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We explore the laser-induced ionization dynamics of N2 and CO2 molecules subjected to a few-
cycle, linearly polarized, 800 nm laser pulse using effective two-dimensional single active electron
time-dependent quantum simulations. We show that the electron recollision process taking place
after an initial tunnel ionization stage results in quantum interference patterns in the energy resolved
photo-electron signals. If the molecule is initially aligned perpendicular to the field polarization, the
position and relative heights of the associated fringes can be related to the molecular geometrical
and orbital structure, using a simple inversion algorithm which takes into account the symmetry of
the initial molecular orbital from which the ionized electron is produced. We show that it is possible
to extract inter-atomic distances in the molecule from an averaged photon-electron signal with an
accuracy of a few percents.

I. INTRODUCTION

The proposal and experimental realizations of new
ultra-fast molecular imaging techniques based on elec-
tron dynamics in intense ultra-short laser pulses have
been the subject of intense research activity in the last
decade [1]. Due to the ability they offer to visualize, at
the atomic scale, the ultrafast molecular dynamics tak-
ing place in a chemical reaction or during an internal
rearrangement process, these techniques obviously will
find many applications in biological, chemical and ma-
terial sciences. Conventional methods used to achieve
atomic resolution, for example X-ray or electron diffrac-
tion, are much more limited in time resolution than ul-
trafast electron-dynamics based imaging techniques. One
of those new imaging approaches consists of probing a
molecule by its own electrons, strongly driven and ion-
ized by an intense laser pulse [2].

This idea originates from the so-called three-step elec-
tron rescattering mechanism [3–5]. It is now widely ac-
cepted that, during strong-field atomic or molecular ion-
ization by an optical field, a free electronic wave packet
is formed each time the laser field passes its maximum
value. These wave packets, initially accelerated by the
field, have a large probability to return to the vicinity of
the parent ion when the electric field reverses its sign, half
a cycle later. This creates a series of recollision processes,
taking place with very high electron kinetic energies. The
consequences of these electron-ion rescattering events are
diverse and can lead to several different physical pro-
cesses: elastic scattering of the returning electron, elec-
tronic excitation of the parent ion, non-sequential double
ionization (NSDI), but also recombination of the recollid-
ing electron with the orbital from which it was extracted,
thus producing high order harmonics (HHG).

Using a few-cycle laser pulse, the measurement of the
outcome of the electron-ion rescattering events, which
take place only half an optical cycle after ionization, can
be seen as an ultra-fast probe of the molecule by its own

electrons. It has for instance been realized that the high
order harmonic spectrum carries very precise informa-
tions on the molecular structure and dynamics [6], with
exceptional temporal and spatial resolutions. The har-
monic spectrum is indeed related to the transition dipole
between the ground and continuum electronic states. As-
suming a simple form for the continuum wave functions
allows one to reconstruct the molecular ground state from
a complete measurement of the harmonic phases and am-
plitudes. This method was proposed and used for the first
time in 2004 by the group of P. B. Corkum for the accu-
rate experimental reconstruction of the highest occupied
molecular orbital (HOMO) of N2 [6]. Even though the
assumptions made in such a reconstruction method are
still a matter of debate, this experimental breakthrough
has generated a wealth of promising new theoretical and
experimental studies[7–12].

For instance, the intensity modulation of the har-
monic spectra generated by aligned linear molecules was
shown to be related to a multi-center molecular in-
terference which can be used to measure the internu-
clear separation in the molecule [7–9]. It should how-
ever be mentioned that the measured harmonic spectrum
may be rather complex since it carries informations not
only on the HOMO orbital, but also on lower lying or-
bitals (HOMO-n, n = 1, 2, . . .), which, depending on the
molecule itself and on its orientation, may contribute sig-
nificantly or not to the HHG spectrum [10–12].

Elastically scattered electrons also carry structural in-
formations on the molecule, since their momentum dis-
tribution can be influenced by interferences between the
amplitudes arising from the different scattering centers
constituted by the nuclei. This imaging technique, first
proposed in 1996 by T. Zuo, A. D. Bandrauk and P.
B. Corkum, was called “Laser-induced electron diffrac-
tion” (LIED) [13]. This proposal was investigated theo-
retically by different groups [14–18]. It was first shown
in restricted two-dimensional quantum simulations that
clear signatures of two-center interferences could be dis-
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tinguished in the re-scattered electron angular distribu-
tions [14]. Other investigations analyzed how these inter-
ferences could be used to image the structure of small
molecules [15]. This question was then addressed in full
three-dimensional quantum simulations, and a relatively
simple analytic transformations was proposed to extract
the internuclear separation of a diatomic molecule from
the full three-dimensional electron momentum distribu-
tion [16, 17]. The first successful experimental demon-
stration of LIED was finally reported in 2008 from aligned
O2 and N2 diatomic gases [19].

Contrarily to conventional electron diffraction, the
ability to extract structural information from the out-
come of a rescattering event, be it harmonic generation
or laser-induced electron diffraction, relies heavily on the
ability to align the molecule in the laboratory frame. As-
suming a realistic molecular alignment, we have recently
demonstrated an accurate, simple and robust method to
extract the molecular structure from the photo-electron
spectra of a laser-driven linear, symmetric, polyatomic
molecule [20]. We have also shown that the detailed
structure of the diffraction image reflects the symmetry
of the molecular orbital from which the recolliding elec-
tron emanates.

The present paper gives a more detailed theoretical
analysis of this effect, illustrated first on the diatomic
N2 molecule then on the triatomic CO2 molecule, one
of the simplest linear polyatomic system. It is orga-
nized as follows. The physical process of laser-induced
electron diffraction is described in Sec. II. Our two-
dimensional effective quantum model and the optimiza-
tion of the model parameters are presented in Sec. III.
This section also presents results of our simulations on
N2, taken as an illustrative example of a model diatomic
molecule, together with a number of assumptions lead-
ing to a simplified treatment of the electronic diffraction
dynamics. In Sec. IV, we present our theoretical predic-
tions and analysis of the electron momentum distribution
for the triatomic molecule CO2. The spectra obtained
with the three highest molecular orbitals are successively
discussed, and the influence of various model assump-
tions are then presented. We conclude the work with a
summary of our findings in section V.

II. LIED AND THE THREE-STEP MECHANISM

We start with a brief review of the so-called three-
step mechanism, the principal idea from which the above
dynamical molecular imaging schemes originate. Fig-
ure 1, inspired from the work of P. B. Corkum and F.
Krauss [21], depicts the electron motion occurring in the
combined oscillating force of an external laser field and
that deriving from its binding potential, the latter being
chosen as the double-well Coulomb potential of a laser
driven diatomic molecule, N2 for instance.

