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1 Introduction
The mirror symmetry postulate that there are two viewpoints to re-

present the physics of fermionic strings. The relevance comes from the fact
that some problems not solvable from a certain point of view are on the
other. Mirror symmetry is very accomplished in the form of the T-duality
appeared in bosonic theory which states that the partition function remains
unchanged in the change R↔ 1

R
, where R denotes the radius of compactifi-

cation of extra dimension. In a bosonic field theory, where the source space is
the cylinder and target a torus, one can notice that the T-duality exchange
symplectic structure deformation (area) and deformation of complex struc-
ture. In this "survey", we will introduce tools from physics and mathematics
for understanding some aspects of mirror symmetry. Especially we construct
the mirror map locally as historically Morrison has presented this theory
for closed strings. In addition, we briefly explain the implications in enume-
rative geometry.

2 Landau Ginzburg model and complex manifolds
At the A-side of the mirror , The correlation functions were calculated

from the instantons : Holomorphic curves in symplectic tools, in this context,
they will be calculated using the tools of complex geometry, the key point
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is the statistical physics and the Russian school of Arnold and his theory of
singularity.

2.1 ϕ4 theory and complex geometry

The model of Ginzburg Landau plays a decisive role on this side of
the mirror, where we will look at the admissible deformations (distortions
marginal) preserving certain symmetries. Starting from the Lagrangian in
ϕ4 :
LLG = ∂µφ∂µφ−V (T, φ) where V (T, φ) = 1

4!λ(t)φ4+ 1
2!µ

2(t)φ2 At the critical
temperature Tc "mass", µ2(Tc) = 0, so the correlation length (inverse mass) is
infinite. At this temperature the field φ0, solution of ∂

∂φ
V (T, φ) is zero three

times degenerated. A small perturbation V (Tc, φ) → V (Tc, φ) + δµ2(T )φ2,
solves the singularity and the is "symmetry breaking". The challenge is
to find ways of a marginally perturbpotential theory in order to preserve
the symmetry and defined by the fact a critical family of superpotentials.

2.2 Theory of singularities, marginal deformations

The superpotential is an holomorphic function W : CM → C is chosen
as a potential
V (x) =

∑N
1 |∂iW(X)|2 =

∑N
1 ∂iW(X)∂iW(X)∗

if we consider only one field, one can consider the functionW(X) = 1
(n+1)!X

n+1

The bosonic part of the supersymmetric Lagrangian is written then :
LLGN=2 = −∂+X

∗∂−X + ∂−X
∗∂+X + V (X)

There is : V (X) = 0 ⇔ ∂iW(X0) = 0, so it is relevant to define the

textbfring Chiral RW = C[X]
∂W(X) where the ratio is proportional to the

polynomials of ∂iW(X) : P (X) = P i(X)∂iW(X) deformations respecting
the Chiral ring are given by : Wdef (X) =W(X) +

∑
P∈RW tPP (X)

If we chooseW(X,Y, Z) = 1
3(X3 +Y 3 +Z3), the deformed potential is given

by Wdef (X,Y, Z) = W(X,Y, Z) + t0 + t1X + t2Y + t3Z + t4XY + t5Y Z +
t6ZX + t7XY Z
Only the non vanishing term µ = t7 preserves the critical situation, it does
not break the Z3 symmetry
(X,Y, Z)→ (exp(2kiπ

3 )X, exp(2kiπ
3 )Y, exp(2kiπ

3 )Z)
we just define continuous family of allowed perturbations :
Wdef (X,Y, Z, µ) = 1

3(X3 + Y 3 + Z3) + µXY Z



Figure 1 – Variétés de Calabi Yau

3 Calabi-Yau deformation theory
The hypersurface of a complex projective space obtained by canceling

Wdef (X,Y, Z, µ) = 1
3(X3 + Y 3 +Z3) + µXY Z is the The simplest example

of Calabi-Yau. Is an elliptic curve or complexe torus .Calabi-Yau variety
is a Kählérienne Ricci flat which is to say the canonical bundle is trivial.
There among other K3 surfaces involved in branes theory and the quintic
threefold for closed strings. The easiest way to realize the Calabi-Yau is to
consider an hypersurface of a complex projective space. There is a
strong constraint between the degree of a hypersurface and the dimension
of the ambient space. Subsection Example of a Calabi-Yau Let us write the
exact sequence associated to a hypersurface of degree d :
0→ OPn+1(−d)→ OPn+1 → OX → 0
With exact long sequence in cohomology, one can calculate the cohomology
groups associated.

