =Jy+J=Jy+UAUT,
i=1

=3



where A is obtained by setting the first diagonal entry of A
equal to zero. Therefore, after D iterations the nodes have
computed x(D) = %+ Jx(0), X denoting the exact average of
the initial values. The computation of the square error yields:

Mz < 135 1x )1

where ||.||; denotes the Frobenius norm. Equivalently, we
get:

e=(x(D) -x)" (x(D) —%) = || Jx(0)

D+1 52 A \?2 5
e<2%21]O—J>W@W @)
j=2 lj i=1,i#j Ai+1

This upper bound shows that the square error e can be
arbitrarily small if the relative estimation errors associated
with the eigenvalues with greater magnitude are sufficiently
small. However, this result point out the fact that estimators
of the Laplacian eigenvalues should be particularly efficient.

B. Effect of additive noise

Now, let us consider the case of noisy data exchange:

x(k+1) =Wx(k)+v(k+1),

where v denotes the additive noise.

In such a case, standard average consensus algorithms are
known to suffer from a linear increase of noise variance with
time [17]. In order to limit or circumvent this undesired
effect, alternative methods for designing the weights of
average consensus algorithms have been proposed in the
literature. For example, in [17], it was shown how to derive
the weighting matrix in order to minimize the deviation
between the nodes values. Starting from a Perron matrix,
decreasing step-size methods have been proposed in the
literature (see [18], [19] and references therein). A first order
difference equation approach, which is resilient to noise, has
been also proposed in [20]. In [13], the author proposed a
sequence averaging approach. Herein we give an analysis of
such approach while considering a more general averaging
approach.

The main idea of the suggested protocol is to run periodi-
cally the finite-time average consensus algorithm. The results
of each run are then averaged in order to compensate for
the deviations induced by the additive noise. To do so, the
finite-time algorithm is restarted with x(0) with appropriately
chosen weight c,:

x(k+(n—1)D) = (1—&)Wix(k—1+(n—1)D)

+6k1¢n Wix(0), ®)

where k=1,---,D, n=1,--- 00, §;; denotes the Kronecker
delta, i.e. §;; =1 if i = j and &;; = 0 elsewhere.

After D steps of the finite-time average consensus al-

gorithm, we get x(nD) and we can compute the weighted
averaged value

-1
n) Z x(mD), with C(n)= (Z} cm> .

m=1 m=
©))

In this protocol, each node keeps in memory its initial
value and re-send its scaled version periodically to its neigh-
bors. With a period equals to D, in the noiseless case, one
can note that

d Cn
11:—[1) lcnx( =X = NJN ( )
that yields y(nD) = X. However, when the data exchange is
noisy, we get
D=2 i
x(nD) = ¢,X+ Z HWD,jV(nD —i—1)+v(nD)
i=0 j=0

(10)

Theorem 2: Considering the consensus protocol (8)
with sequence averaging (9), if the noise sequence
{v(k+(n—1)D)} is independent with zero mean and co-
variance oZLy, then after n runs, the mean square error

e(n)=E [(y(nD) —x)" (y(nD) — i)} on the exact consensus

2
Ap- 1+1> )

value, is given by:
N D=2 i
e(n) = nNC(n)? ( N ZH(
o an

with Aj,---, Ay the graph Laplacian eigenvalues, the D+ 1
first being distinct and A; =0, E[.] denoting the mathematical
expectation.

Proof: Let us defined z(nD) =
we get:

y(nD) —X. Using (10),

n D-2 i
nY (Y HWD,jV(mD—i—l)—FV(mD) .
m=1 \ i=0 j=0

We have then to compute e(n) = E [z (nD)z(nD)] =
trace(E [z(nD)z" (nD)]). Owing to the independence prop-
erty, the matrix E [z(nD)z” (nD)] can be written as:

E [2(nD)z” (nD)] = nC(n)*c” (Q+1y),

D-2 i
where Q= Y [] Wp_; HWD ;- Hence
i=0 j=0

e(n) = nNC(n)*c? (1 +trace(Q)/N).

Let us now compute trace(Q) to end the proof. Knowing
that Wp_; =1— L and using the eigendecomposition
of L, we can rewnte the consensus matrices as Wp_; =
U (15

D—j+1

A) U”. As a consequence, we get:

D-2 i

Q=Y U

1 2
[I(I— A) U’
i=0 j=0 A’D*JI+1

Hence:

trace(Q) =

= )
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3
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Based on this theorem, we can note that by appropriately
selecting the weighting coefficients c,, the mean square
error can be decreased faster than in the sequence averaging
approach proposed in [13], which is a particular case of
the approach proposed herein. However, as pointed out in
section 2, in (11), the effect of the distinct eigenvalues used
for designing the consensus matrices is not the same. The
ordering of these eigenvalues could have a significant impact
on the mean square error.