The coordinate system (x, y) refers to the plane de-
fined by the molecular axis and the polarization vector ~ε

FIG. 1. (Color online) Schematic view of the three-step mech-
anism as inspired from [21]. The upper part displays the posi-
tioning of the molecule and the electric field polarization vec-
tor in the laboratory frame, together with the time variation
of its amplitude (ωL = 0.06 a.u., E = 0.15 a.u.). Panels (a)
to (d) illustrate the time evolution of the field-dressed two-
center Coulomb potentials corresponding to different snap-
shots within the optical cycle, as indicated by the dots on
the field evolution. Numerical results for the square modulus
of the electron wave packet are shown on the bottom part,
starting initially from the HOMO of N2 (upper part) and of
CO2 (lower part). See text for details.

of the linearly polarized electric field. The molecule is as-
sumed to be initially aligned along the laboratory y-axis,
while the intense laser pulse, which drives the electron
dynamics, is polarized along the laboratory x-axis, as il-
lustrated in the first row of Fig. 1. Due to the form of the
radiative interaction, the subsequent electronic dynamics
takes place essentially in the (x, y)-plane. Also illustrated
in the first row of Fig. 1 is a single-cycle laser pulse de-

fined as ~E (t) = E sin(ωLt) ~ε for t 6 T , where T = 2π/ωL
is the period of the field. Here, ωL = 0.06 a.u., corre-
sponding to the wavelength λ = 800 nm of a Ti-Sapphire
laser, and E = 0.15 a.u., corresponding to a peak inten-
sity I = 8×1014 W/cm2. The middle panels of Fig. 1 dis-
play, for specific times within the optical cycle, the total
double-well Coulomb potential distorted by the radiative

interaction potential ~r · ~E (t), written in the length gauge,
~r being an electron coordinate. In addition to the poten-
tial surfaces, the electron motion is schematically indi-
cated by classical trajectory-style representations. Pan-
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els (a) to (d) refer to the different times indicated by the
labeled dots placed on the electric-field waveform on the
first row of the figure.

Panel (a) is for t = 0 and corresponds to the field-free
Coulomb potential. Panel (b) is for t = 0.2 T , a time
close to the field peak intensity. The total Coulomb plus
field interaction potential is then characterized by a max-
imum positive slope. The molecule is ionized around that
time, when the electric field amplitude is sufficiently high
to lower the potential barrier allowing tunnel ionization.
The positive electric field then accelerates the electron in
the “forward” direction, x < 0. At t = T/2, the electric
field changes its sign and so does the force on the elec-
tron, which is accelerated from then on in the opposite
direction x > 0. The potential slope is then negative and
the electron trajectory is classically accelerated back to
the double-well region. The wave packet still extends in
the forward direction until some time later, t = 0.7 T ,
panel (c) when the absolute value of the slope of the po-
tential reaches its maximum. This is the classical turning
point of the electron trajectory. Panel (d), for t = 0.9 T ,
illustrates the subsequent recollision process of the elec-
tron with the nuclei. The trajectories starting around
t = T/4 + T/20 lead to the most energetic recollision
events [2]. The system has thus produced its own elec-
tron gun. In addition to this, at times close to 3T/4,
the field is again large enough to significantly lower the
potential energy barrier through which tunnel ionization
could occur. There is then a possibility for a second elec-
tronic wave packet to be launched and accelerated in the
backward direction. Finally, it is important to note the
asymmetry of the forward and backward scattering. The
electron wave packet launched at a time close to T/4 is
accelerated in the forward direction from the time of its
birth and until it starts to return to the core. This oscil-
lating wave packet interferes with a second wave packet
produced around t = 3T/4. This explains the observa-
tion of interference patterns in the backward direction
(x > 0) in the lower rows of Fig. 1.

A wealth of complex phenomena are induced by the
recollision process in this three-step mechanism [3–5] de-
picted in Fig. 2. Indeed, the recollision may result -
through the temporary recapture of the electron - in the
formation of a transient excited species [M+ . . . e−]

∗
lead-

ing to several possible decay channels. One of them cor-
responds to the definite recapture of the electron with
the emission of high order harmonics (HHG) currently
exploited in the generation of attosecond pulses [21]. An-
other possible process is non-sequential double-ionization
(NSDI) [22, 23]. Yet another possibility, which is the sub-
ject of this paper is laser induced electron diffraction
(LIED) [19], yielding a re-scattered electron with high
momentum k. It has also been observed that the recolli-
sion process may even leave the electron in highly excited
Rydberg states, as the ionized electron, being decelerated
over many laser cycles, may be recaptured when the field
is over. This last process has been called “frustrated tun-
nel ionization” [24, 25].

M →M+ + e−

 
[
M+ . . . e−

]∗
recollision

→


HHG : M + γHHG

LIED : M+ + e−(k)

NSDI : M2+ + 2e−

FIG. 2. Three-step electron rescattering mechanism.

In the following, we wish to demonstrate how photo-
electron momentum distributions of a laser-driven (and
ionized) linear molecule reflect the geometrical and or-
bital structures of the molecule. The aim is to show how
LIED can be used as a nuclear geometry imaging tech-
nique, and to establish a reliable procedure to retrieve ge-
ometrical informations from the photoelectron spectrum.
We will refer to this procedure as an inversion algorithm.

III. THEORETICAL MODEL

The laser-driven electron dynamics and the photoelec-
tron spectra are calculated using a number of simplifying
assumptions. These fall roughly into two classes: those
pertaining to the model of the physical system itself, and
those relevant to questions of experimental feasibility.

The two assumptions that may be of most experimen-
tal concern are the hypothesis of a perfect molecular
alignment and that of a few cycle pulse excitation. As will
be shown later, the default to alignment is a major lim-
itation for the quality requirements of the imaging tech-
nique. Indeed, different alignment angles with respect to
the polarization vector lead to different diffraction pat-
terns, and we will have to assess the robustness of the re-
sults of our LIED analysis with respect to misalignment
of the molecule. Another experimental challenge is the
production of few-cycle laser pulses. We started out with
observations made with a single-cycle pulse, for which the
LIED is most transparent. The inclusion of several cy-
cles will induce complicated diffraction patterns due to
several back and forth oscillations of the electronic wave
packet along with multiple recollision events. One can
expect, in a near future, more sophisticated molecular
alignment techniques, on one hand, and the production
of intense near single-cycle pulses, on the other hand.
How the contrast of LIED images is affected by the lack
of perfect alignment and the effect of multi-cycle pulses
on the diffraction spectra will however be discussed in
detail in the second part of this article and illustrated
explicitly for the case of the CO2 molecule.

As to the model used for the physical (molecular)
systems, the major limitation is the restricted number
of degrees of freedom for the description at two levels:
First, concerning nuclear degrees of freedom, a fixed nu-
clei approximation is used and the nuclear vibrational
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and rotational dynamics are completely neglected. This
is justified by the ultrafast time scale of the electronic
LIED motion (attosecond range) as compared to the vi-
brational and rotational time scales (femtosecond to pi-
cosecond range). Second, a single active electron (SAE)
model with a soft-Coulomb pseudo-potential is used to
describe the electron dynamics, and the associated time-
dependent Schrödinger equation (TDSE) is solved in two-
dimensions.