The Result : Hn(X,OX)=CCd−1
n−1 = C (condition Calabi-Yau) Necessa-

rily d = n +2

– n = 1 (d = 3) : Elliptic Curves
– n = 2 (d = 4) : K3 Surfaces
– n = 3 (d = 5) : Quintic threefold

3.1 Deformations, mirror symmetry

We will focus on two types of deformations of Calabi-Yau : the
deformation of symplectic structure and those from its complex structure.
We can consider the deformation of complex structure (J deformation).
She is captured by H1(X,TX) ' H2,1(X), It can also vary the Kähler
structure, referenced by H1,1(X) = H1(X,Ω1

X) There are two field theories



(CFT) supersymmetric duality in satisfactory : h2,1(X) = h1,1(MX) and
h1,1(X) = h2,1(MX) : deform the complex structure of M amounts to de-
form the volume of his mirror.
diamond Hodge plots the Hodge numbers of a complex manifold
Diamond a Calabi-Yau (Quintic Threefold)

h0,0 = 1
h1,0 = 0 h0,1 = 0

h2,0 = 0 h1,1 = 1 h0,2 = 0
h3,0 = 1 h2,1 = 101 h1,2 = 101 h0,3 = 1

h2,0 = 0 h1,1 = 1 h0,2 = 0
h1,0 = 0 h0,1 = 0

h0,0 = 1

3.2 "B side" Origin of Physics

On the A Side, supersymmetric constraints lead to what the action does
depends only on the the Kähler form ; instantons are holomorphic
curves. The calculation of correlation functions is difficult because it takes
into account correction on the degree curves (invariants of Gromov-
Witten) On the side "B", BRST Formalism explained in the other side of
the mirror applies here : instantons are constants maps from the world-
sheet Σ on a point of target space X. The correlation functions are simpler
to calculate : they require no instanton correction.
If X is a Calabi-Yau 3, the 3 points correlation function is :

〈WAWBWC〉 =
∫
X ΩjklAj ∧Bk ∧ Cl ∧ Ω

A,B,C belong toH1(X,TX) and depend on the complex structure, Ω is
(3.0) top-form holomorphic. The two numbers h1,1(X)=1 and h2,1(X) = 101,
count the number of deformation structures respectively Kähler and com-
plex. The principle of mirror symmetry, gives h1,1(MX)=101 and
h2,1(MX) = 1. He said in addition that correlation functions calculated
from both sides of the mirror are identical . The Mirror map associated pa-
rameter of deformation of Kälher structure with parameter of deformation of
complex structure. If a problem is difficult at the A side, we can try to solve
it at the B side. In mathematics passing through the mirror application
can solves so important old problem of geometry Enumerative



4 The Quintic and its mirror
Recall that the homogeneous quintic in P4, is obtained by canceling

the superpotential : W= 1
5(X5

0 + ...+X5
4 )

A marginal deformation of this superpotential is almost the variety ex-
pected the variety mirror quintic is associated with the emphcrepant
resolution of :

{(X0, ..., X4) ∈ P4/1
5(X5

0 + ...+X5
4 )− µX0...X4 = 0}/G

with G = {(a0, ..., a4) ∈ Z/5/
∑
ai = 0}/Z/5={(a,a,a,a,a)} ' (Z/5)3

4.1 Program

localizaion The construction of the mirror map is difficult globally
. Should be localize and built the map at the neighborhood of a
point.
Plan of the study
X denote the Calabi-Yau, MX its mirror .
– We must first calculate the Yukawa coupling H1(MX,TMX)
– Identify by the mirror map.
– Deduce the Yukawa couplings of H1,1(X)

One can deduce predictions about the number of rational curves in X We
will briefly describe in the following emph textbf useful mathematics for
the B-side the Quintic.

4.2 Mirror-map

The principle of mirror symmetry says that < H,H,H >=< θ, θ, θ >, if
tH denotes an curve parameter in the module of Kähler X we set H = d

dt

= 2πiq ddq its tangent vector (q = exp(2πit) Local coordinates for this mo-
dule.
The problem is to produce an image q(x) in emph module complex defor-
mations was : q = q(x), d

dq →
dx
dq

d
dx

Then we can write H = 2πiq ddq )↔ θ = 2πiq dxdq
d
dx

< H,H,H >= (2πiq ddq )3 < d
dx ,

d
dx ,

d
dx >= (2πi qx

dx
dq )3 < x d

dx , x
d
dx , x

d
dx >



4.3 Mathematical Tools

The simplest examples of Calabi-Yau are elliptic curves. They will guide
us to understand the techniques identified below and set the mirror applica-
tion. Monodromy : For a flat bundle,go around a singular object centred
in t = 0 at constant distance |t|, (t :deformation parameter of a smooth fa-
mily) is namelymonodromy in mathematics. In physics we talk about loop
Wilson. Residue map : We can generalize the formula for residues of a
complex variables function around z = 0 by replacing function differential
forms and point by hypersurface. This will be very useful for calculating
periods.

4.4 Elliptic curves

The elliptic curve Eτ = C/(1, τ) is a Calabi-Yau dimension 1.
The volume form is given by Ω = dz
Emph textbf Numbers Hodge : Hodge diamond is :

h00
h10 h01

h11

=
1

1 1
1

The one parameter family of deformations of an elliptic curve is :

X3 + Y 3 + Z3 − 3ψXY Z = 0

If α and β are homology cycles , they depend then ψ, we can find τ
to from ratio periods :

∫
α Ω,

∫
β Ω.

Solving a differential equation called Picard-Fuchs

4.5 Family of elliptic curves, monodromy

An important concept is the notion of local system we consider one pa-
rameter of family of curve which degenerate at t = 0 :

Degeneration of a family of curves

X
π

��

⊃ Xt

��

t 6= t′ Xt ' X ′t

D2 3 t t = 0 X0 : sing.