Example 2: Let us consider a network with 6 nodes. The
associated topology is a circle one. The nonzero graph
Laplacian eigenvalues are 1, 3, and 4. The sequence of
consensus matrices obtained with the eigenvalues ordered
as {4,3,1} gives rise to a matrix Q with higher trace
(trace(Q) = 20) whereas for the second sequence, obtained
with the eigenvalues ordered as {3,4,1}, we get the lower
value of the trace : frace(Q) = 3.5. As a consequence we
get best results, in the theoretical mean square error sense,
for the second sequence (see Fig. 4).

= Sequence #1
o — Sequence #2

normalized mean square error

0 20 40 60 80 100
Number of periods n

Fig. 4. Theoretical normalized mean square error (case of a circle with 6
nodes with the sequence averaging policy ¢, = n).

Based on Theorem 2, the asymptotic behavior of the
proposed method is stated in the following corollary.

Corollary 1: Considering the consensus protocol (8)-(9),
suppose that the noise sequence {v(.)} is independent with
zero mean and covariance 6 Iy. Then the sequence {y(nD)}
asymptotically converges to the average value X of the initial
state:

lim e(n) = 0.

n—soo

V. SIMULATION RESULTS

In this section, we consider a network of N = 27 nodes
whose communications are modeled by means of a cu-
bic lattice graph. The nodes communicates through an ad-
ditive white Gaussian noise channel with variance 1074,
The performance are evaluated by means of the Normal-
ized Mean Square Error (NMSE) defined as NMSE; =
[x(k) —||* /||X]|*, X being the average of the initial values
of the nodes. The results below are averaged values over 100
independent Monte Carlo runs.

The cubic lattice graph is defined to be a graph ¢, whose
vertices are the ordered triplets on n symbols, such that two

vertices are adjacent if and only if they have two coordinates
in common [21]. For a graph with n’ vertices, the graph
Laplacian matrix has only four distinct eigenvalues: 0,n,2n,
and 3n. Therefore, the set of Laplacian based consensus
matrices allowing to reach consensus in D = 3 steps is given
by: Wy =1—1L, W, =I— 1L, and W3 =1— 3L, with
n =3 for the simulated case.

First of all, we compare the theoretical NMSE with
that obtained by simulating an average consensus problem
through the network. From 5, we can note that the obtained
NMSE is close to the theoretical ones.

T
Theory
= = simulations

NMSE

. .
0 500 1000 1500
Number of iterations

Fig. 5. Comparison of the experimental NMSE with theory for the sequence
averaging policy ¢, = n.

Now, we give the results of the comparison of the proposed
scheme with the sequence averaging scheme proposed in [13]
and with a first order difference based algorithm. Recall that
the first order difference scheme is such that

®(k+1) = x(0)+(I—yL)d(k)
x(k) = ®(k)—Dk—1)

Its noise resilience comes from the difference operation
which counteracts the effect of the eigenvalue 1 of the weight
matrix. We set ¥ =1/2N4.

Note that the comparison with [13] is based on the
sequence averaging process not in the derived finite-time
consensus matrices.

Figure 6 depicts the NMSE obtained with the three
compared methods. We can note that the proposed method
outperforms the two others in terms of precision. Moreover
even after the first D = 3 iterations the finite-time algorithms
are more precise than the asymptotic based one.

In figure 7 where the nodes trajectory are depicted, we
can see that after the D first iterations the local values are
very close to the actual average value. We note that the
first order difference method allows reaching consensus in a
given bound around the actual value, while exact consensus is
achieved with the proposed scheme. The precision is enough
to assume that all the nodes reach the same value.

VI. CONCLUSION

Graph Laplacian is a very useful tool for studying the
behavior of consensus algorithms. In particular, it has been



10
— — Method in [13]

| Proposed method
100 | e First order difference |4
10} E
107§ E
w .
z 1.
107 E
) N e L L L L
10+ ~—— E
__\__\——5——-
107 E
10’7 L L L L L L L L L L L L L L L L L L
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of iterations
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Fig. 7. Nodes trajectory for the compared methods in the case of a cubic
lattice graph.

used for characterizing speed of convergence of Laplacian
based consensus algorithms. It has been shown that under
some conditions on the Laplacian based consensus matrix,
consensus can be achieved asymptotically. In this paper,
we have shown that by adequately varying the step-size
of the Laplacian based consensus matrix, consensus can be
achieved in a finite number of steps given by the number
of nonzero distinct eigenvalues of the graph Laplacian ma-
trix. Moreover, the sequence of step-sizes is given by the
inverse of the Laplacian eigenvalues. At first glance, the
implementation of this method requires a global knowledge
of the network. It is then well suited for networks configured
by an operator having such knowledge. Fully distributed
approaches can be derived by distributively estimating the
eigenvalues of the Laplacian matrix. Hopefully some solu-
tions have been recently reported in the literature [5], [6].
Our method can then make use of such results. Since the
estimation of the eigenvalues can be more or less imprecise,
we have evaluate the effect of erroneous eigenvalues on
finite-time average consensus. We have also analyzed the

proposed method when communications are made through an
additive white Gaussian noise. We have proposed a promis-
ing sequence averaging method leading to an asymptotic
convergence towards the exact average value.
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