A. SAE Hamiltonian

Electronic wave packets are generated from an initial
wave function Φ(~r, t0) by writing

Φ(~r, t) = UH(t, t0)Φ(~r, t0) , (1)

UH being the unitary time evolution operator satisfying
the TDSE

ı̇
∂

∂t
UH(t, t0) = H(~r, t)UH(t, t0), UH(t0, t0) = 1 (2)

with a SAE-Hamiltonian of the form

H(~r, t) =
p2

2
+

3∑
α=1

−Zα(~rα)√
|~rα|2 + a2α

+ ~r · ~E (t) , (3)

~p being the electron momentum operator. Atomic units
are used throughout the paper unless stated otherwise.
α = 1, ..., N labels the nuclei at fixed positions ~ρα and
~rα = ~r − ~ρα where ~r ≡ (x, y) denotes the electron po-
sition in the two-dimensional xy-plane. The position-
dependent effective charge Zα(~r) is chosen of the follow-
ing analytical form

Zα(~r) = Z∞α +
(
Z0
α − Z∞α

)
exp

[
−|~r − ~ρα|

2

σ2
α

]
, (4)

where Z∞α denotes the effective nuclear charge of the nu-
cleus α as seen by an electron at infinite distance. Z0

α

is the bare charge of nucleus α and σα is a parameter
which characterizes the decrease of the effective charge
of that nucleus with distance, and is introduced to ac-
count for distance-dependent electron-electron screening
effects. The value of Z∞α is derived from a Mulliken anal-
ysis carried out in an ab-initio study performed on the
parent ion. As a result, the sum

∑
α Z
∞
α , denoting the

total charge of the parent molecular ion, is equal to 1.

The SAE potential defined in Eqs. (3) and (4) thus rep-
resents the force field seen by the active electron. It takes
into account the interaction with the different nuclei of
the molecule and with the N − 1 other electrons, which
screen the nuclei. Table I summarizes the values of all pa-
rameters defining the SAE potential for the case of the
N2 and CO2 molecules.

Molecule N2 CO2

Atom N N O C O

aα (a.u.) 1.2 1.2 1.0 1.0 1.0

σα (a.u.) 0.700 0.700 0.577 0.750 0.577

Z0
α 7 7 8 6 8

Z∞α 0.500 0.500 0.173 0.654 0.173

TABLE I. Values of all parameters used for the single active
electron effective potentials of N2 and CO2.

B. Electron wave packets

1. Wave packet propagation algorithm

The third-order split-operator technique [26] is used to
solve the TDSE together with a Volkov-type asymptotic
analysis [27]. Following Refs. [28] and [29], one divides the
electronic space into two regions, an asymptotic region
(A) where the Coulomb potential energy is neglected and
an internal region (I) where all interaction potentials act.
The wave function (1) is split accordingly as follows

Φ(x, y, t) = ΦI(x, y, t) + ΦA(x, y, t) , (5)

where ΦI(x, y, t) is non-zero in the internal region only
and ΦA(x, y, t) is non-zero in the asymptotic region only.
This is done through some smooth function f(x, y) which
is equal to 1 in the interaction region and equal to 0 in
the asymptotic one, such that

ΦI(x, y, t) = f(x, y)× Φ(x, y, t) (6a)

ΦA(x, y, t) = [1− f(x, y)]× Φ(x, y, t) . (6b)

The linearity of the Schrödinger equation allows one to
propagate the wave functions ΦI(x, y, t) and ΦA(x, y, t)
separately, using different methods as suited to each re-
gion. In the internal region, the electronic wave function
Φ(x, y, t) is then replaced by its internal part ΦI(x, y, t),
and its propagation is done using the third-order split-
operator algorithm. Any portion of this propagated func-
tion that acquires a significant amplitude in the asymp-
totic region is collected as the asymptotic component
ΦA(x, y, t). Each newly removed asymptotic component
is then propagated separately using the analytical Volkov
solution[29] and added to the previously cut-out and
propagated asymptotic components. The final time of
propagation is chosen such that the accumulation of the
outgoing components is converged. Typically, the tem-
poral propagation lasts a few tens of femtoseconds after
the end of the pulse. As for the function f(x, y), an in-
finite number of choices exists, with only one limitation:
that its spatial variation must be slow enough to avoid
unphysical quantum reflexions but fast enough to sepa-
rate efficiently the internal region from the asymptotic
domain [29].
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FIG. 3. (Color online) (a) Soft-Coulomb potential associated
with N2. (b) Two-dimensional representation of the HOMO
probability amplitude distribution of N2. The change of color
denotes a change of sign of the orbital wave function.

2. Initial state

The initial state Φ(x, y, 0) of Eq.(1) is typically taken
as one of the HOMO-n (n = 0, 1, 2) orbitals of the
molecule. In the two-dimensional SAE model with a
soft-Coulomb pseudo-potential, as shown in Fig. 3(a)
for N2, this initial state is obtained by integrating the
time-dependent Schrödinger equation in imaginary time
(t → −it) using the split-operator technique [26]. Start-
ing with an arbitrary trial initial wave function of appro-
priate symmetry and requiring this wave function to re-
main normalized, the propagated wave function will con-
verge to the lowest energy state of the same symmetry,
the excited components dying off exponentially [30, 31].
Excited states of this symmetry can also be obtained by
propagating different initial trial wave functions of the
correct symmetry with an additional Gram-Schmidt or-
thogonalization to lower energy states after each time
step.

In the case of N2, only the HOMO orbital is considered
as the initial state. In a complete N = 14-electron de-
scription, it is the third orbital, (in order of increasing en-
ergy), of σg symmetry, and is noted 3σg. This HOMO or-
bital is characterized by a symmetry of revolution about
the molecular axis and by two nodal planes orthogonal
to this axis. The HOMO calculated, by imaginary-time
wave packet propagation, in this SAE 2D model, has in-
deed two nodes on the y-axis, as shown in Fig. 3(b). The
energy of this HOMO orbital depends on what is chosen
for the parameters of the soft-Coulomb potential. Here,
the value of σα is optimized in such a way that the energy
of the HOMO approaches the experimental ionization po-
tential of this particular orbital, determined by electron
impact [32] while all other parameters remain fixed. For
the case of N2, since only one molecular orbital will be
considered, the exact energy value could be obtained.

In the case of the CO2 molecule, three different molec-
ular orbitals, the HOMO, HOMO-n, with n = 1, 2, were

considered separately as possible initial states of the SAE
dynamics. The HOMO, of πg symmetry, is doubly de-
generate in 3D, and, in the crudest LCAO scheme, can
be expressed as the antisymmetric combination of the
Oxygens’ 2p orbitals that are oriented perpendicular to
the molecular axis. The HOMO is characterized by two
nodal planes: one containing the molecular axis and an-
other one perpendicular to and bisecting the molecular
axis. The HOMO-1 is of πu symmetry, and is also doubly
degenerate. It can be expressed as the symmetric linear
combination of the Oxygen and Carbon 2p orbitals that
are perpendicular to the molecular axis (for example the
2px atomic orbitals). These orbitals are characterized
by a nodal plane containing the molecular axis. The
HOMO-2, of σu symmetry, is non degenerate and can
be expressed as a linear combination of the Carbon 2p
orbital oriented along the direction of the molecular axis
with an anti-symmetric combination of the Oxygens’ 2s
and a symmetric one of the Oxygens’ 2p orbitals oriented
along the molecular axis. It has a nodal plane perpen-
dicular to and bisecting the molecular axis.