Monodromy theorem :

Either Xt where t varies along a loop in π1(D2 − {0}, t0) around 0, (
emphloop Wilson), all elements of this family are diffeomorphic .This
induces an automorphism on homology : ϕ? ∈ Aut(Hn(Xt0),Z)) Pratical
Example Let’s illustrate by taking a one parameter family of elliptic curve
Ct = {(Y 2Z = X3 +X2Z − tZ3} ⊂ CP2 which is expressed
in affine coordinates : Ct : y2 = x3 + x2 − t : elliptic curve defined by an
algebraic equation.
The parameter t of the elliptic curve is the signature of the variation of
complex structure, the geometric expression is Eτ = C/(1, τ(t)) when t re-
volves around the origin τ(t)→ τ(t) + 1 with τ function of : t : τ(t) = lnt

2πi
At the level of group automorphism(
τ(t)

1

)
→
(

1 1
0 1

)(
τ(t)

1

)
=
(
τ(t) + 1

1

)
We find that the complex structure varies but the symplectic structure

is unchanged.
We justify the choice of new coordinate q(t) = e2πiτ(t), because a passage
to the limit gives : when t → 0, Imτ(t) → +∞, d’où q(t), where q(t) is an
holomorphic function of t which also tends to 0 ; so it is a local coordinate for
this family of elliptic curves. We spoke in physics : large complex structure
limit(WSCC) in "bijection" with large volume limit (LVL) on the A
side

4.6 Application to the quintic

Is the quintic
∑4
i=0 x

5
i −ψx0x1x2x3x4 = 0. As with elliptic curves, Mor-

rison showed by standing near x = ( 1
ψ )−5 = 0 we could find t (side strain

Kähler ) from of ψ (or x).

As with elliptic curves, t =
∫
γ1

Ω∫
γ0

Ω , we must calculate the periods φi(x) =∫
γi

Ω, i = 1, 2. γ0 is invariant under monodromy around x = 0 (large com-
plex structure limit (WSCC )), ψ →∞ γ1 → γ0 + γ1.

Both quantities depend on ψ (or x)
We can compute locally the three forms (*) Ω using a version "differential
form" of theorem of residue (and the theorem of emphimplicit func-
tion) and deduce by direct calculation , the first period.



The equation called emph Picard Fuchs calculates the other period. Fi-
nally, we find :
φ0(x) =

∑∞
n=0

5n!
(n!)5x

n,
φ1(x)=φ0(x)log(x) + f(x), with f(x) = 5

∑∞
n=0

5n!
(n!)5 (

∑5n
j=n+1

1
j )xn

4.7 Calculation of Yukawa couplings on the B-side

Let Θ(i) = (x d
dx)(i), the equation of Picard-Fuch written :

Θ(4)y + 2.55x
1+55xΘ(3)y + 7.54x

1+55xΘ(2)y + 2.54x
1+55xΘ(1)y + 2.55x

1+55xΘy = 0

It is applied to Ω :
If Y =

∫
MX Ω ∧ Ω(3),

∫
MX Ω ∧ Ω =

∫
MX Ω ∧ Ω′ =

∫
MX Ω ∧ Ω” = 0, twice

differentiating the last equality we have :

∫
MX Ω ∧ Ω(4) + 2

∫
MX Ω′ ∧ Ω(3) = 0

We deduce the differential equation (x d
dx)Y = −55x

1+55xY

The solution is Y =< x d
dx , x

d
dx , x

d
dx >= c2

1+55x
We must normalize Y in agreement with (*) and then divide Ω by Φ0(x)
Thus :
< x d

dx , x
d
dx , x

d
dx >= c2

(1+55x)φ0(x)2 For identification,

< H,H,H >= (2πi qx
dx
dq )3 < x d

dx , x
d
dx , x

d
dx >=

c2(2πi q
x
dx
dq

)3

(1+55x)φ0(x)2

5 Conclusions : Application to enumerative geo-
metry

The parameter t Kähler deformation, expressed as a function of the ratio
of the first two periods, we get : q = e

2iπ φ1(x)
φ0(x) Where :

q = c1(x− 770x2 + ...) and conversely x = q
c1

+ 770( qc1
)2 + ...

We can now calculate everything according to the variable q :

< H,H,H >= (2πi)3(−c2 − 575( c2
c1

)q − 19575( c2
c2

1
)q2 + ...)

It remains to calculate the constants c1 and c2.
We remember that it was not enumerate rational curves of degree nd is
known for first degrees, which calculates c1 and c2.

< H,H,H >= 5 +
∑∞
d=1 ndd

3 qd

1−qd = 5 + 2875q + ...



We deduce c2 = −5
(2πi)3 , c1 = −1 Finally, we can enumerate the number

curve of a rational quintic of P4 all degrees
< H,H,H >= 5 +

∑∞
d=1 nd

d3qd

1−qd = 5 + 2875 q
1−q + 609250.23 q2

1−q2 + ...
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