Enforcement of these symmetry properties, together
with imaginary-time propagation, yield the three desired
molecular orbitals depicted in Fig. 5. Table I lists the
potential parameters optimized for this case. This opti-
mization of the soft-Coulomb potential’s parameters was
done such that the ionization potentials calculated with
it agree satisfactorily and simultaneously for all three or-
bitals with the experimental measurement [32]. There-
fore, with the optimal values given in Table I, one finds
13.6 eV, 17.8 eV and 22.3 eV for the ionization potentials
of the HOMO, HOMO-1 and HOMO-2 respectively, as
compared to their respective measurement of 13.8 eV,
19.7 eV and 20.3 eV, as reported in [32]. The maximum
relative deviation from the experimental data remains
within 10% in this case. In principle, the effective poten-
tial seen by the active electron depends on the molecular
orbital under scrutiny, as in Hartree-Fock theory, where
exchange and Coulomb parts of the Fock operator depend
on the unknown orbitals. The simpler picture adopted
here is thus expected to have some limitations in the si-
multaneous description of many orbital states [33]. For
the purpose of this work, where the feasibility of LIED as
a molecular imaging scheme is assessed, this description
must be sufficiently accurate to capture the essentials of
the electron dynamics.

3. Spatial wave packet: Diffraction fringe structures

Using the propagation algorithm described above, elec-
tronic wave packets were calculated (for both N2 and
CO2) on a spatial grid of 800 points on each axis, span-
ning −170 a0 to 170 a0. The split-operator algorithm
for the time-evolution operator uses the time interval
δt = 0.05 a.u. Snapshots of the wave packet obtained at
the different times of a single-cycle pulse as indicated on
the waveform of the field shown on the first row of Fig. 1
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are given in the lower panels of this figure, for N2 and
CO2. The series of spatial wave packet contour plots does
reflect the sequence of classical events that was discussed
in detail in section II, corresponding to different phases
of the three-step mechanism. Thus at time t ' 0.2T , the
electronic wave packet starts its forward motion (toward
x < 0), while at t = 0.7T it reached its maximum ex-
tension in the forward (x < 0) direction. Of note is that
at t = T an interference pattern is observed between the
direct and rescattered components of the ionized wave
packet.

The most important observations to be drawn from
these snapshots describing the LIED process are: (i)
the fringes obtained in the forward direction [x < 0 in
the third and fourth rows of Fig. 1(c)] as a signature of
the lobes of the corresponding HOMO orbitals acting as
electron ejection sources, on one hand, and (ii) the rich
pattern of interference fringes in the backward direction
[x > 0 in the third and fourth rows of Fig. 1(d)] resulting
from the electron diffraction analogous to Young’s slit
experiments, on the other hand. In this analogy, the slits
are replaced by atomic diffusion centers. In the case of
N2, the HOMO shows three lobes along y-axis leading to
three main fringes in the diffraction pattern (see Fig. 1,
third row, right panel). On the contrary, the HOMO
of CO2 displays only two lobes along the y-axis and its
diffraction pattern shows two families of fringes with a
nodal structure along y = 0 (see Fig. 1, fourth row, right
panel).

C. Electron momentum distribution and its
qualitative analysis

The experimentally accessible observable, through
time-of-flight electron velocity mapping is the diffraction
pattern in the reciprocal momentum space (kx, ky). The-
oretically, this is observed in the electronic asymptotic
momentum distribution, defined as the Fourier trans-
form Φ̃A(kx, ky) of the asymptotic electron wave packet
ΦA(x, y, tf ) at the end of the propagation (t = tf )

Φ̃A(kx, ky) ∝
∫

ΦA(x, y, tf )e−ikxxe−ikyydxdy (7)

In the following, the tilde (̃ ) symbol will denote a Fourier
transform. In practice, the final time tf needs not be infi-
nite, but is taken sufficiently large to ensure convergence.
The upper panels of Fig. 4 display the square modulus of
Φ̃A(kx, ky), for three different internuclear distances R
of N2: (a) for the molecule in its equilibrium geometry
R = 1.1 Å ; (b) and (c) for a stretched N2 with R = 2.2 Å
and 4.4 Å, respectively.

It was shown that the overall three-step recollision pro-
cess leads to a maximum collision energy given as 3.17Up
[34–36], where Up = E2/4ω2

L is the electron pondero-
motive energy. Assuming elastic collisions distributed
over all angles of the (x, y)-plane, this defines a circle

C (kx, ky) in the reciprocal (kx, ky)-plane, with a well de-
fined finite radius, such that all classical trajectories with
an energy smaller than or equal to 3.17Up remain within
the boundaries of this circle. The ponderomotive motion
circle associated to the maximum recollision energy for
the Ti-Sapphire laser of peak intensity 8× 1014 W/cm2

is drawn on all the upper panels of Fig. 4.
Two observations are in order: (i) The asymptotic

electron momentum distribution basically fill up the pon-
deromotive motion circle, but lead also to the observa-
tion of asymmetrical high energy spectral components in
the backward (kx > 0) scattering region going beyond
a classical trajectory-type interpretation frame. This re-
gion of the spectra is filled by constructive and destruc-
tive interference patterns between backward scattering
and direct ionization in the x < 0 direction. In ad-
dition, the larger the internuclear separation, the more
pronounced this asymmetric feature will be. (ii) Even
more important is the observation of fringes in the mo-
mentum distribution, similar to what is observed in the
spatial wave packet at the end of the pulse. These fringes
are markedly well resolved in the forward (kx < 0) direc-
tion. Moreover the number of fringes increases with the
internuclear distance. As a more quantitative analysis
will make it clear, this last information is precisely the
key point of the LIED imaging technique for geometrical
structure determination.

Such an analysis is conducted by first averaging over
kx the momentum distribution to give

S(ky) =

∫
|Φ̃A(kx, ky)|2 dkx (8)

The corresponding spectra, a diffraction pattern, are dis-
played, on a logarithmic scale, on the lower panels of
Fig. 4. One can relate the number of fringes observed in
this diffraction pattern S(ky) with the internuclear dis-
tance: using the four tick mark rulers displayed in the
lower panels of Fig. 4, it turns out that, within a typical
interval of 0 < ky < 1.5 a−10 , there are twice as many

fringes for R = 2.2 Å as there are, (in the same ky in-

terval) for R = 1.1 Å, and again twice as many fringes
for R = 4.4 Å as there are for R = 2.2 Å. This important
observation can be summarized as

R ∝ 1/∆ky (9)

where ∆ky denotes the momentum separation between
the fringes. A complete quantitative analysis requires the
determination of the proportionality factor. This will be
done in the next Section.

It is however worthwhile to note that, even at this
level of analysis, the diffraction spectra S(ky) may al-
ready serve as a tool for molecular imaging once the av-
eraged diffraction spectrum has been measured at the
known equilibrium internuclear distance. A possible lim-
itation of this technique seems to be the small numbers
of fringes in the spectra, which may render more difficult
the measurement of the geometrical structure for short
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FIG. 4. (Color online) Electron diffraction patterns

|Φ̃A(kx, ky)|2 for N2 in the momentum space representation
(upper panels) and for three different inter-atomic distances
R from equilibrium to stretched geometries and under the
same excitation conditions as Fig. 1. Dashed circles indicate
points with final energy equal to the maximum classical rec-
ollision energy. The lower panels display the averaged diffrac-
tion spectra S(ky) on a logarithmic scale normalized to the
maximal value. Tick mark rulers are given to facilitate the
counting of peaks within a given ky-interval.

internuclear separations. This limitation can however be
overcome by changing the laser parameters, such as to
increase the ponderomotive energy Up and consequently
the radius of the ponderomotive motion circle C (kx, ky)
to encircle a larger area covered by recolliding trajec-
tories. For a given frequency, the issue is to increase
the peak intensity. As an indication, the laser param-
eters used in obtaining the spectra of Fig. 4 fulfill the
requirement for the appearance of at least two fringes in
C (kx, ky).

IV. LIED ANALYSIS AND ROBUSTNESS

We now give a complete proof of the feasibility of imag-
ing molecular geometrical and orbital structures of lin-
ear molecules. We shall first take a closer look at the
diffraction pattern defined by the kx-averaged asymp-
totic electron distribution S(ky), Eq.(8), and illustrated
in Fig. 4 for the case of the N2 molecule. We shall demon-
strate how the geometrical and orbital structures of the
molecule can be inferred from a comprehensive reading of
S(ky), in what constitutes to us an inversion algorithm
for LIED. Emphasis will then be placed on results ob-
tained for the CO2 molecule, in the simple yet relatively
realistic model (for the purpose of the present paper)
described in the preceding section. This molecule consti-
tutes an ideal example of a polyatomic linear symmetric
molecule. The choice of this system is motivated by dif-
ferent considerations. With three nuclei it has enough
internal degrees of freedom to make its molecular struc-
ture determination challenging. It remains however sim-

ple enough when referring to its alignment properties,
due to its linear and symmetric equilibrium geometry.
We will then explore and discuss the robustness of the
LIED analysis when three main approximations are re-
laxed, at least partially. These are, in order of concep-
tual importance, the SAE, the perfect alignment and the
single-cycle pulse excitation assumptions.

A. Inversion algorithm

The LIED inversion algorithm used here is basically re-
lated to structural properties of the initial state that are
well conserved during the electron wave packet propaga-
tion, i.e. during the time-evolution of the system under
the combined effect of the Coulomb forces and of the laser
field polarized perpendicularly to the molecule.

For centrosymmetric linear molecule, such as CO2 and
N2, the addition of the time-dependent interaction with
the linearly polarized laser electric field lowers the sym-
metry of the molecular force field from D∞h to C2v,
where the C2 symmetry axis corresponds to the direc-
tion x of the field polarization. The symmetry opera-
tors of this subgroup (E, C2, σv and σ′v) commute with
the Hamiltonian H(~r, t) and with the associated time-
evolution operator UH . As a consequence, if the initial
state is one of the eigenstates of the field-free Hamilto-
nian, which necessarily transform under the various sym-
metry operations according to one of the four irreducible
representations of the C2v group, the time-dependent
state that evolves from this will also transform accord-
ingly. It is thus relevant to look at symmetry properties
of the initial states considered here for the N2 and CO2

molecules.

1. N2 case

For N2, the HOMO, a σg orbital in D∞h, is of sym-
metry a1 in C2v. Its nodal structure, as seen in Fig. 3, is
that of a symmetry-adapted (SA) LCAO form

Φ3σg (~r) ∝ f0(~r − ~R/2) + [S f0](~r + ~R/2) (10)

where f0 = aφ2s + b φ2p + . . . denotes a Nitrogen hybrid
atomic orbital and S a symmetry operation of C2v which
exchanges the two N atoms.

At any time t, the wave function can be expressed sim-
ilarly, as

Φ3σg (~r, t) ∝ ft(~r − ~R/2) + [S ft](~r + ~R/2) (11)

From this, we infer that the electron momentum wave
function is

Φ̃3σg
(~k, t) ∝ e+i~k. ~R/2 f̃t(~k) + e−i

~k. ~R/2 [S f̃t](~k) (12)

ft can also be written as a sum of a- and b-symmetry
functions as

ft = fat + f bt and S ft = fat − f bt (13)
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FIG. 5. (Color online) Two-dimensional representation of the
(a) HOMO, (b) HOMO-1 and (c) HOMO-2 probability am-
plitude distributions of CO2. The change of color denotes a
change of sign of the orbital wave function.

and then

Φ̃3σg
(~k, t) ∝ cos(kyR/2)f̃at (~k)+i sin(kyR/2)f̃ bt (~k) (14)

The modulus square of this function, integrated over kx,
yields an oscillatory pattern that depends on the widths
of the functions f̃at , f̃

b
t and on the interplay between the

cosine and sine terms, which have a common period of

∆ky = 4π/R, (15)

Without delving into the details of the actual variations
of S(ky) as defined by this, we can at least infer from the
period of the (modulated) oscillations in its fringe pattern
the value of the internuclear distance R, as announced in
Eq.(9) of the previous section.

2. CO2 case

For CO2, we considered ionization out of either the
HOMO, or the HOMO-n (n = 1, 2). These orbitals are
sufficiently close in energy to each other in the field-free
molecule to play an important role in the laser-driven ion-
ization process for the choice of laser parameters under
consideration [37–39]. Their well-known LCAO struc-
tures have been recalled in the preceding section. They
are shown in Fig. 5. The differences in symmetry and
nodal properties between these three molecular orbitals
(MO) are obvious from this figure. The most impor-
tant feature in this respect and for the purpose of the
present discussion is that the HOMO and HOMO-2 are
anti-symmetric with respect to the mirror plane orthog-
onal to the molecular axis and containing the C atom,
while the HOMO-1 is symmetric. This is at the origin of
the different fringe structures found in both the 2D pho-
toelectron momentum distribution and kx-averaged spec-
tra, i.e. diffraction patterns S(ky), as shown in Fig. 6,
lower panels.

The HOMO and the HOMO-2 (panels (a) and (c) of
Fig. 5) are both of symmetry b2 in C2v, and have a general
LCAO composition of the form

Φ(~r) ∝ fO(~r − ~R) + f b2C (~r)− [S fO](~r + ~R) (16)

FIG. 6. (Color online) Electron diffraction patterns of a sym-
metrically stretched CO2 (R = 4.8 Å) in the momentum space
(upper panels) for the HOMO (a) and HOMO-1 (b) orbitals
under the same excitation conditions as in Fig. 4. The lower
panels display the averaged diffraction spectra S(ky) on a log-
arithmic scale normalized to the maximum value.

where fO(~r) will generally be a hybrid Oxygen atomic
orbital, and f b2C (~r) denotes some function of symmetry
b2 centered on the C atom. R here denotes the C-O
internuclear distance. Similarly, one can write

Φ̃(~k, t) ∝ ei~k. ~Rf̃O,t(~k)+ f̃ b2C,t(
~k)−e−i~k. ~R[S f̃O,t](~k) (17)

such that, writing once again

fO,t = faO,t+f
b
O,t and S fO,t = faO,t−f bO,t (18)

the momentum wave function now reads

Φ̃(~k, t) ∝ 2 cos(kyR)f̃ bO,t(
~k) + f̃ b2C,t(

~k)

+2i sin(kyR)f̃aO,t(
~k) (19)

As shown in Fig. 7(a) and (c), in the cases of the
HOMO and HOMO-2, the diffraction patterns S(ky)
have fringes at large ky that are mainly governed by

a sin2(kyR) term, with zeroes at ky = nπ/R. The

curves in black (solid) lines represent this pure sin2(kyR)
diffraction pattern. The calculated patterns shown in
red (dashed) lines follow closely this behavior and ex-
hibit zeroes at the predicted positions. The last term
of Eq.(19) is thus seen to dominate the calculated spec-
trum in this range of ky. At smaller values of |ky|, the

zeroes of this sin2(kyR) part are masked by the contribu-
tions of the first terms of Eq.(19), which die out rapidly

as |ky| increases. Indeed, f̃ bO,t(
~k) and f̃ b2C,t(

~k) are essen-
tially the Fourier transforms of the contributions arising
from the diffuse 2py atomic orbitals centered on O and
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C, which are narrower in k-space than the contribution

f̃aO,t(
~k) arising from the 2s atomic orbital.

The HOMO-1 is a πu bonding orbital and is of symme-
try a1 in C2v. Its analysis thus proceeds as done above
for the HOMO of N2, except that here the LCAO pattern
will be a 3-center one. In fact, of the n = 2 atomic or-
bitals of O and C, only the 2px orbital is simultaneously
of π symmetry in D∞h and a1 in C2v. The HOMO-1 can
thus be well described by the combination

Φπu(~r) ∝ fO(~r − ~R) + fC(~r) + fO(~r + ~R) (20)

Assuming that this structure is conserved during the
propagation in the presence of the field, the above rea-
soning leads to

Φ̃πu
(~k, t) ∝ 2 cos(kyR)f̃O,t(~k) + f̃C,t(~k) (21)

If we assume that fC(~r) ' fO(~r) = g(~r), i.e. that O and
C have the same 2px orbitals, we get

Φπu
(x, y, t) ' gt(x, y−R)+gt(x, y)+gt(x, y+R) (22)

and the diffraction pattern S(ky) should exhibit a double
peak structure just as [1 + 2 cos(kyR)]2 with zeroes for

ky =

(
n+

1

3

)
2π

R
and ky =

(
n+

2

3

)
2π

R
(23)

and maxima at ky = nπ/R. The profile of the pure
[1+2 cos(Rky)]2 diffraction pattern is shown in the panel
(b) of Fig. 7 in black (solid) line with the numerical result
shown in (red) dotted line. This comparison confirms
again the validity of the proposed inversion algorithm.

A less stringent assumption would be that fC(~r) =
γ g(~r) while fO(~r) = g(~r), i.e.

Φπu(x, y, t) = gt(x, y−R)+γ gt(x, y)+gt(x, y+R) (24)

and in which case

|Φ̃πu(kx, ky, t)|2 ∝ [2 + γ2 + 2 cos(2Rky)

+ 4γ cos(Rky)] |g̃t(kx, ky)|2 (25)

One can then show that the ratio, σ, of the amplitudes of
two successive peaks in the diffraction pattern resulting
from this is related to the ratio γ of the LCAO coefficients
of the 2px atomic orbitals of C and O in this molecular
orbital. Indeed, we obtain σ ' (γ−2)2/(γ+2)2 or, equiv-
alently, γ = (2 − 2

√
σ)/(1 +

√
σ). The intensity ratio of

the double peak structure of the calculated diffraction
pattern for the HOMO-1 orbital, shown in panel (b) of
Fig. 7 in red (dashed) line, is σ ' 1/11.8 which gives a
parameter γ ' 1.10, in support of the simpler expansion
of Eq.(22) and in agreement with the pictorial represen-
tation of the HOMO-1 orbital in Fig. 5(b).

3. Generalization

A number of general features of the above analysis,
permitting the retrieval of the geometrical and orbital

FIG. 7. (Color online) Averaged diffraction patterns S(ky) on
a logarithmic scale normalized to the maximum value calcu-
lated from the three different initial states of a symmetrically
stretched CO2 molecule with a C-O distance of R = 4.8 Å
under the same excitation conditions as in Fig. 1. Panels (a)
to (c) correspond respectively to the HOMO, HOMO-1 and
HOMO-2. Black solid lines show the theoretical reconstruc-
tion through the inversion algorithm and the red dotted lines
show the numerical results. Panel (d) displays the same ob-
servable for an incoherent superposition of the three orbitals
with equal weights. Gray dotted lines indicate the expected
positions ky = nπ/R of the minima of the function sin2(kyR).

structure of the molecule from observable photoelectron
momentum distributions, and constituting the LIED in-
version algorithm, is worth noting here.

We first note that, at large values of |ky|, S(ky) is dom-
inated by a single oscillatory term, associated with that
atomic component of the initial molecular orbital that
is widest in the momentum space. Thus, disregarding
the modulation of the interference pattern in S(ky), in
particular its decay as ky increases, we can concentrate
on this oscillatory pattern at large |ky| to retrieve in-
formations on the bond-length(s) of a symmetric linear
molecule. More precisely the positions of the zeroes and
peaks of the calculated spectra are accurately predicted
by a simple periodic function of kyR, the central element
of the inversion algorithm, so that one can recover the
sought-for geometrical information through relations of
the type R = nπ/∆ky where ∆ky denotes the ky-spacing
separating two consecutive maxima. This is the quanti-
tative aspect of the inversion algorithm.

We have been able to reproduce, by using just the sim-
ple formula evoked above, the regular oscillation patterns
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found in the photoelectron parallel momentum spectrum,
S(ky), in all cases and trace these patterns back to the
symmetry and nodal, or rather LCAO structure of the
initial molecular orbital: for example, the simple struc-
ture of the spectrum in the case of the HOMO [Fig. 7(a)]
as opposed to that of the HOMO-2 [Fig. 7(c)], reflects the
simple LCAO structure of this orbital. The double peak
structure of the HOMO-1 [Fig. 7(b)] reflects also the 3-
centered LCAO structure of this orbital. This qualitative
aspect of the inversion algorithm distinguishes it from
previous, existing LIED analysis approaches, and is the
feature that depends most on the alignment condition as
it is deeply rooted in the structure and symmetry of the
molecular system.

We turn next to the role and importance of the model
assumptions, and assess the robustness of this LIED anal-
ysis, as an imaging technique for the retrieval of geomet-
rical information, with respect to the variations in the
model parameters. This is conducted by examining sep-
arately those concerning molecular degrees of freedom
and the ones in relation with the laser field.

B. Robustness with respect to molecular degrees of
freedom

It is useful to make here a distinction between internal
and external molecular degrees of freedom when referring
to the various assumptions made above. Assumptions on
internal degrees of freedom are those made in describ-
ing electronic and vibrational dynamics. Assumptions
on external degrees of freedom are those concerning the
rotational dynamics. Let us examine the consequences of
these approximations successively.

1. Internal degrees of freedom: electronic dynamics

Within the framework of the SAE approximation, we
have considered the ionization and the subsequent elec-
tronic dynamics to start from one of the highest occupied
orbitals of the CO2 molecule. The resulting spectra for
the HOMO-n (n = 0, 1, 2) gathered in Fig. 7 show that:
(i) Very sharp minima at the momenta ky are predicted
by the inversion algorithm from which the value of the C-
O bond length R can be obtained. More precisely, from
the spectra shown in the figure, one obtains R = 4.92 Å
with an error of less than 3% over 8 peaks, when com-
pared with the input parameter R = 4.80 Å. (ii) The
observation of a periodic sequence of minima is clearest
in the high energy region of the spectra, which inciden-
tally corresponds mainly to backward scattering.

Without relaxing yet the SAE approximation, we have
also shown in panel (d) of Fig. 7 how an incoherent su-
perposition of the three HOMOs with equal probability
still results in a spectrum with sharply defined minima
from which the geometrical information can be extracted
with a comparable accuracy.

We now argue that, provided the molecule is perfectly
aligned as assumed, going beyond the SAE should pre-
sumably not affect the readability of the diffraction pat-
tern. Indeed, the symmetry character of the quantum
state holds for the N -electron, fully correlated, time-
dependent wave function, as well as for the orbitals (one
electron wave functions). Thus, all what was written
above concerning the SAE wave function should also ap-
ply to the N -electron wave function.

Now, the photoelectron momentum distribution can
certainly be analyzed in terms of properties of the one-
electron (time-dependent) density matrix, γ1(t), derived
from the exact N -electron state |ΨN (t)〉, hence from its
eigenfunctions, the natural orbitals, ϕi(~r, t) [41].

For the purpose of this demonstration, let us first de-
fine the N -electron density matrix

ρN (t) ≡ |ΨN (t)〉〈ΨN (t)| (26)

The one-electron density matrix γ1(t), which can be
obtained from the partial trace

γ1(t) = N TrN−1 ρN (t) (27)

over the remaining (N − 1) electrons, defines the set of
natural orbitals using

γ1(t) =
∑
i

ni |ϕi(t)〉〈ϕi(t)| . (28)

The exact time-dependent electron momentum density
can then be written as

ρ̃1(~k, t) =
∑
i

ni |ϕ̃i(~k, t)|2 (29)

For symmetric linear molecules aligned perpendicular
to the laser polarization, whose common reduced point
group is C2v, the natural orbitals can only be of a1(2) or
b1(2) symmetry, and can always be expanded in a com-
plete atomic basis. Their asymptotic momentum distri-
bution should be either of the form given in Eq.(19), for
a general a1(2) orbital, or of the form of Eq.(21), for a
general b1(2) orbital. It follows then that the exact pho-
toelectron momentum distribution should be the inco-
herent sum, defined by Eq.(29), of the natural orbitals’
asymptotic densities of the form

|Φ̃(~k, t)|2 ∝
∣∣a cos(~k. ~R)f̃1(~k) + b sin(~k. ~R)f̃2(~k)

+ cf̃3(~k)
∣∣2 (30)

where f̃1(2,3), are some functions of the free electron mo-

mentum ~k (here in 3D), whose explicit forms depend on
the natural orbitals.

The same type of periodic fringe pattern as shown
in panel (d) of Fig. 7, with readable periodic zeroes
and maxima at large momenta, should thus character-
ize this photoelectron momentum distribution. Work is
in progress in our group in order to study in detail this
process and the influence of electron correlations in the
LIED process.
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FIG. 8. (Color online) High energy (|k| > 3.15 a.u) averaged
diffraction patterns S(ky) from the HOMO of CO2 in its equi-
librium (R0 = 1.2 Å, panel a) and symmetrically stretched
(R0 = 4.8 Å, panel b) geometries, under the same excitation
conditions as in Fig. 1. Black solid lines show the results in the
absence of vibration (fixed R) and the red dotted lines take
into account a vibrational dispersion of ∆R = ±1 Å. The gray
dotted lines indicate the expected positions of the minima of
the function sin2(R0 ky), for the corresponding values of the
internuclear distance. See text for details.

2. Internal degrees of freedom: vibrational dynamics

The structural reading made above of the diffraction
patterns refers to a molecule in a fixed nuclear geometry
configuration, perfectly aligned perpendicular to the lin-
ear polarization vector ~ε. In reality, molecules are sub-
ject to vibrations and rotations, and these geometrical
parameters are usually distributed over some range de-
pending on the vibrational and rotational state in which
it is initially prepared. The possible blurring due to
molecular vibrations in the observed diffraction spectra
can be taken into account through an incoherent aver-
age of the diffraction signal over independent calculations
performed for different internuclear distances. Here we
choose a range of R going from (R0 − 1Å) to (R0 + 1Å)
both with R0 = 1.2 Å and 4.8 Å, under the same excita-
tion conditions as in Fig. 4. The weight associated with
each value of the internuclear distance R is chosen as
a Gaussian distribution D(R) normalized over the finite
interval R ∈ [R0 − 1Å, R0 + 1Å]

D(R) = N exp

(
− [R−R0]2

2ς2

)
(31)

where the standard deviation ς, fixed at 0.2 Å, is much
larger than that of the vibrational ground state associ-
ated with the symmetric stretch mode of CO2. The in-
coherently averaged diffraction patterns are displayed in
Fig. 8. They were obtained by retaining the higher energy
signal only. We have chosen here |k| > 3.15 a.u., which
results in a significant increase of the contrast between
constructive and destructive interference fringes. As can
be seen from Fig. 8, the diffraction patterns are almost

insensitive to the initial distribution of R. At both the
equilibrium and stretched geometries, the contrast that
remains after the vibrational motion has been taken into
account statistically in this way, allows for an accurate
determination of the position of the fringes, which are
not much affected by the bond length dispersion. A more
quantitative estimation of this sensitivity can be reached
by analyzing the Fourier transform of the asymptotic mo-
mentum amplitude associated with the HOMO, which
reads

Φ̃(~k, t) ' sin(~k. ~R) g̃(~k), (32)

Replacing ~R by ~R0+∆~R, setting ~k.(~R0+∆~R) = ky.(R0+
∆R), assuming perfect alignment, and considering the
symmetric variations of both CO bond length, corre-
sponding to a symmetric stretching mode, as done in the
calculations shown in Fig. 8, one gets

Φ̃(~k, t) ' [sin(kyR0) + ky∆R cos(kyR0)] g̃(~k) (33)

A strong sensitivity with respect to ∆R therefore appears
only for |ky| � 1/∆R. In other words, for small bond
length dispersions, only high energy fringes are signifi-
cantly affected. This is confirmed in Fig. 8. The same
analysis also applies to a non symmetric variation of the
two C-O bond lengths, corresponding to a small ampli-
tude vibrational motion in the anti-symmetric stretch
mode. Likewise, a bending motion would give the same
effect as the symmetric variations of the C-O bond
lengths considered above. We thus expect diffraction pat-
terns that are no less analyzable than the one shown in
Fig. 8, and from which the C-O equilibrium bond length
can be extracted unambiguously.

3. External degrees of freedom

Finally, we examine the validity of the model assump-
tions with respect to the introduction of the external de-
gree of freedom, that is the effect of angular dispersion.
In that respect, it is useful to imagine that a first laser
pulse, an alignment pulse, has created a rotational wave
packet which periodically re-phases, yielding thus, at the
revival times, a strong alignment of the CO2 molecule
perpendicular to the polarization direction of the subse-
quent ionizing laser pulse. As previously done for the
vibrational motion, the effect of molecular rotation is
simulated through similar statistical incoherent averag-
ing over various molecular alignment angles θ. The re-
spective weight of each angle is determined by an analog
of Eq.(31), D(θ) now denoting a Gaussian angular dis-
tribution taken in the interval θ ∈ [0, π]. The standard
deviation ς is chosen such that 90% of the molecules are
contained within a cone of aperture 20◦, corresponding
to a strong alignment scenario that has recently been
achieved experimentally for CO2 [40]. We apply to the
scattered electron momentum spectrum a filter that re-
tains only the high-energy electrons. The resulting sig-
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FIG. 9. (Color online) High energy (|k| > 3.15 a.u) aver-
aged diffraction patterns S(ky) from the HOMO of CO2 in its
equilibrium (R = 1.2 Å, panel a) and symmetrically stretched
(R = 4.8 Å, panel b) geometries, under the same excitation
conditions as in Fig. 1. The black solid lines show the results
corresponding to perfect alignment at a fixed internuclear dis-
tance and the red dotted lines take into account an angular
dispersion of 20◦ with the same internuclear distance. The
gray dotted lines indicate the expected positions of the min-
ima of the function sin2(Rky), for the corresponding values
of the internuclear distance. See text for details.

nal, displayed in Fig. 9, is nicely contrasted and repro-
duces all the fringes of the aligned molecule. The only
caveat is the weakness of the measured signal where the
fringes are contrasted, but this could be overcome by a
high repetition data recording. A quantitative analysis
of the sensitivity with respect to ∆θ leads to

~k. ~R =

[
1 +

kx
ky

tan(∆θ)

]
kyR cos(∆θ) (34)

which, for small ∆θ, results into:

Φ̃(~k, t) ' sin[kyR(1 + (kx/ky)∆θ)] g̃(~k) (35)

giving a higher sensitivity to ∆θ for |ky/kx| � 1. The
fringes are actually slightly less contrasted for small ky
values in Fig. 9(b). But we still expect diffraction pat-
terns that are as analyzable as the ones shown in Fig. 9,
and from which the C-O equilibrium and stretched bond
lengths can be again unambiguously extracted.

C. External field parameters

In order to remove the limitations of an unrealistic
single-cycle 800 nm laser pulse, we present results of cal-
culations made with 8 optical cycles at the same carrier
frequency. We will compare the results obtained with
a rectangular pulse shape [upper row of Fig. 10(a)] with
those obtained with a more realistic 10 fs Full Width at
Half Maximum (FWHM) sine-square pulsed excitation
[upper row of Fig. 10(b)]. Both pulses cover about 8 op-
tical cycles. The lower row of Fig. 10 shows the diffraction

pattern calculated for R = 4.8 Å assuming perfect align-
ment at fixed internuclear distance with this few-cycle
excitation. With these long pulses, at least two electron
wave packets are driven by the field in opposite directions
before being both returned to the parent ion. Scattering
signals arising from these different “pathways” interfere
with each other, blurring out the diffraction pattern. Let
us examine in some more details the role of the corre-
sponding classical trajectories. The first row of Fig. 10
depicts the time variation of the electric field, in red,
and shows two classical trajectories corresponding to the
maximum recollision energy, one (in blue) starting at a
time at which the electric field is positive, and the other
(in green) when the electric field is negative.

A recollision event arising from any of these trajec-
tories occurs when the associated colored line intersects
the x = 0 axis, where the incident (returning) electron
momentum corresponds to a kinetic energy of 3.17Up.
The electron associated with the first trajectory (blue
line) scatters in every direction and continues to drift
in the field, but since the recollision time is approxi-
mately 0.95T , the residual shift in velocity is negligible
(0.12 a.u.). This gives rise to a signal mostly contained
within a circle of radius |k| ' 3.15 a.u. centered about
(kx = 0.12 a.u., ky = 0). This is not the case for the
second (green) trajectory where the electron continues
to drift, after recollision, for some half integer multiple
of the optical period T , giving rise to a large residual
momentum drift of 4.87 a.u. The associated signal is
thus contained within a circle of same radius but cen-
tered about (kx = 4.87 a.u., ky = 0).

A different situation occurs with the sine-square pulsed
laser excitation. If one performs the same calculation
as described above for the maximal recollision energies
starting at the times associated with the opposite max-
ima of the electric field, one finds slightly different rec-
ollision energies for the “blue” and “green” trajectories,
respectively 2.8Up and 3.1Up. These are also character-
ized by different residual drift momentum, respectively -
2.12 a.u. and 2.29 a.u. The recollision energy is therefore
reduced compared to the one obtained with a rectangu-
lar pulse shape for two reasons: (i) the electric field is
smaller in amplitude yielding different values of Up, and
(ii) the electric field driving the electron back to the ion
is constantly decreasing in amplitude, as opposed to the
case of a rectangular pulse shape.

With these long laser pulses, interferences between the
different electron wave packets emitted in the forward
and backward directions decrease the contrast obtained
in the fringe spectrum. This difficulty can however be cir-
cumvented by applying a filter which restricts the S(ky)
signal to high-energy electrons as shown in Fig. 11 dis-
playing this distributions in the high energy domain, with
an average [Eq.(8)] performed over |kx| > 3.15 a.u. only.
Fig. 11 shows the averaged diffraction patterns obtained
for R = 1.2 Å in panel (a), and for R = 4.8 Å in panel
(b), with a sine-square pulsed excitation of FWHM 10 fs,
represented in red dotted lines. In comparison, the black
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FIG. 10. (Color online) Electron diffraction patterns of the
HOMO of CO2 with R = 4.8 Å) in the momentum space
representation (lower panels) for a rectangular pulse shape
(panel a) and a sine-square pulse shape (panel b). The up-
per panels display the time variations in arbitrary units of
the corresponding electric fields (in red dotted lines) and the
two classical trajectories discussed in the text, one starting
at positive electric field, in blue, and the other at negative
electric field, in green.

(solid) lines display the similar result for a single-cycle
excitation, retaining again only high energy electrons to
enhance the contrast. Once again, the contrast is per-
fectly sufficient to extract the corresponding C-O bond
lengths.

V. CONCLUSION

In this paper, we have presented a detailed theoret-
ical analysis of the ionization dynamics of the N2 and
CO2 molecules in intense ultra-short linearly polarized
laser fields at 800 nm. Using two-dimensional single ac-
tive electron effective potentials, we have calculated the
momentum distribution of the emitted photo-electrons
by solving the time-dependent Schrödinger equation for
the electronic motion.

We have shown that, if the molecule is initially aligned
perpendicular to the field polarization, a simple averag-
ing and an inversion procedure can be used to determine
the molecular bond length with an accuracy of a few
percents. We have also shown that the photo-electron

momentum distribution carries information on the struc-
ture and symmetry of the ionized molecular orbital. The
robustness of the structure determination with respect to

FIG. 11. (Color online) High energy (|kx| > 3.15 a.u.) aver-
aged diffraction patterns S(ky) from the HOMO of CO2 in its
equilibrium (R = 1.2 Å, panel a) and symmetrically stretched
(R = 4.8 Å, panel b) geometries, under the same multi-cycle
excitation conditions as in Fig. 10. Black solid lines show the
results corresponding to a single-cycle excitation. The gray
dotted lines indicate the expected positions of the minima of
the function sin2(kyR), for the corresponding values of the
internuclear distance.

vibrational and rotational motions has also been demon-
strated, and the inaccuracies introduced by such pertur-
bations have been assessed and interpreted. These results
throw some light on how to image such geometric and or-
bital information for a linear polyatomic molecule on an
attosecond timescale by laser induced electron diffrac-
tion. Finally, taking into account the very short time
acquisition of these molecular images, we also claim that
a stroboscopical animation of the vibrational motion is
achievable using the LIED strategy.
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